xref: /netbsd-src/sys/arch/arm/arm32/cpu.c (revision 8ac07aec990b9d2e483062509d0a9fa5b4f57cf2)
1 /*	$NetBSD: cpu.c,v 1.67 2008/03/15 10:19:40 rearnsha Exp $	*/
2 
3 /*
4  * Copyright (c) 1995 Mark Brinicombe.
5  * Copyright (c) 1995 Brini.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Brini.
19  * 4. The name of the company nor the name of the author may be used to
20  *    endorse or promote products derived from this software without specific
21  *    prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  * RiscBSD kernel project
36  *
37  * cpu.c
38  *
39  * Probing and configuration for the master CPU
40  *
41  * Created      : 10/10/95
42  */
43 
44 #include "opt_armfpe.h"
45 #include "opt_multiprocessor.h"
46 
47 #include <sys/param.h>
48 
49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.67 2008/03/15 10:19:40 rearnsha Exp $");
50 
51 #include <sys/systm.h>
52 #include <sys/malloc.h>
53 #include <sys/device.h>
54 #include <sys/proc.h>
55 #include <sys/conf.h>
56 #include <uvm/uvm_extern.h>
57 #include <machine/cpu.h>
58 
59 #include <arm/cpuconf.h>
60 #include <arm/undefined.h>
61 
62 #ifdef ARMFPE
63 #include <machine/bootconfig.h> /* For boot args */
64 #include <arm/fpe-arm/armfpe.h>
65 #endif
66 
67 #ifdef FPU_VFP
68 #include <arm/vfpvar.h>
69 #endif
70 
71 char cpu_model[256];
72 
73 /* Prototypes */
74 void identify_arm_cpu(struct device *dv, struct cpu_info *);
75 
76 /*
77  * Identify the master (boot) CPU
78  */
79 
80 void
81 cpu_attach(struct device *dv)
82 {
83 	int usearmfpe;
84 
85 	usearmfpe = 1;	/* when compiled in, its enabled by default */
86 
87 	curcpu()->ci_dev = dv;
88 
89 	evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
90 	    NULL, dv->dv_xname, "arm700swibug");
91 
92 	/* Get the CPU ID from coprocessor 15 */
93 
94 	curcpu()->ci_arm_cpuid = cpu_id();
95 	curcpu()->ci_arm_cputype = curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK;
96 	curcpu()->ci_arm_cpurev =
97 	    curcpu()->ci_arm_cpuid & CPU_ID_REVISION_MASK;
98 
99 	identify_arm_cpu(dv, curcpu());
100 
101 	if (curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
102 	    curcpu()->ci_arm_cpurev < 3) {
103 		aprint_normal("%s: SA-110 with bugged STM^ instruction\n",
104 		       dv->dv_xname);
105 	}
106 
107 #ifdef CPU_ARM8
108 	if ((curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
109 		int clock = arm8_clock_config(0, 0);
110 		char *fclk;
111 		aprint_normal("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
112 		aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
113 		aprint_normal("%s", (clock & 2) ? " sync" : "");
114 		switch ((clock >> 2) & 3) {
115 		case 0:
116 			fclk = "bus clock";
117 			break;
118 		case 1:
119 			fclk = "ref clock";
120 			break;
121 		case 3:
122 			fclk = "pll";
123 			break;
124 		default:
125 			fclk = "illegal";
126 			break;
127 		}
128 		aprint_normal(" fclk source=%s\n", fclk);
129  	}
130 #endif
131 
132 #ifdef ARMFPE
133 	/*
134 	 * Ok now we test for an FPA
135 	 * At this point no floating point emulator has been installed.
136 	 * This means any FP instruction will cause undefined exception.
137 	 * We install a temporay coproc 1 handler which will modify
138 	 * undefined_test if it is called.
139 	 * We then try to read the FP status register. If undefined_test
140 	 * has been decremented then the instruction was not handled by
141 	 * an FPA so we know the FPA is missing. If undefined_test is
142 	 * still 1 then we know the instruction was handled by an FPA.
143 	 * We then remove our test handler and look at the
144 	 * FP status register for identification.
