xref: /netbsd-src/sys/arch/arm/arm32/cpu.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: cpu.c,v 1.66 2007/10/17 19:53:30 garbled Exp $	*/
2 
3 /*
4  * Copyright (c) 1995 Mark Brinicombe.
5  * Copyright (c) 1995 Brini.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Brini.
19  * 4. The name of the company nor the name of the author may be used to
20  *    endorse or promote products derived from this software without specific
21  *    prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  * RiscBSD kernel project
36  *
37  * cpu.c
38  *
39  * Probing and configuration for the master CPU
40  *
41  * Created      : 10/10/95
42  */
43 
44 #include "opt_armfpe.h"
45 #include "opt_multiprocessor.h"
46 
47 #include <sys/param.h>
48 
49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.66 2007/10/17 19:53:30 garbled Exp $");
50 
51 #include <sys/systm.h>
52 #include <sys/malloc.h>
53 #include <sys/device.h>
54 #include <sys/proc.h>
55 #include <sys/conf.h>
56 #include <uvm/uvm_extern.h>
57 #include <machine/cpu.h>
58 
59 #include <arm/cpuconf.h>
60 #include <arm/undefined.h>
61 
62 #ifdef ARMFPE
63 #include <machine/bootconfig.h> /* For boot args */
64 #include <arm/fpe-arm/armfpe.h>
65 #endif
66 
67 char cpu_model[256];
68 
69 /* Prototypes */
70 void identify_arm_cpu(struct device *dv, struct cpu_info *);
71 
72 /*
73  * Identify the master (boot) CPU
74  */
75 
76 void
77 cpu_attach(struct device *dv)
78 {
79 	int usearmfpe;
80 
81 	usearmfpe = 1;	/* when compiled in, its enabled by default */
82 
83 	curcpu()->ci_dev = dv;
84 
85 	evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
86 	    NULL, dv->dv_xname, "arm700swibug");
87 
88 	/* Get the CPU ID from coprocessor 15 */
89 
90 	curcpu()->ci_arm_cpuid = cpu_id();
91 	curcpu()->ci_arm_cputype = curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK;
92 	curcpu()->ci_arm_cpurev =
93 	    curcpu()->ci_arm_cpuid & CPU_ID_REVISION_MASK;
94 
95 	identify_arm_cpu(dv, curcpu());
96 
97 	if (curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
98 	    curcpu()->ci_arm_cpurev < 3) {
99 		aprint_normal("%s: SA-110 with bugged STM^ instruction\n",
100 		       dv->dv_xname);
101 	}
102 
103 #ifdef CPU_ARM8
104 	if ((curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
105 		int clock = arm8_clock_config(0, 0);
106 		char *fclk;
107 		aprint_normal("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
108 		aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
109 		aprint_normal("%s", (clock & 2) ? " sync" : "");
110 		switch ((clock >> 2) & 3) {
111 		case 0:
112 			fclk = "bus clock";
113 			break;
114 		case 1:
115 			fclk = "ref clock";
116 			break;
117 		case 3:
118 			fclk = "pll";
119 			break;
120 		default:
121 			fclk = "illegal";
122 			break;
123 		}
124 		aprint_normal(" fclk source=%s\n", fclk);
125  	}
126 #endif
127 
128 #ifdef ARMFPE
129 	/*
130 	 * Ok now we test for an FPA
131 	 * At this point no floating point emulator has been installed.
132 	 * This means any FP instruction will cause undefined exception.
133 	 * We install a temporay coproc 1 handler which will modify
134 	 * undefined_test if it is called.
135 	 * We then try to read the FP status register. If undefined_test
136 	 * has been decremented then the instruction was not handled by
137 	 * an FPA so we know the FPA is missing. If undefined_test is
138 	 * still 1 then we know the instruction was handled by an FPA.
139 	 * We then remove our test handler and look at the
140 	 * FP status register for identification.
141 	 */
142 
143 	/*
144 	 * Ok if ARMFPE is defined and the boot options request the
145 	 * ARM FPE then it will be installed as the FPE.
