1 /* $NetBSD: cpu.c,v 1.72 2010/01/23 15:58:13 mrg Exp $ */ 2 3 /* 4 * Copyright (c) 1995 Mark Brinicombe. 5 * Copyright (c) 1995 Brini. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by Brini. 19 * 4. The name of the company nor the name of the author may be used to 20 * endorse or promote products derived from this software without specific 21 * prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED 24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * RiscBSD kernel project 36 * 37 * cpu.c 38 * 39 * Probing and configuration for the master CPU 40 * 41 * Created : 10/10/95 42 */ 43 44 #include "opt_armfpe.h" 45 #include "opt_multiprocessor.h" 46 47 #include <sys/param.h> 48 49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.72 2010/01/23 15:58:13 mrg Exp $"); 50 51 #include <sys/systm.h> 52 #include <sys/malloc.h> 53 #include <sys/device.h> 54 #include <sys/proc.h> 55 #include <sys/conf.h> 56 #include <uvm/uvm_extern.h> 57 #include <machine/cpu.h> 58 59 #include <arm/cpuconf.h> 60 #include <arm/undefined.h> 61 62 #ifdef ARMFPE 63 #include <machine/bootconfig.h> /* For boot args */ 64 #include <arm/fpe-arm/armfpe.h> 65 #endif 66 67 #ifdef FPU_VFP 68 #include <arm/vfpvar.h> 69 #endif 70 71 char cpu_model[256]; 72 73 /* Prototypes */ 74 void identify_arm_cpu(struct device *dv, struct cpu_info *); 75 76 /* 77 * Identify the master (boot) CPU 78 */ 79 80 void 81 cpu_attach(struct device *dv) 82 { 83 int usearmfpe; 84 85 usearmfpe = 1; /* when compiled in, its enabled by default */ 86 87 curcpu()->ci_dev = dv; 88 89 evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC, 90 NULL, dv->dv_xname, "arm700swibug"); 91 92 /* Get the CPU ID from coprocessor 15 */ 93 94 curcpu()->ci_arm_cpuid = cpu_id(); 95 curcpu()->ci_arm_cputype = curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK; 96 curcpu()->ci_arm_cpurev = 97 curcpu()->ci_arm_cpuid & CPU_ID_REVISION_MASK; 98 99 identify_arm_cpu(dv, curcpu()); 100 101 if (curcpu()->ci_arm_cputype == CPU_ID_SA110 && 102 curcpu()->ci_arm_cpurev < 3) { 103 aprint_normal("%s: SA-110 with bugged STM^ instruction\n", 104 dv->dv_xname); 105 } 106 107 #ifdef CPU_ARM8 108 if ((curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) { 109 int clock = arm8_clock_config(0, 0); 110 char *fclk; 111 aprint_normal("%s: ARM810 cp15=%02x", dv->dv_xname, clock); 112 aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : ""); 113 aprint_normal("%s", (clock & 2) ? " sync" : ""); 114 switch ((clock >> 2) & 3) { 115 case 0: 116 fclk = "bus clock"; 117 break; 118 case 1: 119 fclk = "ref clock"; 120 break; 121 case 3: 122 fclk = "pll"; 123 break; 124 default: 125 fclk = "illegal"; 126 break; 127 } 128 aprint_normal(" fclk source=%s\n", fclk); 129 } 130 #endif 131 132 #ifdef ARMFPE 133 /* 134 * Ok now we test for an FPA 135 * At this point no floating point emulator has been installed. 136 * This means any FP instruction will cause undefined exception. 137 * We install a temporay coproc 1 handler which will modify 138 * undefined_test if it is called. 