145 	 */
146 
147 	/*
148 	 * Ok if ARMFPE is defined and the boot options request the
149 	 * ARM FPE then it will be installed as the FPE.
150 	 * This is just while I work on integrating the new FPE.
151 	 * It means the new FPE gets installed if compiled int (ARMFPE
152 	 * defined) and also gives me a on/off option when I boot in
153 	 * case the new FPE is causing panics.
154 	 */
155 
156 
157 	if (boot_args)
158 		get_bootconf_option(boot_args, "armfpe",
159 		    BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
160 	if (usearmfpe)
161 		initialise_arm_fpe();
162 #endif
163 
164 #ifdef FPU_VFP
165 	vfp_attach();
166 #endif
167 }
168 
169 enum cpu_class {
170 	CPU_CLASS_NONE,
171 	CPU_CLASS_ARM2,
172 	CPU_CLASS_ARM2AS,
173 	CPU_CLASS_ARM3,
174 	CPU_CLASS_ARM6,
175 	CPU_CLASS_ARM7,
176 	CPU_CLASS_ARM7TDMI,
177 	CPU_CLASS_ARM8,
178 	CPU_CLASS_ARM9TDMI,
179 	CPU_CLASS_ARM9ES,
180 	CPU_CLASS_ARM9EJS,
181 	CPU_CLASS_ARM10E,
182 	CPU_CLASS_ARM10EJ,
183 	CPU_CLASS_SA1,
184 	CPU_CLASS_XSCALE,
185 	CPU_CLASS_ARM11J
186 };
187 
188 static const char * const generic_steppings[16] = {
189 	"rev 0",	"rev 1",	"rev 2",	"rev 3",
190 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
191 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
192 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
193 };
194 
195 static const char * const sa110_steppings[16] = {
196 	"rev 0",	"step J",	"step K",	"step S",
197 	"step T",	"rev 5",	"rev 6",	"rev 7",
198 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
199 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
200 };
201 
202 static const char * const sa1100_steppings[16] = {
203 	"rev 0",	"step B",	"step C",	"rev 3",
204 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
205 	"step D",	"step E",	"rev 10"	"step G",
206 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
207 };
208 
209 static const char * const sa1110_steppings[16] = {
210 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
211 	"step B-0",	"step B-1",	"step B-2",	"step B-3",
212 	"step B-4",	"step B-5",	"rev 10",	"rev 11",
213 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
214 };
215 
216 static const char * const ixp12x0_steppings[16] = {
217 	"(IXP1200 step A)",		"(IXP1200 step B)",
218 	"rev 2",			"(IXP1200 step C)",
219 	"(IXP1200 step D)",		"(IXP1240/1250 step A)",
220 	"(IXP1240 step B)",		"(IXP1250 step B)",
221 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
222 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
223 };
224 
225 static const char * const xscale_steppings[16] = {
226 	"step A-0",	"step A-1",	"step B-0",	"step C-0",
227 	"step D-0",	"rev 5",	"rev 6",	"rev 7",
228 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
229 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
230 };
231 
232 static const char * const i80321_steppings[16] = {
233 	"step A-0",	"step B-0",	"rev 2",	"rev 3",
234 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
235 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
236 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
237 };
238 
239 static const char * const i80219_steppings[16] = {
240 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
241 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
242 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
243 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
244 };
245 
246 /* Steppings for PXA2[15]0 */
247 static const char * const pxa2x0_steppings[16] = {
248 	"step A-0",	"step A-1",	"step B-0",	"step B-1",
249 	"step B-2",	"step C-0",	"rev 6",	"rev 7",
250 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
251 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
252 };
253 
254 /* Steppings for PXA255/26x.
