xref: /netbsd-src/sys/arch/arm/arm32/cpu.c (revision 3b01aba77a7a698587faaae455bbfe740923c1f5)
1 /*	$NetBSD: cpu.c,v 1.3 2001/06/03 18:32:34 chris Exp $	*/
2 
3 /*
4  * Copyright (c) 1995 Mark Brinicombe.
5  * Copyright (c) 1995 Brini.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Brini.
19  * 4. The name of the company nor the name of the author may be used to
20  *    endorse or promote products derived from this software without specific
21  *    prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  * RiscBSD kernel project
36  *
37  * cpu.c
38  *
39  * Probing and configuration for the master cpu
40  *
41  * Created      : 10/10/95
42  */
43 
44 #include "opt_armfpe.h"
45 #include "opt_cputypes.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/malloc.h>
50 #include <sys/device.h>
51 #include <sys/proc.h>
52 #include <uvm/uvm_extern.h>
53 #include <machine/conf.h>
54 #include <machine/cpu.h>
55 #include <machine/cpus.h>
56 #include <machine/undefined.h>
57 
58 #ifdef ARMFPE
59 #include <machine/bootconfig.h> /* For boot args */
60 #include <arm32/fpe-arm/armfpe.h>
61 #endif	/* ARMFPE */
62 
63 cpu_t cpus[MAX_CPUS];
64 
65 char cpu_model[64];
66 volatile int undefined_test;	/* Used for FPA test */
67 extern int cpuctrl;		/* cpu control register value */
68 
69 /* Prototypes */
70 void identify_master_cpu __P((struct device *dv, int cpu_number));
71 void identify_arm_cpu	__P((struct device *dv, int cpu_number));
72 void identify_arm_fpu	__P((struct device *dv, int cpu_number));
73 
74 
75 /*
76  * void cpusattach(struct device *parent, struct device *dev, void *aux)
77  *
78  * Attach the main cpu
79  */
80 
81 void
82 cpu_attach(dv)
83 	struct device *dv;
84 {
85 	identify_master_cpu(dv, CPU_MASTER);
86 }
87 
88 /*
89  * Used to test for an FPA. The following function is installed as a coproc1
90  * handler on the undefined instruction vector and then we issue a FPA
91  * instruction. If undefined_test is non zero then the FPA did not handle
92  * the instruction so must be absent.
93  */
94 
95 int
96 fpa_test(address, instruction, frame)
97 	u_int address;
98 	u_int instruction;
99 	trapframe_t *frame;
100 {
101 
102 	frame->tf_pc += INSN_SIZE;
103 	++undefined_test;
104 	return(0);
105 }
106 
107 /*
108  * If an FPA was found then this function is installed as the coproc1 handler
109  * on the undefined instruction vector. Currently we don't support FPA's
110  * so this just triggers an exception.
111  */
112 
113 int
114 fpa_handler(address, instruction, frame, fault_code)
115 	u_int address;
116 	u_int instruction;
117 	trapframe_t *frame;
118 	int fault_code;
119 {
120 	u_int fpsr;
121 
122 	__asm __volatile("stmfd sp!, {r0}; .word 0xee300110; mov %0, r0; ldmfd sp!, {r0}" : "=r" (fpsr));
123 
124 	printf("FPA exception: fpsr = %08x\n", fpsr);
125 
126 	return(1);
127 }
128 
129 
130 /*
131  * Identify the master (boot) CPU
132  * This also probes for an FPU and will install an FPE if necessary
133  */
134 
135 void
136 identify_master_cpu(dv, cpu_number)
137 	struct device *dv;
138 	int cpu_number;
139 {
140 	u_int fpsr;
141 	void *uh;
142 
143 	cpus[cpu_number].cpu_ctrl = cpuctrl;
144 
145 	/* Get the cpu ID from coprocessor 15 */
146 
147 	cpus[cpu_number].cpu_id = cpu_id();
148 
149 	identify_arm_cpu(dv, cpu_number);
150 	strcpy(cpu_model, cpus[cpu_number].cpu_model);
151 
152 	if (cpus[CPU_MASTER].cpu_class == CPU_CLASS_SA1
153 	    && (cpus[CPU_MASTER].cpu_id & CPU_ID_REVISION_MASK) < 3) {
154 		printf("%s: SA-110 with bugged STM^ instruction\n",
155 		       dv->dv_xname);
156 	}
157 
158 #ifdef CPU_ARM8
159 	if ((cpus[CPU_MASTER].cpu_id & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
160 		int clock = arm8_clock_config(0, 0);
161 		char *fclk;
162 		printf("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
163 		printf(" clock:%s", (clock & 1) ? " dynamic" : "");
164 		printf("%s", (clock & 2) ? " sync" : "");
165 		switch ((clock >> 2) & 3) {
166 		case 0 :
167 			fclk = "bus clock";
168 			break;
169 		case 1 :
170 			fclk = "ref clock";
171 			break;
172 		case 3 :
173 			fclk = "pll";
174 			break;
175 		default :
176 			fclk = "illegal";
177 			break;
178 		}
179 		printf(" fclk source=%s\n", fclk);
180  	}
181 #endif
182 
183 	/*
184 	 * Ok now we test for an FPA
185 	 * At this point no floating point emulator has been installed.