146 	 * This is just while I work on integrating the new FPE.
147 	 * It means the new FPE gets installed if compiled int (ARMFPE
148 	 * defined) and also gives me a on/off option when I boot in
149 	 * case the new FPE is causing panics.
150 	 */
151 
152 
153 	if (boot_args)
154 		get_bootconf_option(boot_args, "armfpe",
155 		    BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
156 	if (usearmfpe)
157 		initialise_arm_fpe();
158 #endif
159 }
160 
161 enum cpu_class {
162 	CPU_CLASS_NONE,
163 	CPU_CLASS_ARM2,
164 	CPU_CLASS_ARM2AS,
165 	CPU_CLASS_ARM3,
166 	CPU_CLASS_ARM6,
167 	CPU_CLASS_ARM7,
168 	CPU_CLASS_ARM7TDMI,
169 	CPU_CLASS_ARM8,
170 	CPU_CLASS_ARM9TDMI,
171 	CPU_CLASS_ARM9ES,
172 	CPU_CLASS_ARM9EJS,
173 	CPU_CLASS_ARM10E,
174 	CPU_CLASS_ARM10EJ,
175 	CPU_CLASS_SA1,
176 	CPU_CLASS_XSCALE,
177 	CPU_CLASS_ARM11J
178 };
179 
180 static const char * const generic_steppings[16] = {
181 	"rev 0",	"rev 1",	"rev 2",	"rev 3",
182 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
183 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
184 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
185 };
186 
187 static const char * const sa110_steppings[16] = {
188 	"rev 0",	"step J",	"step K",	"step S",
189 	"step T",	"rev 5",	"rev 6",	"rev 7",
190 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
191 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
192 };
193 
194 static const char * const sa1100_steppings[16] = {
195 	"rev 0",	"step B",	"step C",	"rev 3",
196 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
197 	"step D",	"step E",	"rev 10"	"step G",
198 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
199 };
200 
201 static const char * const sa1110_steppings[16] = {
202 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
203 	"step B-0",	"step B-1",	"step B-2",	"step B-3",
204 	"step B-4",	"step B-5",	"rev 10",	"rev 11",
205 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
206 };
207 
208 static const char * const ixp12x0_steppings[16] = {
209 	"(IXP1200 step A)",		"(IXP1200 step B)",
210 	"rev 2",			"(IXP1200 step C)",
211 	"(IXP1200 step D)",		"(IXP1240/1250 step A)",
212 	"(IXP1240 step B)",		"(IXP1250 step B)",
213 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
214 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
215 };
216 
217 static const char * const xscale_steppings[16] = {
218 	"step A-0",	"step A-1",	"step B-0",	"step C-0",
219 	"step D-0",	"rev 5",	"rev 6",	"rev 7",
220 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
221 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
222 };
223 
224 static const char * const i80321_steppings[16] = {
225 	"step A-0",	"step B-0",	"rev 2",	"rev 3",
226 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
227 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
228 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
229 };
230 
231 static const char * const i80219_steppings[16] = {
232 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
233 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
234 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
235 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
236 };
237 
238 /* Steppings for PXA2[15]0 */
239 static const char * const pxa2x0_steppings[16] = {
240 	"step A-0",	"step A-1",	"step B-0",	"step B-1",
241 	"step B-2",	"step C-0",	"rev 6",	"rev 7",
242 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
243 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
244 };
245 
246 /* Steppings for PXA255/26x.