255  * rev 5: PXA26x B0, rev 6: PXA255 A0
256  */
257 static const char * const pxa255_steppings[16] = {
258 	"rev 0",	"rev 1",	"rev 2",	"step A-0",
259 	"rev 4",	"step B-0",	"step A-0",	"rev 7",
260 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
261 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
262 };
263 
264 /* Stepping for PXA27x */
265 static const char * const pxa27x_steppings[16] = {
266 	"step A-0",	"step A-1",	"step B-0",	"step B-1",
267 	"step C-0",	"rev 5",	"rev 6",	"rev 7",
268 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
269 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
270 };
271 
272 static const char * const ixp425_steppings[16] = {
273 	"step 0",	"rev 1",	"rev 2",	"rev 3",
274 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
275 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
276 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
277 };
278 
279 struct cpuidtab {
280 	u_int32_t	cpuid;
281 	enum		cpu_class cpu_class;
282 	const char	*cpu_name;
283 	const char * const *cpu_steppings;
284 };
285 
286 const struct cpuidtab cpuids[] = {
287 	{ CPU_ID_ARM2,		CPU_CLASS_ARM2,		"ARM2",
288 	  generic_steppings },
289 	{ CPU_ID_ARM250,	CPU_CLASS_ARM2AS,	"ARM250",
290 	  generic_steppings },
291 
292 	{ CPU_ID_ARM3,		CPU_CLASS_ARM3,		"ARM3",
293 	  generic_steppings },
294 
295 	{ CPU_ID_ARM600,	CPU_CLASS_ARM6,		"ARM600",
296 	  generic_steppings },
297 	{ CPU_ID_ARM610,	CPU_CLASS_ARM6,		"ARM610",
298 	  generic_steppings },
299 	{ CPU_ID_ARM620,	CPU_CLASS_ARM6,		"ARM620",
300 	  generic_steppings },
301 
302 	{ CPU_ID_ARM700,	CPU_CLASS_ARM7,		"ARM700",
303 	  generic_steppings },
304 	{ CPU_ID_ARM710,	CPU_CLASS_ARM7,		"ARM710",
305 	  generic_steppings },
306 	{ CPU_ID_ARM7500,	CPU_CLASS_ARM7,		"ARM7500",
307 	  generic_steppings },
308 	{ CPU_ID_ARM710A,	CPU_CLASS_ARM7,		"ARM710a",
309 	  generic_steppings },
310 	{ CPU_ID_ARM7500FE,	CPU_CLASS_ARM7,		"ARM7500FE",
311 	  generic_steppings },
312 	{ CPU_ID_ARM710T,	CPU_CLASS_ARM7TDMI,	"ARM710T",
313 	  generic_steppings },
314 	{ CPU_ID_ARM720T,	CPU_CLASS_ARM7TDMI,	"ARM720T",
315 	  generic_steppings },
316 	{ CPU_ID_ARM740T8K,	CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
317 	  generic_steppings },
318 	{ CPU_ID_ARM740T4K,	CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
319 	  generic_steppings },
320 
321 	{ CPU_ID_ARM810,	CPU_CLASS_ARM8,		"ARM810",
322 	  generic_steppings },
323 
324 	{ CPU_ID_ARM920T,	CPU_CLASS_ARM9TDMI,	"ARM920T",
325 	  generic_steppings },
326 	{ CPU_ID_ARM922T,	CPU_CLASS_ARM9TDMI,	"ARM922T",
327 	  generic_steppings },
328 	{ CPU_ID_ARM926EJS,	CPU_CLASS_ARM9EJS,	"ARM926EJ-S",
329 	  generic_steppings },
330 	{ CPU_ID_ARM940T,	CPU_CLASS_ARM9TDMI,	"ARM940T",
331 	  generic_steppings },
332 	{ CPU_ID_ARM946ES,	CPU_CLASS_ARM9ES,	"ARM946E-S",
333 	  generic_steppings },
334 	{ CPU_ID_ARM966ES,	CPU_CLASS_ARM9ES,	"ARM966E-S",