186 	 * This means any FP instruction will cause undefined exception.
187 	 * We install a temporay coproc 1 handler which will modify
188 	 * undefined_test if it is called.
189 	 * We then try to read the FP status register. If undefined_test
190 	 * has been decremented then the instruction was not handled by
191 	 * an FPA so we know the FPA is missing. If undefined_test is
192 	 * still 1 then we know the instruction was handled by an FPA.
193 	 * We then remove our test handler and look at the
194 	 * FP status register for identification.
195 	 */
196 
197 	uh = install_coproc_handler(FP_COPROC, fpa_test);
198 
199 	undefined_test = 0;
200 
201 	__asm __volatile("stmfd sp!, {r0}; .word 0xee300110; mov %0, r0; ldmfd sp!, {r0}" : "=r" (fpsr));
202 
203 	remove_coproc_handler(uh);
204 
205 	if (undefined_test == 0) {
206 		cpus[cpu_number].fpu_type = (fpsr >> 24);
207 	        switch (fpsr >> 24) {
208 		case 0x81 :
209 			cpus[cpu_number].fpu_class = FPU_CLASS_FPA;
210 			break;
211 
212 		default :
213 			cpus[cpu_number].fpu_class = FPU_CLASS_FPU;
214 			break;
215 		}
216 		cpus[cpu_number].fpu_flags = 0;
217 		install_coproc_handler(FP_COPROC, fpa_handler);
218 	} else {
219 		cpus[cpu_number].fpu_class = FPU_CLASS_NONE;
220 		cpus[cpu_number].fpu_flags = 0;
221 
222 		/*
223 		 * Ok if ARMFPE is defined and the boot options request the
224 		 * ARM FPE then it will be installed as the FPE.
225 		 * This is just while I work on integrating the new FPE.
226 		 * It means the new FPE gets installed if compiled int (ARMFPE
227 		 * defined) and also gives me a on/off option when I boot in
228 		 * case the new FPE is causing panics.
229 		 */
230 
231 #ifdef ARMFPE
232 		if (boot_args) {
233 			int usearmfpe = 1;
234 
235 			get_bootconf_option(boot_args, "armfpe",
236 			    BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
237 			if (usearmfpe) {
238 				if (initialise_arm_fpe(&cpus[cpu_number]) != 0)
239 					identify_arm_fpu(dv, cpu_number);
240 			}
241 		}
242 
243 #endif
244 	}
245 
246 	identify_arm_fpu(dv, cpu_number);
247 }
248 
249 struct cpuidtab {
250 	u_int32_t	cpuid;
251 	enum		cpu_class cpu_class;
252 	char *		cpu_name;
253 };
254 
255 const struct cpuidtab cpuids[] = {
256 	{ CPU_ID_ARM2,		CPU_CLASS_ARM2,		"ARM2" },
257 	{ CPU_ID_ARM250,	CPU_CLASS_ARM2AS,	"ARM250" },
258 	{ CPU_ID_ARM3,		CPU_CLASS_ARM3,		"ARM3" },
259 	{ CPU_ID_ARM600,	CPU_CLASS_ARM6,		"ARM600" },
260 	{ CPU_ID_ARM610,	CPU_CLASS_ARM6,		"ARM610" },
261 	{ CPU_ID_ARM620,	CPU_CLASS_ARM6,		"ARM620" },
262 	{ CPU_ID_ARM700,	CPU_CLASS_ARM7,		"ARM700" },
263 	{ CPU_ID_ARM710,	CPU_CLASS_ARM7,		"ARM710" },
264 	{ CPU_ID_ARM7500,	CPU_CLASS_ARM7,		"ARM7500" },
265 	{ CPU_ID_ARM710A,	CPU_CLASS_ARM7,		"ARM710a" },
266 	{ CPU_ID_ARM7500FE,	CPU_CLASS_ARM7,		"ARM7500FE" },
267 	{ CPU_ID_ARM710T,	CPU_CLASS_ARM7TDMI,	"ARM710T" },
268 	{ CPU_ID_ARM720T,	CPU_CLASS_ARM7TDMI,	"ARM720T" },
269 	{ CPU_ID_ARM740T8K,	CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)" },
270 	{ CPU_ID_ARM740T4K,	CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)" },