247  * rev 5: PXA26x B0, rev 6: PXA255 A0
248  */
249 static const char * const pxa255_steppings[16] = {
250 	"rev 0",	"rev 1",	"rev 2",	"step A-0",
251 	"rev 4",	"step B-0",	"step A-0",	"rev 7",
252 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
253 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
254 };
255 
256 /* Stepping for PXA27x */
257 static const char * const pxa27x_steppings[16] = {
258 	"step A-0",	"step A-1",	"step B-0",	"step B-1",
259 	"step C-0",	"rev 5",	"rev 6",	"rev 7",
260 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
261 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
262 };
263 
264 static const char * const ixp425_steppings[16] = {
265 	"step 0",	"rev 1",	"rev 2",	"rev 3",
266 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
267 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
268 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
269 };
270 
271 struct cpuidtab {
272 	u_int32_t	cpuid;
273 	enum		cpu_class cpu_class;
274 	const char	*cpu_name;
275 	const char * const *cpu_steppings;
276 };
277 
278 const struct cpuidtab cpuids[] = {
279 	{ CPU_ID_ARM2,		CPU_CLASS_ARM2,		"ARM2",
280 	  generic_steppings },
281 	{ CPU_ID_ARM250,	CPU_CLASS_ARM2AS,	"ARM250",
282 	  generic_steppings },
283 
284 	{ CPU_ID_ARM3,		CPU_CLASS_ARM3,		"ARM3",
285 	  generic_steppings },
286 
287 	{ CPU_ID_ARM600,	CPU_CLASS_ARM6,		"ARM600",
288 	  generic_steppings },
289 	{ CPU_ID_ARM610,	CPU_CLASS_ARM6,		"ARM610",
290 	  generic_steppings },
291 	{ CPU_ID_ARM620,	CPU_CLASS_ARM6,		"ARM620",
292 	  generic_steppings },
293 
294 	{ CPU_ID_ARM700,	CPU_CLASS_ARM7,		"ARM700",
295 	  generic_steppings },
296 	{ CPU_ID_ARM710,	CPU_CLASS_ARM7,		"ARM710",
297 	  generic_steppings },
298 	{ CPU_ID_ARM7500,	CPU_CLASS_ARM7,		"ARM7500",
299 	  generic_steppings },
300 	{ CPU_ID_ARM710A,	CPU_CLASS_ARM7,		"ARM710a",
301 	  generic_steppings },
302 	{ CPU_ID_ARM7500FE,	CPU_CLASS_ARM7,		"ARM7500FE",
303 	  generic_steppings },
304 	{ CPU_ID_ARM710T,	CPU_CLASS_ARM7TDMI,	"ARM710T",
305 	  generic_steppings },
306 	{ CPU_ID_ARM720T,	CPU_CLASS_ARM7TDMI,	"ARM720T",
307 	  generic_steppings },
308 	{ CPU_ID_ARM740T8K,	CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
309 	  generic_steppings },
310 	{ CPU_ID_ARM740T4K,	CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
311 	  generic_steppings },
312 
313 	{ CPU_ID_ARM810,	CPU_CLASS_ARM8,		"ARM810",
314 	  generic_steppings },
315 
316 	{ CPU_ID_ARM920T,	CPU_CLASS_ARM9TDMI,	"ARM920T",
317 	  generic_steppings },
318 	{ CPU_ID_ARM922T,	CPU_CLASS_ARM9TDMI,	"ARM922T",
319 	  generic_steppings },
320 	{ CPU_ID_ARM926EJS,	CPU_CLASS_ARM9EJS,	"ARM926EJ-S",
321 	  generic_steppings },
322 	{ CPU_ID_ARM940T,	CPU_CLASS_ARM9TDMI,	"ARM940T",
323 	  generic_steppings },
324 	{ CPU_ID_ARM946ES,	CPU_CLASS_ARM9ES,	"ARM946E-S",
325 	  generic_steppings },
326 	{ CPU_ID_ARM966ES,	CPU_CLASS_ARM9ES,	"ARM966E-S",