335 	  generic_steppings },
336 	{ CPU_ID_ARM966ESR1,	CPU_CLASS_ARM9ES,	"ARM966E-S",
337 	  generic_steppings },
338 	{ CPU_ID_TI925T,	CPU_CLASS_ARM9TDMI,	"TI ARM925T",
339 	  generic_steppings },
340 
341 	{ CPU_ID_ARM1020E,	CPU_CLASS_ARM10E,	"ARM1020E",
342 	  generic_steppings },
343 	{ CPU_ID_ARM1022ES,	CPU_CLASS_ARM10E,	"ARM1022E-S",
344 	  generic_steppings },
345 	{ CPU_ID_ARM1026EJS,	CPU_CLASS_ARM10EJ,	"ARM1026EJ-S",
346 	  generic_steppings },
347 
348 	{ CPU_ID_SA110,		CPU_CLASS_SA1,		"SA-110",
349 	  sa110_steppings },
350 	{ CPU_ID_SA1100,	CPU_CLASS_SA1,		"SA-1100",
351 	  sa1100_steppings },
352 	{ CPU_ID_SA1110,	CPU_CLASS_SA1,		"SA-1110",
353 	  sa1110_steppings },
354 
355 	{ CPU_ID_IXP1200,	CPU_CLASS_SA1,		"IXP1200",
356 	  ixp12x0_steppings },
357 
358 	{ CPU_ID_80200,		CPU_CLASS_XSCALE,	"i80200",
359 	  xscale_steppings },
360 
361 	{ CPU_ID_80321_400,	CPU_CLASS_XSCALE,	"i80321 400MHz",
362 	  i80321_steppings },
363 	{ CPU_ID_80321_600,	CPU_CLASS_XSCALE,	"i80321 600MHz",
364 	  i80321_steppings },
365 	{ CPU_ID_80321_400_B0,	CPU_CLASS_XSCALE,	"i80321 400MHz",
366 	  i80321_steppings },
367 	{ CPU_ID_80321_600_B0,	CPU_CLASS_XSCALE,	"i80321 600MHz",
368 	  i80321_steppings },
369 
370 	{ CPU_ID_80219_400,	CPU_CLASS_XSCALE,	"i80219 400MHz",
371 	  i80219_steppings },
372 	{ CPU_ID_80219_600,	CPU_CLASS_XSCALE,	"i80219 600MHz",
373 	  i80219_steppings },
374 
375 	{ CPU_ID_PXA27X,	CPU_CLASS_XSCALE,	"PXA27x",
376 	  pxa27x_steppings },
377 	{ CPU_ID_PXA250A,	CPU_CLASS_XSCALE,	"PXA250",
378 	  pxa2x0_steppings },
379 	{ CPU_ID_PXA210A,	CPU_CLASS_XSCALE,	"PXA210",
380 	  pxa2x0_steppings },
381 	{ CPU_ID_PXA250B,	CPU_CLASS_XSCALE,	"PXA250",
382 	  pxa2x0_steppings },
383 	{ CPU_ID_PXA210B,	CPU_CLASS_XSCALE,	"PXA210",
384 	  pxa2x0_steppings },
385 	{ CPU_ID_PXA250C, 	CPU_CLASS_XSCALE,	"PXA255/26x",
386 	  pxa255_steppings },
387 	{ CPU_ID_PXA210C, 	CPU_CLASS_XSCALE,	"PXA210",
388 	  pxa2x0_steppings },
389 
390 	{ CPU_ID_IXP425_533,	CPU_CLASS_XSCALE,	"IXP425 533MHz",
391 	  ixp425_steppings },
392 	{ CPU_ID_IXP425_400,	CPU_CLASS_XSCALE,	"IXP425 400MHz",
393 	  ixp425_steppings },
394 	{ CPU_ID_IXP425_266,	CPU_CLASS_XSCALE,	"IXP425 266MHz",
395 	  ixp425_steppings },
396 
397 	{ CPU_ID_ARM1136JS,	CPU_CLASS_ARM11J,	"ARM1136J-S",
398 	  generic_steppings },
399 	{ CPU_ID_ARM1136JSR1,	CPU_CLASS_ARM11J,	"ARM1136J-S R1",
400 	  generic_steppings },
401 
402 	{ 0, CPU_CLASS_NONE, NULL, NULL }
403 };
404 
405 struct cpu_classtab {
406 	const char	*class_name;
407 	const char	*class_option;
408 };
409 
410 const struct cpu_classtab cpu_classes[] = {
411 	{ "unknown",	NULL },			/* CPU_CLASS_NONE */
412 	{ "ARM2",	"CPU_ARM2" },		/* CPU_CLASS_ARM2 */
413 	{ "ARM2as",	"CPU_ARM250" },		/* CPU_CLASS_ARM2AS */
414 	{ "ARM3",	"CPU_ARM3" },		/* CPU_CLASS_ARM3 */
415 	{ "ARM6",	"CPU_ARM6" },		/* CPU_CLASS_ARM6 */
416 	{ "ARM7",	"CPU_ARM7" },		/* CPU_CLASS_ARM7 */