271 	{ CPU_ID_ARM810,	CPU_CLASS_ARM8,		"ARM810" },
272 	{ CPU_ID_ARM920T,	CPU_CLASS_ARM9TDMI,	"ARM920T" },
273 	{ CPU_ID_ARM922T,	CPU_CLASS_ARM9TDMI,	"ARM922T" },
274 	{ CPU_ID_ARM940T,	CPU_CLASS_ARM9TDMI,	"ARM940T" },
275 	{ CPU_ID_ARM946ES,	CPU_CLASS_ARM9ES,	"ARM946E-S" },
276 	{ CPU_ID_ARM966ES,	CPU_CLASS_ARM9ES,	"ARM966E-S" },
277 	{ CPU_ID_ARM966ESR1,	CPU_CLASS_ARM9ES,	"ARM966E-S (Rev 1)" },
278 	{ CPU_ID_SA110,		CPU_CLASS_SA1,		"SA-110" },
279 	{ CPU_ID_SA1100,	CPU_CLASS_SA1,		"SA-1100" },
280 	{ CPU_ID_SA1110,	CPU_CLASS_SA1,		"SA-1110" },
281 	{ CPU_ID_I80200,	CPU_CLASS_XSCALE,	"80200" },
282 	{ 0, CPU_CLASS_NONE, NULL }
283 };
284 
285 struct cpu_classtab {
286 	char	*class_name;
287 	char	*class_option;
288 };
289 
290 const struct cpu_classtab cpu_classes[] = {
291 	{ "unknown",	NULL },		/* CPU_CLASS_NONE */
292 	{ "ARM2",	"CPU_ARM2" },	/* CPU_CLASS_ARM2 */
293 	{ "ARM2as",	"CPU_ARM250" },	/* CPU_CLASS_ARM2AS */
294 	{ "ARM3",	"CPU_ARM3" },	/* CPU_CLASS_ARM3 */
295 	{ "ARM6",	"CPU_ARM6" },	/* CPU_CLASS_ARM6 */
296 	{ "ARM7",	"CPU_ARM7" },	/* CPU_CLASS_ARM7 */
297 	{ "ARM7TDMI",	"CPU_ARM7TDMI" },/* CPU_CLASS_ARM7TDMI */
298 	{ "ARM8",	"CPU_ARM8" },	/* CPU_CLASS_ARM8 */
299 	{ "ARM9TDMI",	NULL },		/* CPU_CLASS_ARM9TDMI */
300 	{ "ARM9E-S",	NULL },		/* CPU_CLASS_ARM9ES */
301 	{ "SA-1",	"CPU_SA110" },	/* CPU_CLASS_SA1 */
302 	{ "Xscale",	NULL },		/* CPU_CLASS_XSCALE */
303 };
304 
305 /*
306  * Report the type of the specifed arm processor. This uses the generic and
307  * arm specific information in the cpu structure to identify the processor.
308  * The remaining fields in the cpu structure are filled in appropriately.
309  */
310 
311 void
312 identify_arm_cpu(dv, cpu_number)
313 	struct device *dv;
314 	int cpu_number;
315 {
316 	cpu_t *cpu;
317 	u_int cpuid;
318 	int i;
319 
320 	cpu = &cpus[cpu_number];
321 	cpuid = cpu->cpu_id;
322 
323 	if (cpuid == 0) {
324 		printf("Processor failed probe - no CPU ID\n");
325 		return;
326 	}
327 
328 	for (i = 0; cpuids[i].cpuid != 0; i++)
329 		if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
330 			cpu->cpu_class = cpuids[i].cpu_class;
331 			sprintf(cpu->cpu_model, "%s rev %d (%s core)",
332 			    cpuids[i].cpu_name, cpuid & CPU_ID_REVISION_MASK,
333 			    cpu_classes[cpu->cpu_class].class_name);
334 			break;
335 		}
336 
337 	if (cpuids[i].cpuid == 0)
338 		sprintf(cpu->cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
339 
340 	switch (cpu->cpu_class) {
341 	case CPU_CLASS_ARM6:
342 	case CPU_CLASS_ARM7:
343 	case CPU_CLASS_ARM7TDMI:
344 	case CPU_CLASS_ARM8:
345 		if ((cpu->cpu_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
346 			strcat(cpu->cpu_model, " IDC disabled");
347 		else
348 			strcat(cpu->cpu_model, " IDC enabled");
349 		break;
350 	case CPU_CLASS_SA1:
351 		if ((cpu->cpu_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
352 			strcat(cpu->cpu_model, " DC disabled");
353 		else
354 			strcat(cpu->cpu_model, " DC enabled");
355 		if ((cpu->cpu_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
