xref: /netbsd-src/sys/arch/arm/arm32/cpu.c (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 /*	$NetBSD: cpu.c,v 1.147 2020/07/02 11:49:48 martin Exp $	*/
2 
3 /*
4  * Copyright (c) 1995 Mark Brinicombe.
5  * Copyright (c) 1995 Brini.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Brini.
19  * 4. The name of the company nor the name of the author may be used to
20  *    endorse or promote products derived from this software without specific
21  *    prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  * RiscBSD kernel project
36  *
37  * cpu.c
38  *
39  * Probing and configuration for the master CPU
40  *
41  * Created      : 10/10/95
42  */
43 
44 #include "opt_armfpe.h"
45 #include "opt_cputypes.h"
46 #include "opt_multiprocessor.h"
47 
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.147 2020/07/02 11:49:48 martin Exp $");
50 
51 #include <sys/param.h>
52 
53 #include <sys/conf.h>
54 #include <sys/cpu.h>
55 #include <sys/device.h>
56 #include <sys/kmem.h>
57 #include <sys/proc.h>
58 #include <sys/reboot.h>
59 #include <sys/systm.h>
60 
61 #include <uvm/uvm_extern.h>
62 
63 #include <arm/locore.h>
64 #include <arm/undefined.h>
65 #include <arm/cpu_topology.h>
66 
67 extern const char *cpu_arch;
68 
69 #ifdef MULTIPROCESSOR
70 #ifdef MPDEBUG
71 uint32_t arm_cpu_marker[2] __cacheline_aligned = { 0, 0 };
72 #endif
73 
74 #endif
75 
76 /* Prototypes */
77 void identify_arm_cpu(device_t, struct cpu_info *);
78 void identify_cortex_caches(device_t);
79 void identify_features(device_t);
80 
81 /*
82  * Identify the master (boot) CPU
83  */
84 
85 void
86 cpu_attach(device_t dv, cpuid_t id)
87 {
88 	const char * const xname = device_xname(dv);
89 	const int unit = device_unit(dv);
90 	struct cpu_info *ci;
91 
92 	if (unit == 0) {
93 		ci = curcpu();
94 
95 		/* Read SCTLR from cpu */
96 		ci->ci_ctrl = cpu_control(0, 0);
97 
98 		/* Get the CPU ID from coprocessor 15 */
99 
100 		ci->ci_cpuid = id;
101 		ci->ci_arm_cpuid = cpu_idnum();
102 		ci->ci_arm_cputype = ci->ci_arm_cpuid & CPU_ID_CPU_MASK;
103 		ci->ci_arm_cpurev = ci->ci_arm_cpuid & CPU_ID_REVISION_MASK;
104 	} else {
105 #ifdef MULTIPROCESSOR
106 		if ((boothowto & RB_MD1) != 0) {
107 			aprint_naive("\n");
108 			aprint_normal(": multiprocessor boot disabled\n");
109 			return;
110 		}
111 
112 		KASSERT(unit < MAXCPUS);
113 		ci = &cpu_info_store[unit];
114 
115 		KASSERT(cpu_info[unit] == NULL);
116 		ci->ci_cpl = IPL_HIGH;
117 		ci->ci_cpuid = id;
118 		ci->ci_data.cpu_cc_freq = cpu_info_store[0].ci_data.cpu_cc_freq;
119 
120 		ci->ci_undefsave[2] = cpu_info_store[0].ci_undefsave[2];
121 
122 		cpu_info[unit] = ci;
123 		if (cpu_hatched_p(unit) == false) {
124 			ci->ci_dev = dv;
125 			dv->dv_private = ci;
126 			aprint_naive(": disabled\n");
127 			aprint_normal(": disabled (unresponsive)\n");
128 			return;
129 		}
130 #else
131 		aprint_naive(": disabled\n");
132 		aprint_normal(": disabled (uniprocessor kernel)\n");
133 		return;
134 #endif
135 	}
136 
137 	ci->ci_dev = dv;
138 	dv->dv_private = ci;
139 
140 	arm_cpu_do_topology(ci);
141 
142 	evcnt_attach_dynamic(&ci->ci_arm700bugcount, EVCNT_TYPE_MISC,
143 	    NULL, xname, "arm700swibug");
144 
145 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_0], EVCNT_TYPE_TRAP,
146 	    NULL, xname, "vector abort");
147 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_1], EVCNT_TYPE_TRAP,
148 	    NULL, xname, "terminal abort");
149 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_0], EVCNT_TYPE_TRAP,
150 	    NULL, xname, "external linefetch abort (S)");
151 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_1], EVCNT_TYPE_TRAP,
152 	    NULL, xname, "external linefetch abort (P)");
153 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_2], EVCNT_TYPE_TRAP,
154 	    NULL, xname, "external non-linefetch abort (S)");
155 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_3], EVCNT_TYPE_TRAP,
156 	    NULL, xname, "external non-linefetch abort (P)");
157 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL1], EVCNT_TYPE_TRAP,
158 	    NULL, xname, "external translation abort (L1)");
159 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL2], EVCNT_TYPE_TRAP,
160 	    NULL, xname, "external translation abort (L2)");
161 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_0], EVCNT_TYPE_TRAP,
162 	    NULL, xname, "alignment abort (0)");
163 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_1], EVCNT_TYPE_TRAP,
164 	    NULL, xname, "alignment abort (1)");
165 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_S], EVCNT_TYPE_TRAP,
166 	    NULL, xname, "translation abort (S)");
167 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_P], EVCNT_TYPE_TRAP,
168 	    NULL, xname, "translation abort (P)");
169 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_S], EVCNT_TYPE_TRAP,
170 	    NULL, xname, "domain abort (S)");
171 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_P], EVCNT_TYPE_TRAP,
172 	    NULL, xname, "domain abort (P)");
173 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_S], EVCNT_TYPE_TRAP,
174 	    NULL, xname, "permission abort (S)");
175 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_P], EVCNT_TYPE_TRAP,
176 	    NULL, xname, "permission abort (P)");
177 	evcnt_attach_dynamic_nozero(&ci->ci_und_ev, EVCNT_TYPE_TRAP,
178 	    NULL, xname, "undefined insn traps");
179 	evcnt_attach_dynamic_nozero(&ci->ci_und_cp15_ev, EVCNT_TYPE_TRAP,
180 	    NULL, xname, "undefined cp15 insn traps");
181 
182 	ci->ci_kfpu_spl = -1;
183 
184 #ifdef MULTIPROCESSOR
185 	/*
186 	 * and we are done if this is a secondary processor.