417 	{ "ARM7TDMI",	"CPU_ARM7TDMI" },	/* CPU_CLASS_ARM7TDMI */
418 	{ "ARM8",	"CPU_ARM8" },		/* CPU_CLASS_ARM8 */
419 	{ "ARM9TDMI",	NULL },			/* CPU_CLASS_ARM9TDMI */
420 	{ "ARM9E-S",	"CPU_ARM9E" },		/* CPU_CLASS_ARM9ES */
421 	{ "ARM9EJ-S",	"CPU_ARM9E" },		/* CPU_CLASS_ARM9EJS */
422 	{ "ARM10E",	"CPU_ARM10" },		/* CPU_CLASS_ARM10E */
423 	{ "ARM10EJ",	"CPU_ARM10" },		/* CPU_CLASS_ARM10EJ */
424 	{ "SA-1",	"CPU_SA110" },		/* CPU_CLASS_SA1 */
425 	{ "XScale",	"CPU_XSCALE_..." },	/* CPU_CLASS_XSCALE */
426 	{ "ARM11J",	"CPU_ARM11" },		/* CPU_CLASS_ARM11J */
427 };
428 
429 /*
430  * Report the type of the specified arm processor. This uses the generic and
431  * arm specific information in the CPU structure to identify the processor.
432  * The remaining fields in the CPU structure are filled in appropriately.
433  */
434 
435 static const char * const wtnames[] = {
436 	"write-through",
437 	"write-back",
438 	"write-back",
439 	"**unknown 3**",
440 	"**unknown 4**",
441 	"write-back-locking",		/* XXX XScale-specific? */
442 	"write-back-locking-A",
443 	"write-back-locking-B",
444 	"**unknown 8**",
445 	"**unknown 9**",
446 	"**unknown 10**",
447 	"**unknown 11**",
448 	"**unknown 12**",
449 	"**unknown 13**",
450 	"write-back-locking-C",
451 	"**unknown 15**",
452 };
453 
454 void
455 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
456 {
457 	u_int cpuid;
458 	enum cpu_class cpu_class = CPU_CLASS_NONE;
459 	int i;
460 
461 	cpuid = ci->ci_arm_cpuid;
462 
463 	if (cpuid == 0) {
464 		aprint_error("Processor failed probe - no CPU ID\n");
465 		return;
466 	}
467 
468 	for (i = 0; cpuids[i].cpuid != 0; i++)
469 		if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
470 			cpu_class = cpuids[i].cpu_class;
471 			sprintf(cpu_model, "%s %s (%s core)",
472 			    cpuids[i].cpu_name,
473 			    cpuids[i].cpu_steppings[cpuid &
474 						    CPU_ID_REVISION_MASK],
475 			    cpu_classes[cpu_class].class_name);
476 			break;
477 		}
478 
479 	if (cpuids[i].cpuid == 0)
480 		sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
481 
482 	aprint_naive(": %s\n", cpu_model);
483 	aprint_normal(": %s\n", cpu_model);
484 
485 	aprint_normal("%s:", dv->dv_xname);
486 
487 	switch (cpu_class) {
488 	case CPU_CLASS_ARM6:
489 	case CPU_CLASS_ARM7:
490 	case CPU_CLASS_ARM7TDMI:
491 	case CPU_CLASS_ARM8:
492 		if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
493 			aprint_normal(" IDC disabled");
494 		else
495 			aprint_normal(" IDC enabled");
496 		break;
497 	case CPU_CLASS_ARM9TDMI:
498 	case CPU_CLASS_ARM9ES:
499 	case CPU_CLASS_ARM9EJS:
500 	case CPU_CLASS_ARM10E:
501 	case CPU_CLASS_ARM10EJ:
502 	case CPU_CLASS_SA1:
503 	case CPU_CLASS_XSCALE:
504 	case CPU_CLASS_ARM11J:
505 		if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
506 			aprint_normal(" DC disabled");
507 		else
508 			aprint_normal(" DC enabled");
509 		if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