139 * We then try to read the FP status register. If undefined_test 140 * has been decremented then the instruction was not handled by 141 * an FPA so we know the FPA is missing. If undefined_test is 142 * still 1 then we know the instruction was handled by an FPA. 143 * We then remove our test handler and look at the 144 * FP status register for identification. 145 */ 146 147 /* 148 * Ok if ARMFPE is defined and the boot options request the 149 * ARM FPE then it will be installed as the FPE. 150 * This is just while I work on integrating the new FPE. 151 * It means the new FPE gets installed if compiled int (ARMFPE 152 * defined) and also gives me a on/off option when I boot in 153 * case the new FPE is causing panics. 154 */ 155 156 157 if (boot_args) 158 get_bootconf_option(boot_args, "armfpe", 159 BOOTOPT_TYPE_BOOLEAN, &usearmfpe); 160 if (usearmfpe) 161 initialise_arm_fpe(); 162 #endif 163 164 #ifdef FPU_VFP 165 vfp_attach(); 166 #endif 167 } 168 169 enum cpu_class { 170 CPU_CLASS_NONE, 171 CPU_CLASS_ARM2, 172 CPU_CLASS_ARM2AS, 173 CPU_CLASS_ARM3, 174 CPU_CLASS_ARM6, 175 CPU_CLASS_ARM7, 176 CPU_CLASS_ARM7TDMI, 177 CPU_CLASS_ARM8, 178 CPU_CLASS_ARM9TDMI, 179 CPU_CLASS_ARM9ES, 180 CPU_CLASS_ARM9EJS, 181 CPU_CLASS_ARM10E, 182 CPU_CLASS_ARM10EJ, 183 CPU_CLASS_SA1, 184 CPU_CLASS_XSCALE, 185 CPU_CLASS_ARM11J, 186 CPU_CLASS_ARMV4, 187 }; 188 189 static const char * const generic_steppings[16] = { 190 "rev 0", "rev 1", "rev 2", "rev 3", 191 "rev 4", "rev 5", "rev 6", "rev 7", 192 "rev 8", "rev 9", "rev 10", "rev 11", 193 "rev 12", "rev 13", "rev 14", "rev 15", 194 }; 195 196 static const char * const pN_steppings[16] = { 197 "*p0", "*p1", "*p2", "*p3", "*p4", "*p5", "*p6", "*p7", 198 "*p8", "*p9", "*p10", "*p11", "*p12", "*p13", "*p14", "*p15", 199 }; 200 201 static const char * const sa110_steppings[16] = { 202 "rev 0", "step J", "step K", "step S", 203 "step T", "rev 5", "rev 6", "rev 7", 204 "rev 8", "rev 9", "rev 10", "rev 11", 205 "rev 12", "rev 13", "rev 14", "rev 15", 206 }; 207 208 static const char * const sa1100_steppings[16] = { 209 "rev 0", "step B", "step C", "rev 3", 210 "rev 4", "rev 5", "rev 6", "rev 7", 211 "step D", "step E", "rev 10" "step G", 212 "rev 12", "rev 13", "rev 14", "rev 15", 213 }; 214 215 static const char * const sa1110_steppings[16] = { 216 "step A-0", "rev 1", "rev 2", "rev 3", 217 "step B-0", "step B-1", "step B-2", "step B-3", 218 "step B-4", "step B-5", "rev 10", "rev 11", 219 "rev 12", "rev 13", "rev 14", "rev 15", 220 }; 221 222 static const char * const ixp12x0_steppings[16] = { 223 "(IXP1200 step A)", "(IXP1200 step B)", 224 "rev 2", "(IXP1200 step C)", 225 "(IXP1200 step D)", "(IXP1240/1250 step A)", 226 "(IXP1240 step B)", "(IXP1250 step B)", 227 "rev 8", "rev 9", "rev 10", "rev 11", 228 "rev 12", "rev 13", "rev 14", "rev 15", 229 }; 230 231 static const char * const xscale_steppings[16] = { 232 "step A-0", "step A-1", "step B-0", "step C-0", 233 "step D-0", "rev 5", "rev 6", "rev 7", 234 "rev 8", "rev 9", "rev 10", "rev 11", 235 "rev 12", "rev 13", "rev 14", "rev 15", 236 }; 237 238 static const char * const i80321_steppings[16] = { 239 "step A-0", "step B-0", "rev 2", "rev 3", 240 "rev 4", "rev 5", "rev 