187 	 */
188 	if (unit != 0) {
189 		aprint_naive("\n");
190 		aprint_normal("\n");
191 		mi_cpu_attach(ci);
192 #ifdef ARM_MMU_EXTENDED
193 		pmap_tlb_info_attach(&pmap_tlb0_info, ci);
194 #endif
195 		return;
196 	}
197 #endif
198 
199 	identify_arm_cpu(dv, ci);
200 
201 #ifdef CPU_STRONGARM
202 	if (ci->ci_arm_cputype == CPU_ID_SA110 &&
203 	    ci->ci_arm_cpurev < 3) {
204 		aprint_normal_dev(dv, "SA-110 with bugged STM^ instruction\n");
205 	}
206 #endif
207 
208 #ifdef CPU_ARM8
209 	if ((ci->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
210 		int clock = arm8_clock_config(0, 0);
211 		char *fclk;
212 		aprint_normal_dev(dv, "ARM810 cp15=%02x", clock);
213 		aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
214 		aprint_normal("%s", (clock & 2) ? " sync" : "");
215 		switch ((clock >> 2) & 3) {
216 		case 0:
217 			fclk = "bus clock";
218 			break;
219 		case 1:
220 			fclk = "ref clock";
221 			break;
222 		case 3:
223 			fclk = "pll";
224 			break;
225 		default:
226 			fclk = "illegal";
227 			break;
228 		}
229 		aprint_normal(" fclk source=%s\n", fclk);
230  	}
231 #endif
232 
233 	vfp_attach(ci);		/* XXX SMP */
234 }
235 
236 enum cpu_class {
237 	CPU_CLASS_NONE,
238 	CPU_CLASS_ARM2,
239 	CPU_CLASS_ARM2AS,
240 	CPU_CLASS_ARM3,
241 	CPU_CLASS_ARM6,
242 	CPU_CLASS_ARM7,
243 	CPU_CLASS_ARM7TDMI,
244 	CPU_CLASS_ARM8,
245 	CPU_CLASS_ARM9TDMI,
246 	CPU_CLASS_ARM9ES,
247 	CPU_CLASS_ARM9EJS,
248 	CPU_CLASS_ARM10E,
249 	CPU_CLASS_ARM10EJ,
250 	CPU_CLASS_SA1,
251 	CPU_CLASS_XSCALE,
252 	CPU_CLASS_ARM11J,
253 	CPU_CLASS_ARMV4,
254 	CPU_CLASS_CORTEX,
255 	CPU_CLASS_PJ4B,
256 };
257 
258 static const char * const generic_steppings[16] = {
259 	"rev 0",	"rev 1",	"rev 2",	"rev 3",
260 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
261 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
262 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
263 };
264 
265 static const char * const pN_steppings[16] = {
266 	"*p0",	"*p1",	"*p2",	"*p3",	"*p4",	"*p5",	"*p6",	"*p7",
267 	"*p8",	"*p9",	"*p10",	"*p11",	"*p12",	"*p13",	"*p14",	"*p15",
268 };
269 
270 static const char * const sa110_steppings[16] = {
271 	"rev 0",	"step J",	"step K",	"step S",
272 	"step T",	"rev 5",	"rev 6",	"rev 7",
273 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
274 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
275 };
276 
277 static const char * const sa1100_steppings[16] = {
278 	"rev 0",	"step B",	"step C",	"rev 3",
279 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
280 	"step D",	"step E",	"rev 10"	"step G",
281 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
282 };
283 
284 static const char * const sa1110_steppings[16] = {
285 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
286 	"step B-0",	"step B-1",	"step B-2",	"step B-3",
287 	"step B-4",	"step B-5",	"rev 10",	"rev 11",
288 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
289 };
290 
291 static const char * const ixp12x0_steppings[16] = {
292 	"(IXP1200 step A)",		"(IXP1200 step B)",
293 	"rev 2",			"(IXP1200 step C)",
294 	"(IXP1200 step D)",		"(IXP1240/1250 step A)",
295 	"(IXP1240 step B)",		"(IXP1250 step B)",
296 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
297 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
298 };
299 
300 static const char * const xscale_steppings[16] = {
301 	"step A-0",	"step A-1",	"step B-0",	"step C-0",
302 	"step D-0",	"rev 5",	"rev 6",	"rev 7",
303 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
304 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
305 };
306 
307 static const char * const i80321_steppings[16] = {
308 	"step A-0",	"step B-0",	"rev 2",	"rev 3",
309 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
310 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
311 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
312 };
313 
314 static const char * const i80219_steppings[16] = {
315 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
316 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
317 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
318 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
319 };
320 
321 /* Steppings for PXA2[15]0 */
322 static const char * const pxa2x0_steppings[16] = {
323 	"step A-0",	"step A-1",	"step B-0",	"step B-1",
324 	"step B-2",	"step C-0",	"rev 6",	"rev 7",
325 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
326 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
327 };
328 
329 /* Steppings for PXA255/26x.
