xref: /netbsd-src/sys/arch/arm/arm32/cpu.c (revision 06be8101a16cc95f40783b3cb7afd12112103a9a)
1 /*	$NetBSD: cpu.c,v 1.9 2001/11/06 20:39:13 thorpej Exp $	*/
2 
3 /*
4  * Copyright (c) 1995 Mark Brinicombe.
5  * Copyright (c) 1995 Brini.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Brini.
19  * 4. The name of the company nor the name of the author may be used to
20  *    endorse or promote products derived from this software without specific
21  *    prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  * RiscBSD kernel project
36  *
37  * cpu.c
38  *
39  * Probing and configuration for the master cpu
40  *
41  * Created      : 10/10/95
42  */
43 
44 #include "opt_armfpe.h"
45 #include "opt_cputypes.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/malloc.h>
50 #include <sys/device.h>
51 #include <sys/proc.h>
52 #include <uvm/uvm_extern.h>
53 #include <machine/conf.h>
54 #include <machine/cpu.h>
55 #include <machine/cpus.h>
56 #include <machine/undefined.h>
57 
58 #ifdef ARMFPE
59 #include <machine/bootconfig.h> /* For boot args */
60 #include <arm32/fpe-arm/armfpe.h>
61 #endif	/* ARMFPE */
62 
63 cpu_t cpus[MAX_CPUS];
64 
65 char cpu_model[64];
66 volatile int undefined_test;	/* Used for FPA test */
67 extern int cpuctrl;		/* cpu control register value */
68 
69 /* Prototypes */
70 void identify_master_cpu __P((struct device *dv, int cpu_number));
71 void identify_arm_cpu	__P((struct device *dv, int cpu_number));
72 void identify_arm_fpu	__P((struct device *dv, int cpu_number));
73 int fpa_test __P((u_int, u_int, trapframe_t *, int));
74 int fpa_handler __P((u_int, u_int, trapframe_t *, int));
75 
76 /*
77  * void cpusattach(struct device *parent, struct device *dev, void *aux)
78  *
79  * Attach the main cpu
80  */
81 
82 void
83 cpu_attach(dv)
84 	struct device *dv;
85 {
86 	identify_master_cpu(dv, CPU_MASTER);
87 }
88 
89 /*
90  * Used to test for an FPA. The following function is installed as a coproc1
91  * handler on the undefined instruction vector and then we issue a FPA
92  * instruction. If undefined_test is non zero then the FPA did not handle
93  * the instruction so must be absent.
94  */
95 
96 int
97 fpa_test(address, instruction, frame, fault_code)
98 	u_int address;
99 	u_int instruction;
100 	trapframe_t *frame;
101 	int fault_code;
102 {
103 
104 	frame->tf_pc += INSN_SIZE;
105 	++undefined_test;
106 	return(0);
107 }
108 
109 /*
110  * If an FPA was found then this function is installed as the coproc1 handler
111  * on the undefined instruction vector. Currently we don't support FPA's
112  * so this just triggers an exception.
113  */
114 
115 int
116 fpa_handler(address, instruction, frame, fault_code)
117 	u_int address;
118 	u_int instruction;
119 	trapframe_t *frame;
120 	int fault_code;
121 {
122 	u_int fpsr;
123 
124 	__asm __volatile("stmfd sp!, {r0}; .word 0xee300110; mov %0, r0; ldmfd sp!, {r0}" : "=r" (fpsr));
125 
126 	printf("FPA exception: fpsr = %08x\n", fpsr);
127 
128 	return(1);
129 }
130 
131 
132 /*
133  * Identify the master (boot) CPU
134  * This also probes for an FPU and will install an FPE if necessary
135  */
136 
137 void
138 identify_master_cpu(dv, cpu_number)
139 	struct device *dv;
140 	int cpu_number;
141 {
142 	u_int fpsr;
143 	void *uh;
144 
145 	cpus[cpu_number].cpu_ctrl = cpuctrl;
146 
147 	/* Get the cpu ID from coprocessor 15 */
148 
149 	cpus[cpu_number].cpu_id = cpu_id();
150 
151 	identify_arm_cpu(dv, cpu_number);
152 	strcpy(cpu_model, cpus[cpu_number].cpu_model);
153 
154 	if (cpus[CPU_MASTER].cpu_class == CPU_CLASS_SA1
155 	    && (cpus[CPU_MASTER].cpu_id & CPU_ID_REVISION_MASK) < 3) {
156 		printf("%s: SA-110 with bugged STM^ instruction\n",
157 		       dv->dv_xname);
158 	}
159 
160 #ifdef CPU_ARM8
161 	if ((cpus[CPU_MASTER].cpu_id & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
162 		int clock = arm8_clock_config(0, 0);
163 		char *fclk;
164 		printf("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
165 		printf(" clock:%s", (clock & 1) ? " dynamic" : "");
166 		printf("%s", (clock & 2) ? " sync" : "");
167 		switch ((clock >> 2) & 3) {
168 		case 0 :
169 			fclk = "bus clock";
170 			break;
171 		case 1 :
172 			fclk = "ref clock";
173 			break;
174 		case 3 :
175 			fclk = "pll";
176 			break;
177 		default :
178 			fclk = "illegal";
179 			break;
180 		}
181 		printf(" fclk source=%s\n", fclk);
182  	}
183 #endif
184 
185 	/*
186 	 * Ok now we test for an FPA
187 	 * At this point no floating point emulator has been installed.