356 			strcat(cpu->cpu_model, " IC disabled");
357 		else
358 			strcat(cpu->cpu_model, " IC enabled");
359 		break;
360 	}
361 	if ((cpu->cpu_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
362 		strcat(cpu->cpu_model, " WB disabled");
363 	else
364 		strcat(cpu->cpu_model, " WB enabled");
365 
366 	if (cpu->cpu_ctrl & CPU_CONTROL_LABT_ENABLE)
367 		strcat(cpu->cpu_model, " LABT");
368 	else
369 		strcat(cpu->cpu_model, " EABT");
370 
371 	if (cpu->cpu_ctrl & CPU_CONTROL_BPRD_ENABLE)
372 		strcat(cpu->cpu_model, " branch prediction enabled");
373 
374 	/* Print the info */
375 
376 	printf(": %s\n", cpu->cpu_model);
377 
378 	switch (cpu->cpu_class) {
379 #ifdef CPU_ARM2
380 	case CPU_CLASS_ARM2:
381 #endif
382 #ifdef CPU_ARM250
383 	case CPU_CLASS_ARM2AS:
384 #endif
385 #ifdef CPU_ARM3
386 	case CPU_CLASS_ARM3:
387 #endif
388 #ifdef CPU_ARM6
389 	case CPU_CLASS_ARM6:
390 #endif
391 #ifdef CPU_ARM7
392 	case CPU_CLASS_ARM7:
393 #endif
394 #ifdef CPU_ARM7TDMI
395 	case CPU_CLASS_ARM7TDMI:
396 #endif
397 #ifdef CPU_ARM8
398 	case CPU_CLASS_ARM8:
399 #endif
400 #ifdef CPU_SA110
401 	case CPU_CLASS_SA1:
402 #endif
403 		break;
404 	default:
405 		if (cpu_classes[cpu->cpu_class].class_option != NULL)
406 			printf("%s: %s does not fully support this CPU."
407 			       "\n", dv->dv_xname, ostype);
408 		else {
409 			printf("%s: This kernel does not fully support "
410 			       "this CPU.\n", dv->dv_xname);
411 			printf("%s: Recompile with \"options %s\" to "
412 			       "correct this.\n", dv->dv_xname,
413 			       cpu_classes[cpu->cpu_class].class_option);
414 		}
415 		break;
416 	}
417 
418 }
419 
420 
421 /*
422  * Report the type of the specifed arm fpu. This uses the generic and arm
423  * specific information in the cpu structure to identify the fpu. The
424  * remaining fields in the cpu structure are filled in appropriately.
425  */
426 
427 void
428 identify_arm_fpu(dv, cpu_number)
429 	struct device *dv;
430 	int cpu_number;
431 {
432 	cpu_t *cpu;
433 
434 	cpu = &cpus[cpu_number];
435 
436 	/* Now for the FP info */
437 
438 	switch (cpu->fpu_class) {
439 	case FPU_CLASS_NONE :
440 		strcpy(cpu->fpu_model, "None");
441 		break;
442 	case FPU_CLASS_FPE :
443 		printf("%s: FPE: %s\n", dv->dv_xname, cpu->fpu_model);
444 		printf("%s: no FP hardware found\n", dv->dv_xname);
445 		break;
446 	case FPU_CLASS_FPA :
447 		printf("%s: FPE: %s\n", dv->dv_xname, cpu->fpu_model);
448 		if (cpu->fpu_type == FPU_TYPE_FPA11) {
449 			strcpy(cpu->fpu_model, "FPA11");
450 			printf("%s: FPA11 found\n", dv->dv_xname);
451 		} else {
452 			strcpy(cpu->fpu_model, "FPA");
453 			printf("%s: FPA10 found\n", dv->dv_xname);
454 		}
455 		if ((cpu->fpu_flags & 4) == 0)
456 			strcat(cpu->fpu_model, "");
457 		else
458 			strcat(cpu->fpu_model, " clk/2");
459 		break;
460 	case FPU_CLASS_FPU :
461 		sprintf(cpu->fpu_model, "Unknown FPU (ID=%02x)\n",
462 		    cpu->fpu_type);
463 		printf("%s: %s\n", dv->dv_xname, cpu->fpu_model);
464 		break;
465 	}
466 }
467 
468 /* End of cpu.c */
469