330  * rev 5: PXA26x B0, rev 6: PXA255 A0
331  */
332 static const char * const pxa255_steppings[16] = {
333 	"rev 0",	"rev 1",	"rev 2",	"step A-0",
334 	"rev 4",	"step B-0",	"step A-0",	"rev 7",
335 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
336 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
337 };
338 
339 /* Stepping for PXA27x */
340 static const char * const pxa27x_steppings[16] = {
341 	"step A-0",	"step A-1",	"step B-0",	"step B-1",
342 	"step C-0",	"rev 5",	"rev 6",	"rev 7",
343 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
344 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
345 };
346 
347 static const char * const ixp425_steppings[16] = {
348 	"step 0",	"rev 1",	"rev 2",	"rev 3",
349 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
350 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
351 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
352 };
353 
354 struct cpuidtab {
355 	uint32_t	cpuid;
356 	enum		cpu_class cpu_class;
357 	const char	*cpu_classname;
358 	const char * const *cpu_steppings;
359 	char		cpu_arch[8];
360 };
361 
362 const struct cpuidtab cpuids[] = {
363 	{ CPU_ID_ARM2,		CPU_CLASS_ARM2,		"ARM2",
364 	  generic_steppings, "2" },
365 	{ CPU_ID_ARM250,	CPU_CLASS_ARM2AS,	"ARM250",
366 	  generic_steppings, "2" },
367 
368 	{ CPU_ID_ARM3,		CPU_CLASS_ARM3,		"ARM3",
369 	  generic_steppings, "2A" },
370 
371 	{ CPU_ID_ARM600,	CPU_CLASS_ARM6,		"ARM600",
372 	  generic_steppings, "3" },
373 	{ CPU_ID_ARM610,	CPU_CLASS_ARM6,		"ARM610",
374 	  generic_steppings, "3" },
375 	{ CPU_ID_ARM620,	CPU_CLASS_ARM6,		"ARM620",
376 	  generic_steppings, "3" },
377 
378 	{ CPU_ID_ARM700,	CPU_CLASS_ARM7,		"ARM700",
379 	  generic_steppings, "3" },
380 	{ CPU_ID_ARM710,	CPU_CLASS_ARM7,		"ARM710",
381 	  generic_steppings, "3" },
382 	{ CPU_ID_ARM7500,	CPU_CLASS_ARM7,		"ARM7500",
383 	  generic_steppings, "3" },
384 	{ CPU_ID_ARM710A,	CPU_CLASS_ARM7,		"ARM710a",
385 	  generic_steppings, "3" },
386 	{ CPU_ID_ARM7500FE,	CPU_CLASS_ARM7,		"ARM7500FE",
387 	  generic_steppings, "3" },
388 
389 	{ CPU_ID_ARM810,	CPU_CLASS_ARM8,		"ARM810",
390 	  generic_steppings, "4" },
391 
392 	{ CPU_ID_SA110,		CPU_CLASS_SA1,		"SA-110",
393 	  sa110_steppings, "4" },
394 	{ CPU_ID_SA1100,	CPU_CLASS_SA1,		"SA-1100",
395 	  sa1100_steppings, "4" },
396 	{ CPU_ID_SA1110,	CPU_CLASS_SA1,		"SA-1110",
397 	  sa1110_steppings, "4" },
398 
399 	{ CPU_ID_FA526,		CPU_CLASS_ARMV4,	"FA526",
400 	  generic_steppings, "4" },
401 
402 	{ CPU_ID_IXP1200,	CPU_CLASS_SA1,		"IXP1200",
403 	  ixp12x0_steppings, "4" },
404 
405 	{ CPU_ID_ARM710T,	CPU_CLASS_ARM7TDMI,	"ARM710T",
406 	  generic_steppings, "4T" },
407 	{ CPU_ID_ARM720T,	CPU_CLASS_ARM7TDMI,	"ARM720T",
408 	  generic_steppings, "4T" },
409 	{ CPU_ID_ARM740T8K,	CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
410 	  generic_steppings, "4T" },
411 	{ CPU_ID_ARM740T4K,	CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
412 	  generic_steppings, "4T" },
413 	{ CPU_ID_ARM920T,	CPU_CLASS_ARM9TDMI,	"ARM920T",
414 	  generic_steppings, "4T" },
415 	{ CPU_ID_ARM922T,	CPU_CLASS_ARM9TDMI,	"ARM922T",
416 	  generic_steppings, "4T" },
417 	{ CPU_ID_ARM940T,	CPU_CLASS_ARM9TDMI,	"ARM940T",
418 	  generic_steppings, "4T" },
419 	{ CPU_ID_TI925T,	CPU_CLASS_ARM9TDMI,	"TI ARM925T",
420 	  generic_steppings, "4T" },