6", "rev 7", 241 "rev 8", "rev 9", "rev 10", "rev 11", 242 "rev 12", "rev 13", "rev 14", "rev 15", 243 }; 244 245 static const char * const i80219_steppings[16] = { 246 "step A-0", "rev 1", "rev 2", "rev 3", 247 "rev 4", "rev 5", "rev 6", "rev 7", 248 "rev 8", "rev 9", "rev 10", "rev 11", 249 "rev 12", "rev 13", "rev 14", "rev 15", 250 }; 251 252 /* Steppings for PXA2[15]0 */ 253 static const char * const pxa2x0_steppings[16] = { 254 "step A-0", "step A-1", "step B-0", "step B-1", 255 "step B-2", "step C-0", "rev 6", "rev 7", 256 "rev 8", "rev 9", "rev 10", "rev 11", 257 "rev 12", "rev 13", "rev 14", "rev 15", 258 }; 259 260 /* Steppings for PXA255/26x. 261 * rev 5: PXA26x B0, rev 6: PXA255 A0 262 */ 263 static const char * const pxa255_steppings[16] = { 264 "rev 0", "rev 1", "rev 2", "step A-0", 265 "rev 4", "step B-0", "step A-0", "rev 7", 266 "rev 8", "rev 9", "rev 10", "rev 11", 267 "rev 12", "rev 13", "rev 14", "rev 15", 268 }; 269 270 /* Stepping for PXA27x */ 271 static const char * const pxa27x_steppings[16] = { 272 "step A-0", "step A-1", "step B-0", "step B-1", 273 "step C-0", "rev 5", "rev 6", "rev 7", 274 "rev 8", "rev 9", "rev 10", "rev 11", 275 "rev 12", "rev 13", "rev 14", "rev 15", 276 }; 277 278 static const char * const ixp425_steppings[16] = { 279 "step 0", "rev 1", "rev 2", "rev 3", 280 "rev 4", "rev 5", "rev 6", "rev 7", 281 "rev 8", "rev 9", "rev 10", "rev 11", 282 "rev 12", "rev 13", "rev 14", "rev 15", 283 }; 284 285 struct cpuidtab { 286 u_int32_t cpuid; 287 enum cpu_class cpu_class; 288 const char *cpu_classname; 289 const char * const *cpu_steppings; 290 }; 291 292 const struct cpuidtab cpuids[] = { 293 { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2", 294 generic_steppings }, 295 { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250", 296 generic_steppings }, 297 298 { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3", 299 generic_steppings }, 300 301 { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600", 302 generic_steppings }, 303 { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610", 304 generic_steppings }, 305 { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620", 306 generic_steppings }, 307 308 { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700", 309 generic_steppings }, 310 { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710", 311 generic_steppings }, 312 { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500", 313 generic_steppings }, 314 { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a", 315 generic_steppings }, 316 { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE", 317 generic_steppings }, 318 { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T", 319 generic_steppings }, 320 { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T", 321 generic_steppings }, 322 { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)", 323 generic_steppings }, 324 { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)", 325 generic_steppings }, 326 327 { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810", 328 generic_steppings }, 329 330 { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T", 