327 	  generic_steppings },
328 	{ CPU_ID_ARM966ESR1,	CPU_CLASS_ARM9ES,	"ARM966E-S",
329 	  generic_steppings },
330 	{ CPU_ID_TI925T,	CPU_CLASS_ARM9TDMI,	"TI ARM925T",
331 	  generic_steppings },
332 
333 	{ CPU_ID_ARM1020E,	CPU_CLASS_ARM10E,	"ARM1020E",
334 	  generic_steppings },
335 	{ CPU_ID_ARM1022ES,	CPU_CLASS_ARM10E,	"ARM1022E-S",
336 	  generic_steppings },
337 	{ CPU_ID_ARM1026EJS,	CPU_CLASS_ARM10EJ,	"ARM1026EJ-S",
338 	  generic_steppings },
339 
340 	{ CPU_ID_SA110,		CPU_CLASS_SA1,		"SA-110",
341 	  sa110_steppings },
342 	{ CPU_ID_SA1100,	CPU_CLASS_SA1,		"SA-1100",
343 	  sa1100_steppings },
344 	{ CPU_ID_SA1110,	CPU_CLASS_SA1,		"SA-1110",
345 	  sa1110_steppings },
346 
347 	{ CPU_ID_IXP1200,	CPU_CLASS_SA1,		"IXP1200",
348 	  ixp12x0_steppings },
349 
350 	{ CPU_ID_80200,		CPU_CLASS_XSCALE,	"i80200",
351 	  xscale_steppings },
352 
353 	{ CPU_ID_80321_400,	CPU_CLASS_XSCALE,	"i80321 400MHz",
354 	  i80321_steppings },
355 	{ CPU_ID_80321_600,	CPU_CLASS_XSCALE,	"i80321 600MHz",
356 	  i80321_steppings },
357 	{ CPU_ID_80321_400_B0,	CPU_CLASS_XSCALE,	"i80321 400MHz",
358 	  i80321_steppings },
359 	{ CPU_ID_80321_600_B0,	CPU_CLASS_XSCALE,	"i80321 600MHz",
360 	  i80321_steppings },
361 
362 	{ CPU_ID_80219_400,	CPU_CLASS_XSCALE,	"i80219 400MHz",
363 	  i80219_steppings },
364 	{ CPU_ID_80219_600,	CPU_CLASS_XSCALE,	"i80219 600MHz",
365 	  i80219_steppings },
366 
367 	{ CPU_ID_PXA27X,	CPU_CLASS_XSCALE,	"PXA27x",
368 	  pxa27x_steppings },
369 	{ CPU_ID_PXA250A,	CPU_CLASS_XSCALE,	"PXA250",
370 	  pxa2x0_steppings },
371 	{ CPU_ID_PXA210A,	CPU_CLASS_XSCALE,	"PXA210",
372 	  pxa2x0_steppings },
373 	{ CPU_ID_PXA250B,	CPU_CLASS_XSCALE,	"PXA250",
374 	  pxa2x0_steppings },
375 	{ CPU_ID_PXA210B,	CPU_CLASS_XSCALE,	"PXA210",
376 	  pxa2x0_steppings },
377 	{ CPU_ID_PXA250C, 	CPU_CLASS_XSCALE,	"PXA255/26x",
378 	  pxa255_steppings },
379 	{ CPU_ID_PXA210C, 	CPU_CLASS_XSCALE,	"PXA210",
380 	  pxa2x0_steppings },
381 
382 	{ CPU_ID_IXP425_533,	CPU_CLASS_XSCALE,	"IXP425 533MHz",
383 	  ixp425_steppings },
384 	{ CPU_ID_IXP425_400,	CPU_CLASS_XSCALE,	"IXP425 400MHz",
385 	  ixp425_steppings },
386 	{ CPU_ID_IXP425_266,	CPU_CLASS_XSCALE,	"IXP425 266MHz",
387 	  ixp425_steppings },
388 
389 	{ CPU_ID_ARM1136JS,	CPU_CLASS_ARM11J,	"ARM1136J-S",
390 	  generic_steppings },
391 	{ CPU_ID_ARM1136JSR1,	CPU_CLASS_ARM11J,	"ARM1136J-S R1",
392 	  generic_steppings },
393 
394 	{ 0, CPU_CLASS_NONE, NULL, NULL }
395 };
396 
397 struct cpu_classtab {
398 	const char	*class_name;
399 	const char	*class_option;
400 };
401 
402 const struct cpu_classtab cpu_classes[] = {
403 	{ "unknown",	NULL },			/* CPU_CLASS_NONE */
404 	{ "ARM2",	"CPU_ARM2" },		/* CPU_CLASS_ARM2 */
405 	{ "ARM2as",	"CPU_ARM250" },		/* CPU_CLASS_ARM2AS */
406 	{ "ARM3",	"CPU_ARM3" },		/* CPU_CLASS_ARM3 */
407 	{ "ARM6",	"CPU_ARM6" },		/* CPU_CLASS_ARM6 */
408 	{ "ARM7",	"CPU_ARM7" },		/* CPU_CLASS_ARM7 */