421 
422 	{ CPU_ID_ARM946ES,	CPU_CLASS_ARM9ES,	"ARM946E-S",
423 	  generic_steppings, "5TE" },
424 	{ CPU_ID_ARM966ES,	CPU_CLASS_ARM9ES,	"ARM966E-S",
425 	  generic_steppings, "5TE" },
426 	{ CPU_ID_ARM966ESR1,	CPU_CLASS_ARM9ES,	"ARM966E-S",
427 	  generic_steppings, "5TE" },
428 	{ CPU_ID_MV88SV131,	CPU_CLASS_ARM9ES,	"Sheeva 88SV131",
429 	  generic_steppings, "5TE" },
430 	{ CPU_ID_MV88FR571_VD,	CPU_CLASS_ARM9ES,	"Sheeva 88FR571-vd",
431 	  generic_steppings, "5TE" },
432 
433 	{ CPU_ID_80200,		CPU_CLASS_XSCALE,	"i80200",
434 	  xscale_steppings, "5TE" },
435 
436 	{ CPU_ID_80321_400,	CPU_CLASS_XSCALE,	"i80321 400MHz",
437 	  i80321_steppings, "5TE" },
438 	{ CPU_ID_80321_600,	CPU_CLASS_XSCALE,	"i80321 600MHz",
439 	  i80321_steppings, "5TE" },
440 	{ CPU_ID_80321_400_B0,	CPU_CLASS_XSCALE,	"i80321 400MHz",
441 	  i80321_steppings, "5TE" },
442 	{ CPU_ID_80321_600_B0,	CPU_CLASS_XSCALE,	"i80321 600MHz",
443 	  i80321_steppings, "5TE" },
444 
445 	{ CPU_ID_80219_400,	CPU_CLASS_XSCALE,	"i80219 400MHz",
446 	  i80219_steppings, "5TE" },
447 	{ CPU_ID_80219_600,	CPU_CLASS_XSCALE,	"i80219 600MHz",
448 	  i80219_steppings, "5TE" },
449 
450 	{ CPU_ID_PXA27X,	CPU_CLASS_XSCALE,	"PXA27x",
451 	  pxa27x_steppings, "5TE" },
452 	{ CPU_ID_PXA250A,	CPU_CLASS_XSCALE,	"PXA250",
453 	  pxa2x0_steppings, "5TE" },
454 	{ CPU_ID_PXA210A,	CPU_CLASS_XSCALE,	"PXA210",
455 	  pxa2x0_steppings, "5TE" },
456 	{ CPU_ID_PXA250B,	CPU_CLASS_XSCALE,	"PXA250",
457 	  pxa2x0_steppings, "5TE" },
458 	{ CPU_ID_PXA210B,	CPU_CLASS_XSCALE,	"PXA210",
459 	  pxa2x0_steppings, "5TE" },
460 	{ CPU_ID_PXA250C, 	CPU_CLASS_XSCALE,	"PXA255/26x",
461 	  pxa255_steppings, "5TE" },
462 	{ CPU_ID_PXA210C, 	CPU_CLASS_XSCALE,	"PXA210",
463 	  pxa2x0_steppings, "5TE" },
464 
465 	{ CPU_ID_IXP425_533,	CPU_CLASS_XSCALE,	"IXP425 533MHz",
466 	  ixp425_steppings, "5TE" },
467 	{ CPU_ID_IXP425_400,	CPU_CLASS_XSCALE,	"IXP425 400MHz",
468 	  ixp425_steppings, "5TE" },
469 	{ CPU_ID_IXP425_266,	CPU_CLASS_XSCALE,	"IXP425 266MHz",
470 	  ixp425_steppings, "5TE" },
471 
472 	{ CPU_ID_ARM1020E,	CPU_CLASS_ARM10E,	"ARM1020E",
473 	  generic_steppings, "5TE" },
474 	{ CPU_ID_ARM1022ES,	CPU_CLASS_ARM10E,	"ARM1022E-S",
475 	  generic_steppings, "5TE" },
476 
477 	{ CPU_ID_ARM1026EJS,	CPU_CLASS_ARM10EJ,	"ARM1026EJ-S",
478 	  generic_steppings, "5TEJ" },
479 	{ CPU_ID_ARM926EJS,	CPU_CLASS_ARM9EJS,	"ARM926EJ-S",
480 	  generic_steppings, "5TEJ" },
481 
482 	{ CPU_ID_ARM1136JS,	CPU_CLASS_ARM11J,	"ARM1136J-S r0",
483 	  pN_steppings, "6J" },
484 	{ CPU_ID_ARM1136JSR1,	CPU_CLASS_ARM11J,	"ARM1136J-S r1",
485 	  pN_steppings, "6J" },
486 #if 0
487 	/* The ARM1156T2-S only has a memory protection unit */
488 	{ CPU_ID_ARM1156T2S,	CPU_CLASS_ARM11J,	"ARM1156T2-S r0",
489 	  pN_steppings, "6T2" },
490 #endif
491 	{ CPU_ID_ARM1176JZS,	CPU_CLASS_ARM11J,	"ARM1176JZ-S r0",
492 	  pN_steppings, "6ZK" },
493 
494 	{ CPU_ID_ARM11MPCORE,	CPU_CLASS_ARM11J, 	"ARM11 MPCore",
495 	  generic_steppings, "6K" },
496 
497 	{ CPU_ID_CORTEXA5R0,	CPU_CLASS_CORTEX,	"Cortex-A5 r0",
498 	  pN_steppings, "7A" },
499 	{ CPU_ID_CORTEXA7R0,	CPU_CLASS_CORTEX,	"Cortex-A7 r0",
500 	  pN_steppings, "7A" },
501 	{ CPU_ID_CORTEXA8R1,	CPU_CLASS_CORTEX,	"Cortex-A8 r1",
502 	  pN_steppings, "7A" },
503 	{ CPU_ID_CORTEXA8R2,	CPU_CLASS_CORTEX,	"Cortex-A8 r2",
504 	  pN_steppings, "7A" },