188 	 * This means any FP instruction will cause undefined exception.
189 	 * We install a temporay coproc 1 handler which will modify
190 	 * undefined_test if it is called.
191 	 * We then try to read the FP status register. If undefined_test
192 	 * has been decremented then the instruction was not handled by
193 	 * an FPA so we know the FPA is missing. If undefined_test is
194 	 * still 1 then we know the instruction was handled by an FPA.
195 	 * We then remove our test handler and look at the
196 	 * FP status register for identification.
197 	 */
198 
199 	uh = install_coproc_handler(FP_COPROC, fpa_test);
200 
201 	undefined_test = 0;
202 
203 	__asm __volatile("stmfd sp!, {r0}; .word 0xee300110; mov %0, r0; ldmfd sp!, {r0}" : "=r" (fpsr));
204 
205 	remove_coproc_handler(uh);
206 
207 	if (undefined_test == 0) {
208 		cpus[cpu_number].fpu_type = (fpsr >> 24);
209 	        switch (fpsr >> 24) {
210 		case 0x81 :
211 			cpus[cpu_number].fpu_class = FPU_CLASS_FPA;
212 			break;
213 
214 		default :
215 			cpus[cpu_number].fpu_class = FPU_CLASS_FPU;
216 			break;
217 		}
218 		cpus[cpu_number].fpu_flags = 0;
219 		install_coproc_handler(FP_COPROC, fpa_handler);
220 	} else {
221 		cpus[cpu_number].fpu_class = FPU_CLASS_NONE;
222 		cpus[cpu_number].fpu_flags = 0;
223 
224 		/*
225 		 * Ok if ARMFPE is defined and the boot options request the
226 		 * ARM FPE then it will be installed as the FPE.
227 		 * This is just while I work on integrating the new FPE.
228 		 * It means the new FPE gets installed if compiled int (ARMFPE
229 		 * defined) and also gives me a on/off option when I boot in
230 		 * case the new FPE is causing panics.
231 		 */
232 
233 #ifdef ARMFPE
234 		if (boot_args) {
235 			int usearmfpe = 1;
236 
237 			get_bootconf_option(boot_args, "armfpe",
238 			    BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
239 			if (usearmfpe) {
240 				if (initialise_arm_fpe(&cpus[cpu_number]) != 0)
241 					identify_arm_fpu(dv, cpu_number);
242 			}
243 		}
244 
245 #endif
246 	}
247 
248 	identify_arm_fpu(dv, cpu_number);
249 }
250 
251 struct cpuidtab {
252 	u_int32_t	cpuid;
253 	enum		cpu_class cpu_class;
254 	const char	*cpu_name;
255 };
256 
257 const struct cpuidtab cpuids[] = {
258 	{ CPU_ID_ARM2,		CPU_CLASS_ARM2,		"ARM2" },
259 	{ CPU_ID_ARM250,	CPU_CLASS_ARM2AS,	"ARM250" },
260 	{ CPU_ID_ARM3,		CPU_CLASS_ARM3,		"ARM3" },
261 	{ CPU_ID_ARM600,	CPU_CLASS_ARM6,		"ARM600" },
262 	{ CPU_ID_ARM610,	CPU_CLASS_ARM6,		"ARM610" },
263 	{ CPU_ID_ARM620,	CPU_CLASS_ARM6,		"ARM620" },
264 	{ CPU_ID_ARM700,	CPU_CLASS_ARM7,		"ARM700" },
265 	{ CPU_ID_ARM710,	CPU_CLASS_ARM7,		"ARM710" },
266 	{ CPU_ID_ARM7500,	CPU_CLASS_ARM7,		"ARM7500" },
267 	{ CPU_ID_ARM710A,	CPU_CLASS_ARM7,		"ARM710a" },
268 	{ CPU_ID_ARM7500FE,	CPU_CLASS_ARM7,		"ARM7500FE" },
269 	{ CPU_ID_ARM710T,	CPU_CLASS_ARM7TDMI,	"ARM710T" },
270 	{ CPU_ID_ARM720T,	CPU_CLASS_ARM7TDMI,	"ARM720T" },
271 	{ CPU_ID_ARM740T8K,	CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)" },
272 	{ CPU_ID_ARM740T4K,	CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)" },
273 	{ CPU_ID_ARM810,	CPU_CLASS_ARM8,		"ARM810" },
274 	{ CPU_ID_ARM920T,	CPU_CLASS_ARM9TDMI,	"ARM920T" },