331 generic_steppings }, 332 { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T", 333 generic_steppings }, 334 { CPU_ID_ARM926EJS, CPU_CLASS_ARM9EJS, "ARM926EJ-S", 335 generic_steppings }, 336 { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T", 337 generic_steppings }, 338 { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S", 339 generic_steppings }, 340 { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S", 341 generic_steppings }, 342 { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S", 343 generic_steppings }, 344 { CPU_ID_TI925T, CPU_CLASS_ARM9TDMI, "TI ARM925T", 345 generic_steppings }, 346 347 { CPU_ID_ARM1020E, CPU_CLASS_ARM10E, "ARM1020E", 348 generic_steppings }, 349 { CPU_ID_ARM1022ES, CPU_CLASS_ARM10E, "ARM1022E-S", 350 generic_steppings }, 351 { CPU_ID_ARM1026EJS, CPU_CLASS_ARM10EJ, "ARM1026EJ-S", 352 generic_steppings }, 353 354 { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110", 355 sa110_steppings }, 356 { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100", 357 sa1100_steppings }, 358 { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110", 359 sa1110_steppings }, 360 361 { CPU_ID_IXP1200, CPU_CLASS_SA1, "IXP1200", 362 ixp12x0_steppings }, 363 364 { CPU_ID_80200, CPU_CLASS_XSCALE, "i80200", 365 xscale_steppings }, 366 367 { CPU_ID_80321_400, CPU_CLASS_XSCALE, "i80321 400MHz", 368 i80321_steppings }, 369 { CPU_ID_80321_600, CPU_CLASS_XSCALE, "i80321 600MHz", 370 i80321_steppings }, 371 { CPU_ID_80321_400_B0, CPU_CLASS_XSCALE, "i80321 400MHz", 372 i80321_steppings }, 373 { CPU_ID_80321_600_B0, CPU_CLASS_XSCALE, "i80321 600MHz", 374 i80321_steppings }, 375 376 { CPU_ID_80219_400, CPU_CLASS_XSCALE, "i80219 400MHz", 377 i80219_steppings }, 378 { CPU_ID_80219_600, CPU_CLASS_XSCALE, "i80219 600MHz", 379 i80219_steppings }, 380 381 { CPU_ID_PXA27X, CPU_CLASS_XSCALE, "PXA27x", 382 pxa27x_steppings }, 383 { CPU_ID_PXA250A, CPU_CLASS_XSCALE, "PXA250", 384 pxa2x0_steppings }, 385 { CPU_ID_PXA210A, CPU_CLASS_XSCALE, "PXA210", 386 pxa2x0_steppings }, 387 { CPU_ID_PXA250B, CPU_CLASS_XSCALE, "PXA250", 388 pxa2x0_steppings }, 389 { CPU_ID_PXA210B, CPU_CLASS_XSCALE, "PXA210", 390 pxa2x0_steppings }, 391 { CPU_ID_PXA250C, CPU_CLASS_XSCALE, "PXA255/26x", 392 pxa255_steppings }, 393 { CPU_ID_PXA210C, CPU_CLASS_XSCALE, "PXA210", 394 pxa2x0_steppings }, 395 396 { CPU_ID_IXP425_533, CPU_CLASS_XSCALE, "IXP425 533MHz", 397 ixp425_steppings }, 398 { CPU_ID_IXP425_400, CPU_CLASS_XSCALE, "IXP425 400MHz", 399 ixp425_steppings }, 400 { CPU_ID_IXP425_266, CPU_CLASS_XSCALE, "IXP425 266MHz", 401 ixp425_steppings }, 402 403 { CPU_ID_ARM1136JS, CPU_CLASS_ARM11J, "ARM1136J-S r0", 404 pN_steppings }, 405 { CPU_ID_ARM1136JSR1, CPU_CLASS_ARM11J, "ARM1136J-S r1", 406 pN_steppings }, 407 { CPU_ID_ARM1176JS, CPU_CLASS_ARM11J, "ARM1176J-S r0", 408 pN_steppings }, 409 { CPU_ID_CORTEXA8R1, CPU_CLASS_ARM11J, "Cortex-A8 r1", 410 pN_steppings }, 411 { CPU_ID_CORTEXA8R2, CPU_CLASS_ARM11J, "Cortex-A8 r2", 412 pN_steppings }, 413 414 { CPU_ID_FA526, CPU_CLASS_ARMV4, "FA526", 415 generic_steppings }, 416 417 { 0, CPU_CLASS_NONE, NULL, NULL } 