505 	{ CPU_ID_CORTEXA8R3,	CPU_CLASS_CORTEX,	"Cortex-A8 r3",
506 	  pN_steppings, "7A" },
507 	{ CPU_ID_CORTEXA9R1,	CPU_CLASS_CORTEX,	"Cortex-A9 r1",
508 	  pN_steppings, "7A" },
509 	{ CPU_ID_CORTEXA9R2,	CPU_CLASS_CORTEX,	"Cortex-A9 r2",
510 	  pN_steppings, "7A" },
511 	{ CPU_ID_CORTEXA9R3,	CPU_CLASS_CORTEX,	"Cortex-A9 r3",
512 	  pN_steppings, "7A" },
513 	{ CPU_ID_CORTEXA9R4,	CPU_CLASS_CORTEX,	"Cortex-A9 r4",
514 	  pN_steppings, "7A" },
515 	{ CPU_ID_CORTEXA12R0,	CPU_CLASS_CORTEX,	"Cortex-A17(A12) r0",	/* A12 was rebranded A17 */
516 	  pN_steppings, "7A" },
517 	{ CPU_ID_CORTEXA15R2,	CPU_CLASS_CORTEX,	"Cortex-A15 r2",
518 	  pN_steppings, "7A" },
519 	{ CPU_ID_CORTEXA15R3,	CPU_CLASS_CORTEX,	"Cortex-A15 r3",
520 	  pN_steppings, "7A" },
521 	{ CPU_ID_CORTEXA15R4,	CPU_CLASS_CORTEX,	"Cortex-A15 r4",
522 	  pN_steppings, "7A" },
523 	{ CPU_ID_CORTEXA17R1,	CPU_CLASS_CORTEX,	"Cortex-A17 r1",
524 	  pN_steppings, "7A" },
525 	{ CPU_ID_CORTEXA35R0,	CPU_CLASS_CORTEX,	"Cortex-A35 r0",
526 	  pN_steppings, "8A" },
527 	{ CPU_ID_CORTEXA53R0,	CPU_CLASS_CORTEX,	"Cortex-A53 r0",
528 	  pN_steppings, "8A" },
529 	{ CPU_ID_CORTEXA57R0,	CPU_CLASS_CORTEX,	"Cortex-A57 r0",
530 	  pN_steppings, "8A" },
531 	{ CPU_ID_CORTEXA57R1,	CPU_CLASS_CORTEX,	"Cortex-A57 r1",
532 	  pN_steppings, "8A" },
533 	{ CPU_ID_CORTEXA72R0,	CPU_CLASS_CORTEX,	"Cortex-A72 r0",
534 	  pN_steppings, "8A" },
535 
536 	{ CPU_ID_MV88SV581X_V6, CPU_CLASS_PJ4B,      "Sheeva 88SV581x",
537 	  generic_steppings },
538 	{ CPU_ID_ARM_88SV581X_V6, CPU_CLASS_PJ4B,    "Sheeva 88SV581x",
539 	  generic_steppings },
540 	{ CPU_ID_MV88SV581X_V7, CPU_CLASS_PJ4B,      "Sheeva 88SV581x",
541 	  generic_steppings },
542 	{ CPU_ID_ARM_88SV581X_V7, CPU_CLASS_PJ4B,    "Sheeva 88SV581x",
543 	  generic_steppings },
544 	{ CPU_ID_MV88SV584X_V6, CPU_CLASS_PJ4B,      "Sheeva 88SV584x",
545 	  generic_steppings },
546 	{ CPU_ID_ARM_88SV584X_V6, CPU_CLASS_PJ4B,    "Sheeva 88SV584x",
547 	  generic_steppings },
548 	{ CPU_ID_MV88SV584X_V7, CPU_CLASS_PJ4B,      "Sheeva 88SV584x",
549 	  generic_steppings },
550 
551 
552 	{ 0, CPU_CLASS_NONE, NULL, NULL, "" }
553 };
554 
555 struct cpu_classtab {
556 	const char	*class_name;
557 	const char	*class_option;
558 };
559 
560 const struct cpu_classtab cpu_classes[] = {
561 	[CPU_CLASS_NONE] =	{ "unknown",	NULL },
562 	[CPU_CLASS_ARM2] =	{ "ARM2",	"CPU_ARM2" },
563 	[CPU_CLASS_ARM2AS] =	{ "ARM2as",	"CPU_ARM250" },
564 	[CPU_CLASS_ARM3] =	{ "ARM3",	"CPU_ARM3" },
565 	[CPU_CLASS_ARM6] =	{ "ARM6",	"CPU_ARM6" },
566 	[CPU_CLASS_ARM7] =	{ "ARM7",	"CPU_ARM7" },
567 	[CPU_CLASS_ARM7TDMI] =	{ "ARM7TDMI",	"CPU_ARM7TDMI" },
568 	[CPU_CLASS_ARM8] =	{ "ARM8",	"CPU_ARM8" },
569 	[CPU_CLASS_ARM9TDMI] =	{ "ARM9TDMI",	NULL },
570 	[CPU_CLASS_ARM9ES] =	{ "ARM9E-S",	"CPU_ARM9E" },
571 	[CPU_CLASS_ARM9EJS] =	{ "ARM9EJ-S",	"CPU_ARM9E" },
572 	[CPU_CLASS_ARM10E] =	{ "ARM10E",	"CPU_ARM10" },
573 	[CPU_CLASS_ARM10EJ] =	{ "ARM10EJ",	"CPU_ARM10" },
574 	[CPU_CLASS_SA1] =	{ "SA-1",	"CPU_SA110" },
575 	[CPU_CLASS_XSCALE] =	{ "XScale",	"CPU_XSCALE_..." },
576 	[CPU_CLASS_ARM11J] =	{ "ARM11J",	"CPU_ARM11" },
577 	[CPU_CLASS_ARMV4] =	{ "ARMv4",	"CPU_ARMV4" },
578 	[CPU_CLASS_CORTEX] =	{ "Cortex",	"CPU_CORTEX" },
579 	[CPU_CLASS_PJ4B] =	{ "Marvell",	"CPU_PJ4B" },
580 };
581 
582 /*
583  * Report the type of the specified arm processor. This uses the generic and