409 	{ "ARM7TDMI",	"CPU_ARM7TDMI" },	/* CPU_CLASS_ARM7TDMI */
410 	{ "ARM8",	"CPU_ARM8" },		/* CPU_CLASS_ARM8 */
411 	{ "ARM9TDMI",	NULL },			/* CPU_CLASS_ARM9TDMI */
412 	{ "ARM9E-S",	"CPU_ARM9E" },		/* CPU_CLASS_ARM9ES */
413 	{ "ARM9EJ-S",	"CPU_ARM9E" },		/* CPU_CLASS_ARM9EJS */
414 	{ "ARM10E",	"CPU_ARM10" },		/* CPU_CLASS_ARM10E */
415 	{ "ARM10EJ",	"CPU_ARM10" },		/* CPU_CLASS_ARM10EJ */
416 	{ "SA-1",	"CPU_SA110" },		/* CPU_CLASS_SA1 */
417 	{ "XScale",	"CPU_XSCALE_..." },	/* CPU_CLASS_XSCALE */
418 	{ "ARM11J",	"CPU_ARM11" },		/* CPU_CLASS_ARM11J */
419 };
420 
421 /*
422  * Report the type of the specified arm processor. This uses the generic and
423  * arm specific information in the CPU structure to identify the processor.
424  * The remaining fields in the CPU structure are filled in appropriately.
425  */
426 
427 static const char * const wtnames[] = {
428 	"write-through",
429 	"write-back",
430 	"write-back",
431 	"**unknown 3**",
432 	"**unknown 4**",
433 	"write-back-locking",		/* XXX XScale-specific? */
434 	"write-back-locking-A",
435 	"write-back-locking-B",
436 	"**unknown 8**",
437 	"**unknown 9**",
438 	"**unknown 10**",
439 	"**unknown 11**",
440 	"**unknown 12**",
441 	"**unknown 13**",
442 	"write-back-locking-C",
443 	"**unknown 15**",
444 };
445 
446 void
447 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
448 {
449 	u_int cpuid;
450 	enum cpu_class cpu_class = CPU_CLASS_NONE;
451 	int i;
452 
453 	cpuid = ci->ci_arm_cpuid;
454 
455 	if (cpuid == 0) {
456 		aprint_error("Processor failed probe - no CPU ID\n");
457 		return;
458 	}
459 
460 	for (i = 0; cpuids[i].cpuid != 0; i++)
461 		if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
462 			cpu_class = cpuids[i].cpu_class;
463 			sprintf(cpu_model, "%s %s (%s core)",
464 			    cpuids[i].cpu_name,
465 			    cpuids[i].cpu_steppings[cpuid &
466 						    CPU_ID_REVISION_MASK],
467 			    cpu_classes[cpu_class].class_name);
468 			break;
469 		}
470 
471 	if (cpuids[i].cpuid == 0)
472 		sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
473 
474 	aprint_naive(": %s\n", cpu_model);
475 	aprint_normal(": %s\n", cpu_model);
476 
477 	aprint_normal("%s:", dv->dv_xname);
478 
479 	switch (cpu_class) {
480 	case CPU_CLASS_ARM6:
481 	case CPU_CLASS_ARM7:
482 	case CPU_CLASS_ARM7TDMI:
483 	case CPU_CLASS_ARM8:
484 		if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
485 			aprint_normal(" IDC disabled");
486 		else
487 			aprint_normal(" IDC enabled");
488 		break;
489 	case CPU_CLASS_ARM9TDMI:
490 	case CPU_CLASS_ARM9ES:
491 	case CPU_CLASS_ARM9EJS:
492 	case CPU_CLASS_ARM10E:
493 	case CPU_CLASS_ARM10EJ:
494 	case CPU_CLASS_SA1:
495 	case CPU_CLASS_XSCALE:
496 	case CPU_CLASS_ARM11J:
497 		if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
498 			aprint_normal(" DC disabled");
499 		else
500 			aprint_normal(" DC enabled");
501 		if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