418 }; 419 420 struct cpu_classtab { 421 const char *class_name; 422 const char *class_option; 423 }; 424 425 const struct cpu_classtab cpu_classes[] = { 426 { "unknown", NULL }, /* CPU_CLASS_NONE */ 427 { "ARM2", "CPU_ARM2" }, /* CPU_CLASS_ARM2 */ 428 { "ARM2as", "CPU_ARM250" }, /* CPU_CLASS_ARM2AS */ 429 { "ARM3", "CPU_ARM3" }, /* CPU_CLASS_ARM3 */ 430 { "ARM6", "CPU_ARM6" }, /* CPU_CLASS_ARM6 */ 431 { "ARM7", "CPU_ARM7" }, /* CPU_CLASS_ARM7 */ 432 { "ARM7TDMI", "CPU_ARM7TDMI" }, /* CPU_CLASS_ARM7TDMI */ 433 { "ARM8", "CPU_ARM8" }, /* CPU_CLASS_ARM8 */ 434 { "ARM9TDMI", NULL }, /* CPU_CLASS_ARM9TDMI */ 435 { "ARM9E-S", "CPU_ARM9E" }, /* CPU_CLASS_ARM9ES */ 436 { "ARM9EJ-S", "CPU_ARM9E" }, /* CPU_CLASS_ARM9EJS */ 437 { "ARM10E", "CPU_ARM10" }, /* CPU_CLASS_ARM10E */ 438 { "ARM10EJ", "CPU_ARM10" }, /* CPU_CLASS_ARM10EJ */ 439 { "SA-1", "CPU_SA110" }, /* CPU_CLASS_SA1 */ 440 { "XScale", "CPU_XSCALE_..." }, /* CPU_CLASS_XSCALE */ 441 { "ARM11J", "CPU_ARM11" }, /* CPU_CLASS_ARM11J */ 442 { "ARMv4", "CPU_ARMV4" }, /* CPU_CLASS_ARMV4 */ 443 }; 444 445 /* 446 * Report the type of the specified arm processor. This uses the generic and 447 * arm specific information in the CPU structure to identify the processor. 448 * The remaining fields in the CPU structure are filled in appropriately. 449 */ 450 451 static const char * const wtnames[] = { 452 "write-through", 453 "write-back", 454 "write-back", 455 "**unknown 3**", 456 "**unknown 4**", 457 "write-back-locking", /* XXX XScale-specific? */ 458 "write-back-locking-A", 459 "write-back-locking-B", 460 "**unknown 8**", 461 "**unknown 9**", 462 "**unknown 10**", 463 "**unknown 11**", 464 "**unknown 12**", 465 "**unknown 13**", 466 "write-back-locking-C", 467 "**unknown 15**", 468 }; 469 470 void 471 identify_arm_cpu(struct device *dv, struct cpu_info *ci) 472 { 473 u_int cpuid; 474 enum cpu_class cpu_class = CPU_CLASS_NONE; 475 int i; 476 const char *steppingstr; 477 478 cpuid = ci->ci_arm_cpuid; 479 480 if (cpuid == 0) { 481 aprint_error("Processor failed probe - no CPU ID\n"); 482 return; 483 } 484 485 for (i = 0; cpuids[i].cpuid != 0; i++) 486 if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) { 487 cpu_class = cpuids[i].cpu_class; 488 steppingstr = cpuids[i].cpu_steppings[cpuid & 489 CPU_ID_REVISION_MASK], 490 sprintf(cpu_model, "%s%s%s (%s core)", 491 cpuids[i].cpu_classname, 492 steppingstr[0] == '*' ? "" : " ", 493 &steppingstr[steppingstr[0] == '*'], 494 cpu_classes[cpu_class].class_name); 495 break; 496 } 497 498 if (cpuids[i].cpuid == 0) 499 sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid); 500 501 aprint_naive(": %s\n", cpu_model); 502 aprint_normal(": %s\n", cpu_model); 503 504 aprint_normal("%s:", dv->dv_xname); 505 506 switch (cpu_class) { 507 case CPU_CLASS_ARM6: 508 case CPU_CLASS_ARM7: 509 case CPU_CLASS_ARM7TDMI: 510 case CPU_CLASS_ARM8: 511 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0) 512 aprint_normal(" IDC disabled"); 513 else 514 aprint_normal(" IDC enabled"); 515 break; 516 case CPU_CLASS_ARM9TDMI: 517 case CPU_CLASS_ARM9ES: 518 case CPU_CLASS_ARM9EJS: 519 case CPU_CLASS_ARM10E: 