584  * arm specific information in the CPU structure to identify the processor.
585  * The remaining fields in the CPU structure are filled in appropriately.
586  */
587 
588 static const char * const wtnames[] = {
589 	"write-through",
590 	"write-back",
591 	"write-back",
592 	"**unknown 3**",
593 	"**unknown 4**",
594 	"write-back-locking",		/* XXX XScale-specific? */
595 	"write-back-locking-A",
596 	"write-back-locking-B",
597 	"**unknown 8**",
598 	"**unknown 9**",
599 	"**unknown 10**",
600 	"**unknown 11**",
601 	"write-back",
602 	"write-back-locking-line",
603 	"write-back-locking-C",
604 	"write-back-locking-D",
605 };
606 
607 static void
608 print_cache_info(device_t dv, struct arm_cache_info *info, u_int level)
609 {
610 	if (info->cache_unified) {
611 		aprint_normal_dev(dv, "%dKB/%dB %d-way %s L%u %cI%cT Unified cache\n",
612 		    info->dcache_size / 1024,
613 		    info->dcache_line_size, info->dcache_ways,
614 		    wtnames[info->cache_type], level + 1,
615 		    info->dcache_type & CACHE_TYPE_PIxx ? 'P' : 'V',
616 		    info->dcache_type & CACHE_TYPE_xxPT ? 'P' : 'V');
617 	} else {
618 		aprint_normal_dev(dv, "%dKB/%dB %d-way L%u %cI%cT Instruction cache\n",
619 		    info->icache_size / 1024,
620 		    info->icache_line_size, info->icache_ways, level + 1,
621 		    info->icache_type & CACHE_TYPE_PIxx ? 'P' : 'V',
622 		    info->icache_type & CACHE_TYPE_xxPT ? 'P' : 'V');
623 		aprint_normal_dev(dv, "%dKB/%dB %d-way %s L%u %cI%cT Data cache\n",
624 		    info->dcache_size / 1024,
625 		    info->dcache_line_size, info->dcache_ways,
626 		    wtnames[info->cache_type], level + 1,
627 		    info->dcache_type & CACHE_TYPE_PIxx ? 'P' : 'V',
628 		    info->dcache_type & CACHE_TYPE_xxPT ? 'P' : 'V');
629 	}
630 }
631 
632 static enum cpu_class
633 identify_arm_model(uint32_t cpuid, char *buf, size_t len)
634 {
635 	enum cpu_class cpu_class = CPU_CLASS_NONE;
636 	for (const struct cpuidtab *id = cpuids; id->cpuid != 0; id++) {
637 		if (id->cpuid == (cpuid & CPU_ID_CPU_MASK)) {
638 			const char *steppingstr =
639 			    id->cpu_steppings[cpuid & CPU_ID_REVISION_MASK];
640 			cpu_arch = id->cpu_arch;
641 			cpu_class = id->cpu_class;
642 			snprintf(buf, len, "%s%s%s (%s V%s core)",
643 			    id->cpu_classname,
644 			    steppingstr[0] == '*' ? "" : " ",
645 			    &steppingstr[steppingstr[0] == '*'],
646 			    cpu_classes[cpu_class].class_name,
647 			    cpu_arch);
648 			return cpu_class;
649 		}
650 	}
651 
652 	snprintf(buf, len, "unknown CPU (ID = 0x%x)", cpuid);
653 	return cpu_class;
654 }
655 
656 void
657 identify_arm_cpu(device_t dv, struct cpu_info *ci)
658 {
659 	const uint32_t arm_cpuid = ci->ci_arm_cpuid;
660 	const char * const xname = device_xname(dv);
661 	char model[128];
662 	const char *m;
663 
664 	if (arm_cpuid == 0) {
665 		aprint_error("Processor failed probe - no CPU ID\n");
666 		return;
667 	}
668 
669 	const enum cpu_class cpu_class = identify_arm_model(arm_cpuid,
670 	     model, sizeof(model));
671 	if (ci->ci_cpuid == 0) {
672 		m = cpu_getmodel();
673 		if (m == NULL || *m == 0)
674 			cpu_setmodel("%s", model);
675 	}
676 
677 	if (ci->ci_data.cpu_cc_freq != 0) {
678 		char freqbuf[10];
679 		humanize_number(freqbuf, sizeof(freqbuf), ci->ci_data.cpu_cc_freq,
680 		    "Hz", 1000);