510 			aprint_normal(" IC disabled");
511 		else
512 			aprint_normal(" IC enabled");
513 		break;
514 	default:
515 		break;
516 	}
517 	if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
518 		aprint_normal(" WB disabled");
519 	else
520 		aprint_normal(" WB enabled");
521 
522 	if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
523 		aprint_normal(" LABT");
524 	else
525 		aprint_normal(" EABT");
526 
527 	if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
528 		aprint_normal(" branch prediction enabled");
529 
530 	aprint_normal("\n");
531 
532 	/* Print cache info. */
533 	if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
534 		goto skip_pcache;
535 
536 	if (arm_pcache_unified) {
537 		aprint_normal("%s: %dKB/%dB %d-way %s unified cache\n",
538 		    dv->dv_xname, arm_pdcache_size / 1024,
539 		    arm_pdcache_line_size, arm_pdcache_ways,
540 		    wtnames[arm_pcache_type]);
541 	} else {
542 		aprint_normal("%s: %dKB/%dB %d-way Instruction cache\n",
543 		    dv->dv_xname, arm_picache_size / 1024,
544 		    arm_picache_line_size, arm_picache_ways);
545 		aprint_normal("%s: %dKB/%dB %d-way %s Data cache\n",
546 		    dv->dv_xname, arm_pdcache_size / 1024,
547 		    arm_pdcache_line_size, arm_pdcache_ways,
548 		    wtnames[arm_pcache_type]);
549 	}
550 
551  skip_pcache:
552 
553 	switch (cpu_class) {
554 #ifdef CPU_ARM2
555 	case CPU_CLASS_ARM2:
556 #endif
557 #ifdef CPU_ARM250
558 	case CPU_CLASS_ARM2AS:
559 #endif
560 #ifdef CPU_ARM3
561 	case CPU_CLASS_ARM3:
562 #endif
563 #ifdef CPU_ARM6
564 	case CPU_CLASS_ARM6:
565 #endif
566 #ifdef CPU_ARM7
567 	case CPU_CLASS_ARM7:
568 #endif
569 #ifdef CPU_ARM7TDMI
570 	case CPU_CLASS_ARM7TDMI:
571 #endif
572 #ifdef CPU_ARM8
573 	case CPU_CLASS_ARM8:
574 #endif
575 #ifdef CPU_ARM9
576 	case CPU_CLASS_ARM9TDMI:
577 #endif
578 #ifdef CPU_ARM9E
579 	case CPU_CLASS_ARM9ES:
580 	case CPU_CLASS_ARM9EJS:
581 #endif
582 #ifdef CPU_ARM10
583 	case CPU_CLASS_ARM10E:
584 	case CPU_CLASS_ARM10EJ:
585 #endif
586 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
587     defined(CPU_SA1110) || defined(CPU_IXP12X0)
588 	case CPU_CLASS_SA1:
589 #endif
590 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
591     defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425)
592 	case CPU_CLASS_XSCALE:
593 #endif
594 #ifdef CPU_ARM11
595 	case CPU_CLASS_ARM11J:
596 #endif
597 		break;
598 	default:
599 		if (cpu_classes[cpu_class].class_option == NULL)
600 			aprint_error("%s: %s does not fully support this CPU."
601 			       "\n", dv->dv_xname, ostype);
602 		else {
603 			aprint_error("%s: This kernel does not fully support "
604 			       "this CPU.\n", dv->dv_xname);
605 			aprint_normal("%s: Recompile with \"options %s\" to "
606 			       "correct this.\n", dv->dv_xname,
607 			       cpu_classes[cpu_class].class_option);
608 		}
609 		break;
610 	}
611 
612 }
613 
614 /* End of cpu.c */
615