520 case CPU_CLASS_ARM10EJ: 521 case CPU_CLASS_SA1: 522 case CPU_CLASS_XSCALE: 523 case CPU_CLASS_ARM11J: 524 case CPU_CLASS_ARMV4: 525 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0) 526 aprint_normal(" DC disabled"); 527 else 528 aprint_normal(" DC enabled"); 529 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0) 530 aprint_normal(" IC disabled"); 531 else 532 aprint_normal(" IC enabled"); 533 break; 534 default: 535 break; 536 } 537 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0) 538 aprint_normal(" WB disabled"); 539 else 540 aprint_normal(" WB enabled"); 541 542 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE) 543 aprint_normal(" LABT"); 544 else 545 aprint_normal(" EABT"); 546 547 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE) 548 aprint_normal(" branch prediction enabled"); 549 550 aprint_normal("\n"); 551 552 /* Print cache info. */ 553 if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0) 554 goto skip_pcache; 555 556 if (arm_pcache_unified) { 557 aprint_normal("%s: %dKB/%dB %d-way %s unified cache\n", 558 dv->dv_xname, arm_pdcache_size / 1024, 559 arm_pdcache_line_size, arm_pdcache_ways, 560 wtnames[arm_pcache_type]); 561 } else { 562 aprint_normal("%s: %dKB/%dB %d-way Instruction cache\n", 563 dv->dv_xname, arm_picache_size / 1024, 564 arm_picache_line_size, arm_picache_ways); 565 aprint_normal("%s: %dKB/%dB %d-way %s Data cache\n", 566 dv->dv_xname, arm_pdcache_size / 1024, 567 arm_pdcache_line_size, arm_pdcache_ways, 568 wtnames[arm_pcache_type]); 569 } 570 571 skip_pcache: 572 573 switch (cpu_class) { 574 #ifdef CPU_ARM2 575 case CPU_CLASS_ARM2: 576 #endif 577 #ifdef CPU_ARM250 578 case CPU_CLASS_ARM2AS: 579 #endif 580 #ifdef CPU_ARM3 581 case CPU_CLASS_ARM3: 582 #endif 583 #ifdef CPU_ARM6 584 case CPU_CLASS_ARM6: 585 #endif 586 #ifdef CPU_ARM7 587 case CPU_CLASS_ARM7: 588 #endif 589 #ifdef CPU_ARM7TDMI 590 case CPU_CLASS_ARM7TDMI: 591 #endif 592 #ifdef CPU_ARM8 593 case CPU_CLASS_ARM8: 594 #endif 595 #ifdef CPU_ARM9 596 case CPU_CLASS_ARM9TDMI: 597 #endif 598 #ifdef CPU_ARM9E 599 case CPU_CLASS_ARM9ES: 600 case CPU_CLASS_ARM9EJS: 601 #endif 602 #ifdef CPU_ARM10 603 case CPU_CLASS_ARM10E: 604 case CPU_CLASS_ARM10EJ: 605 #endif 606 #if defined(CPU_SA110) || defined(CPU_SA1100) || \ 607 defined(CPU_SA1110) || defined(CPU_IXP12X0) 608 case CPU_CLASS_SA1: 609 #endif 610 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \ 611 defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425) 612 case CPU_CLASS_XSCALE: 613 #endif 614 #if defined(CPU_ARM11) 615 case CPU_CLASS_ARM11J: 616 #endif 617 #if defined(CPU_FA526) 618 case CPU_CLASS_ARMV4: 619 #endif 620 break; 621 default: 622 if (cpu_classes[cpu_class].class_option == NULL) 623 aprint_error("%s: %s does not fully support this CPU." 624 "\n", dv->dv_xname, ostype); 625 else { 626 aprint_error("%s: This kernel does not fully support " 627 "this CPU.\n", dv->dv_xname); 628 aprint_normal("%s: Recompile with \"options %s\" to " 629 "correct this.\n", dv->dv_xname, 630 cpu_classes[cpu_class].class_option); 631 } 632 break; 633 } 634 635 } 636 637 /* End of cpu.c */ 638