502 			aprint_normal(" IC disabled");
503 		else
504 			aprint_normal(" IC enabled");
505 		break;
506 	default:
507 		break;
508 	}
509 	if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
510 		aprint_normal(" WB disabled");
511 	else
512 		aprint_normal(" WB enabled");
513 
514 	if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
515 		aprint_normal(" LABT");
516 	else
517 		aprint_normal(" EABT");
518 
519 	if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
520 		aprint_normal(" branch prediction enabled");
521 
522 	aprint_normal("\n");
523 
524 	/* Print cache info. */
525 	if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
526 		goto skip_pcache;
527 
528 	if (arm_pcache_unified) {
529 		aprint_normal("%s: %dKB/%dB %d-way %s unified cache\n",
530 		    dv->dv_xname, arm_pdcache_size / 1024,
531 		    arm_pdcache_line_size, arm_pdcache_ways,
532 		    wtnames[arm_pcache_type]);
533 	} else {
534 		aprint_normal("%s: %dKB/%dB %d-way Instruction cache\n",
535 		    dv->dv_xname, arm_picache_size / 1024,
536 		    arm_picache_line_size, arm_picache_ways);
537 		aprint_normal("%s: %dKB/%dB %d-way %s Data cache\n",
538 		    dv->dv_xname, arm_pdcache_size / 1024,
539 		    arm_pdcache_line_size, arm_pdcache_ways,
540 		    wtnames[arm_pcache_type]);
541 	}
542 
543  skip_pcache:
544 
545 	switch (cpu_class) {
546 #ifdef CPU_ARM2
547 	case CPU_CLASS_ARM2:
548 #endif
549 #ifdef CPU_ARM250
550 	case CPU_CLASS_ARM2AS:
551 #endif
552 #ifdef CPU_ARM3
553 	case CPU_CLASS_ARM3:
554 #endif
555 #ifdef CPU_ARM6
556 	case CPU_CLASS_ARM6:
557 #endif
558 #ifdef CPU_ARM7
559 	case CPU_CLASS_ARM7:
560 #endif
561 #ifdef CPU_ARM7TDMI
562 	case CPU_CLASS_ARM7TDMI:
563 #endif
564 #ifdef CPU_ARM8
565 	case CPU_CLASS_ARM8:
566 #endif
567 #ifdef CPU_ARM9
568 	case CPU_CLASS_ARM9TDMI:
569 #endif
570 #ifdef CPU_ARM9E
571 	case CPU_CLASS_ARM9ES:
572 	case CPU_CLASS_ARM9EJS:
573 #endif
574 #ifdef CPU_ARM10
575 	case CPU_CLASS_ARM10E:
576 	case CPU_CLASS_ARM10EJ:
577 #endif
578 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
579     defined(CPU_SA1110) || defined(CPU_IXP12X0)
580 	case CPU_CLASS_SA1:
581 #endif
582 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
583     defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425)
584 	case CPU_CLASS_XSCALE:
585 #endif
586 #ifdef CPU_ARM11
587 	case CPU_CLASS_ARM11J:
588 #endif
589 		break;
590 	default:
591 		if (cpu_classes[cpu_class].class_option == NULL)
592 			aprint_error("%s: %s does not fully support this CPU."
593 			       "\n", dv->dv_xname, ostype);
594 		else {
595 			aprint_error("%s: This kernel does not fully support "
596 			       "this CPU.\n", dv->dv_xname);
597 			aprint_normal("%s: Recompile with \"options %s\" to "
598 			       "correct this.\n", dv->dv_xname,
599 			       cpu_classes[cpu_class].class_option);
600 		}
601 		break;
602 	}
603 
604 }
605 
606 /* End of cpu.c */
607