681 
682 		aprint_naive(": %s %s\n", freqbuf, model);
683 		aprint_normal(": %s %s\n", freqbuf, model);
684 	} else {
685 		aprint_naive(": %s\n", model);
686 		aprint_normal(": %s\n", model);
687 	}
688 
689 	aprint_debug_dev(dv, "midr:   %#x\n", arm_cpuid);
690 
691 	aprint_normal("%s:", xname);
692 
693 	switch (cpu_class) {
694 	case CPU_CLASS_ARM6:
695 	case CPU_CLASS_ARM7:
696 	case CPU_CLASS_ARM7TDMI:
697 	case CPU_CLASS_ARM8:
698 		if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
699 			aprint_normal(" IDC disabled");
700 		else
701 			aprint_normal(" IDC enabled");
702 		break;
703 	case CPU_CLASS_ARM9TDMI:
704 	case CPU_CLASS_ARM9ES:
705 	case CPU_CLASS_ARM9EJS:
706 	case CPU_CLASS_ARM10E:
707 	case CPU_CLASS_ARM10EJ:
708 	case CPU_CLASS_SA1:
709 	case CPU_CLASS_XSCALE:
710 	case CPU_CLASS_ARM11J:
711 	case CPU_CLASS_ARMV4:
712 	case CPU_CLASS_CORTEX:
713 	case CPU_CLASS_PJ4B:
714 		if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
715 			aprint_normal(" DC disabled");
716 		else
717 			aprint_normal(" DC enabled");
718 		if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
719 			aprint_normal(" IC disabled");
720 		else
721 			aprint_normal(" IC enabled");
722 		break;
723 	default:
724 		break;
725 	}
726 	if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
727 		aprint_normal(" WB disabled");
728 	else
729 		aprint_normal(" WB enabled");
730 
731 	if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
732 		aprint_normal(" LABT");
733 	else
734 		aprint_normal(" EABT");
735 
736 	if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
737 		aprint_normal(" branch prediction enabled");
738 
739 	aprint_normal("\n");
740 
741 	if (CPU_ID_CORTEX_P(arm_cpuid) || CPU_ID_ARM11_P(arm_cpuid) || CPU_ID_MV88SV58XX_P(arm_cpuid)) {
742 		identify_features(dv);
743 	}
744 
745 	/* Print cache info. */
746 	if (arm_pcache.icache_line_size != 0 || arm_pcache.dcache_line_size != 0) {
747 		print_cache_info(dv, &arm_pcache, 0);
748 	}
749 	if (arm_scache.icache_line_size != 0 || arm_scache.dcache_line_size != 0) {
750 		print_cache_info(dv, &arm_scache, 1);
751 	}
752 
753 
754 	switch (cpu_class) {
755 #ifdef CPU_ARM6
756 	case CPU_CLASS_ARM6:
757 #endif
758 #ifdef CPU_ARM7
759 	case CPU_CLASS_ARM7:
760 #endif
761 #ifdef CPU_ARM7TDMI
762 	case CPU_CLASS_ARM7TDMI:
763 #endif
764 #ifdef CPU_ARM8
765 	case CPU_CLASS_ARM8:
766 #endif
767 #ifdef CPU_ARM9
768 	case CPU_CLASS_ARM9TDMI:
769 #endif
770 #if defined(CPU_ARM9E) || defined(CPU_SHEEVA)
771 	case CPU_CLASS_ARM9ES:
772 	case CPU_CLASS_ARM9EJS:
773 #endif
774 #ifdef CPU_ARM10
775 	case CPU_CLASS_ARM10E:
776 	case CPU_CLASS_ARM10EJ:
777 #endif
778 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
779     defined(CPU_SA1110) || defined(CPU_IXP12X0)
780 	case CPU_CLASS_SA1:
781 #endif
782 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
783     defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425)
784 	case CPU_CLASS_XSCALE:
785 #endif
786 #if defined(CPU_ARM11)
787 	case CPU_CLASS_ARM11J:
788 #endif
789 #if defined(CPU_CORTEX)
790 	case CPU_CLASS_CORTEX:
791 #endif
792 #if defined(CPU_PJ4B)
793 	case CPU_CLASS_PJ4B:
794 #endif
795 #if defined(CPU_FA526)
796 	case CPU_CLASS_ARMV4:
797 #endif
798 		break;
799 	default:
800 		if (cpu_classes[cpu_class].class_option == NULL) {
801 			aprint_error_dev(dv, "%s does not fully support this CPU.\n",
802 			     ostype);
803 		} else {
804 			aprint_error_dev(dv, "This kernel does not fully support "
805 			       "this CPU.\n");
806 			aprint_normal_dev(dv, "Recompile with \"options %s\" to "
807 			       "correct this.\n", cpu_classes[cpu_class].class_option);
808 		}
809 		break;
810 	}
811 }
812 
813 extern int cpu_instruction_set_attributes[6];
814 extern int cpu_memory_model_features[4];
815 extern int cpu_processor_features[2];
816 extern int cpu_simd_present;
817 extern int cpu_simdex_present;
818 
819 void
820 identify_features(device_t dv)
821 {
822 	cpu_instruction_set_attributes[0] = armreg_isar0_read();
823 	cpu_instruction_set_attributes[1] = armreg_isar1_read();
824 	cpu_instruction_set_attributes[2] = armreg_isar2_read();
825 	cpu_instruction_set_attributes[3] = armreg_isar3_read();
826 	cpu_instruction_set_attributes[4] = armreg_isar4_read();
827 	cpu_instruction_set_attributes[5] = armreg_isar5_read();
828 
829 	cpu_hwdiv_present =
830 	    ((cpu_instruction_set_attributes[0] >> 24) & 0x0f) >= 2;
831 	cpu_simd_present =
832 	    ((cpu_instruction_set_attributes[3] >> 4) & 0x0f) >= 3;
833 	cpu_simdex_present = cpu_simd_present
834 	    && ((cpu_instruction_set_attributes[1] >> 12) & 0x0f) >= 2;
835 	cpu_synchprim_present =
836 	    ((cpu_instruction_set_attributes[3] >> 8) & 0xf0)
837 	    | ((cpu_instruction_set_attributes[4] >> 20) & 0x0f);
838 
839 	cpu_memory_model_features[0] = armreg_mmfr0_read();
840 	cpu_memory_model_features[1] = armreg_mmfr1_read();
841 	cpu_memory_model_features[2] = armreg_mmfr2_read();
842 	cpu_memory_model_features[3] = armreg_mmfr3_read();
843 
844 #if 0
845 	if (__SHIFTOUT(cpu_memory_model_features[3], __BITS(23,20))) {
846 		/*
847 		 * Updates to the translation tables do not require a clean
848 		 * to the point of unification to ensure visibility by
849 		 * subsequent translation table walks.
850 		 */
851 		pmap_needs_pte_sync = 0;
852 	}
853 #endif
854 
855 	cpu_processor_features[0] = armreg_pfr0_read();
856 	cpu_processor_features[1] = armreg_pfr1_read();
857 
858 	aprint_debug_dev(dv, "sctlr:  %#x\n", armreg_sctlr_read());
859 	aprint_debug_dev(dv, "actlr:  %#x\n", armreg_auxctl_read());
860 	aprint_debug_dev(dv, "revidr: %#x\n", armreg_revidr_read());
861 #ifdef MULTIPROCESSOR
862 	aprint_debug_dev(dv, "mpidr:  %#x\n", armreg_mpidr_read());
863 #endif
864 	aprint_debug_dev(dv,
865 	    "isar: [0]=%#x [1]=%#x [2]=%#x [3]=%#x, [4]=%#x, [5]=%#x\n",
866 	    cpu_instruction_set_attributes[0],
867 	    cpu_instruction_set_attributes[1],
868 	    cpu_instruction_set_attributes[2],
869 	    cpu_instruction_set_attributes[3],
870 	    cpu_instruction_set_attributes[4],
871 	    cpu_instruction_set_attributes[5]);
872 	aprint_debug_dev(dv,
873 	    "mmfr: [0]=%#x [1]=%#x [2]=%#x [3]=%#x\n",
874 	    cpu_memory_model_features[0], cpu_memory_model_features[1],
875 	    cpu_memory_model_features[2], cpu_memory_model_features[3]);
876 	aprint_debug_dev(dv,
877 	    "pfr: [0]=%#x [1]=%#x\n",
878 	    cpu_processor_features[0], cpu_processor_features[1]);
879 }
880 
881 #ifdef _ARM_ARCH_6
882 int
883 cpu_maxproc_hook(int nmaxproc)
884 {
885 
886 #ifdef ARM_MMU_EXTENDED
887 	return pmap_maxproc_set(nmaxproc);
888 #else
889 	return 0;
890 #endif
891 }
892 #endif
893