275 	{ CPU_ID_ARM922T,	CPU_CLASS_ARM9TDMI,	"ARM922T" },
276 	{ CPU_ID_ARM940T,	CPU_CLASS_ARM9TDMI,	"ARM940T" },
277 	{ CPU_ID_ARM946ES,	CPU_CLASS_ARM9ES,	"ARM946E-S" },
278 	{ CPU_ID_ARM966ES,	CPU_CLASS_ARM9ES,	"ARM966E-S" },
279 	{ CPU_ID_ARM966ESR1,	CPU_CLASS_ARM9ES,	"ARM966E-S" },
280 	{ CPU_ID_SA110,		CPU_CLASS_SA1,		"SA-110" },
281 	{ CPU_ID_SA1100,	CPU_CLASS_SA1,		"SA-1100" },
282 	{ CPU_ID_SA1110,	CPU_CLASS_SA1,		"SA-1110" },
283 	{ CPU_ID_I80200,	CPU_CLASS_XSCALE,	"i80200" },
284 	{ 0, CPU_CLASS_NONE, NULL }
285 };
286 
287 struct cpu_classtab {
288 	const char	*class_name;
289 	const char	*class_option;
290 };
291 
292 const struct cpu_classtab cpu_classes[] = {
293 	{ "unknown",	NULL },			/* CPU_CLASS_NONE */
294 	{ "ARM2",	"CPU_ARM2" },		/* CPU_CLASS_ARM2 */
295 	{ "ARM2as",	"CPU_ARM250" },		/* CPU_CLASS_ARM2AS */
296 	{ "ARM3",	"CPU_ARM3" },		/* CPU_CLASS_ARM3 */
297 	{ "ARM6",	"CPU_ARM6" },		/* CPU_CLASS_ARM6 */
298 	{ "ARM7",	"CPU_ARM7" },		/* CPU_CLASS_ARM7 */
299 	{ "ARM7TDMI",	"CPU_ARM7TDMI" },	/* CPU_CLASS_ARM7TDMI */
300 	{ "ARM8",	"CPU_ARM8" },		/* CPU_CLASS_ARM8 */
301 	{ "ARM9TDMI",	NULL },			/* CPU_CLASS_ARM9TDMI */
302 	{ "ARM9E-S",	NULL },			/* CPU_CLASS_ARM9ES */
303 	{ "SA-1",	"CPU_SA110" },		/* CPU_CLASS_SA1 */
304 	{ "XScale",	"CPU_XSCALE" },		/* CPU_CLASS_XSCALE */
305 };
306 
307 /*
308  * Report the type of the specifed arm processor. This uses the generic and
309  * arm specific information in the cpu structure to identify the processor.
310  * The remaining fields in the cpu structure are filled in appropriately.
311  */
312 
313 void
314 identify_arm_cpu(dv, cpu_number)
315 	struct device *dv;
316 	int cpu_number;
317 {
318 	cpu_t *cpu;
319 	u_int cpuid;
320 	int i;
321 
322 	cpu = &cpus[cpu_number];
323 	cpuid = cpu->cpu_id;
324 
325 	if (cpuid == 0) {
326 		printf("Processor failed probe - no CPU ID\n");
327 		return;
328 	}
329 
330 	for (i = 0; cpuids[i].cpuid != 0; i++)
331 		if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
332 			cpu->cpu_class = cpuids[i].cpu_class;
333 			sprintf(cpu->cpu_model, "%s rev %d (%s core)",
334 			    cpuids[i].cpu_name, cpuid & CPU_ID_REVISION_MASK,
335 			    cpu_classes[cpu->cpu_class].class_name);
336 			break;
337 		}
338 
339 	if (cpuids[i].cpuid == 0)
340 		sprintf(cpu->cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
341 
342 	switch (cpu->cpu_class) {
343 	case CPU_CLASS_ARM6:
344 	case CPU_CLASS_ARM7:
345 	case CPU_CLASS_ARM7TDMI:
346 	case CPU_CLASS_ARM8:
347 		if ((cpu->cpu_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
348 			strcat(cpu->cpu_model, " IDC disabled");
349 		else
350 			strcat(cpu->cpu_model, " IDC enabled");
351 		break;
352 	case CPU_CLASS_ARM9TDMI:
353 	case CPU_CLASS_SA1:
354 	case CPU_CLASS_XSCALE:
355 		if ((cpu->cpu_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
356 			strcat(cpu->cpu_model, " DC disabled");
357 		else
358 			strcat(cpu->cpu_model, " DC enabled");
359 		if ((cpu->cpu_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
360 			strcat(cpu->cpu_model, " IC disabled");
361 		else
362 			strcat(cpu->cpu_model, " IC enabled");
363 		break;
364 	}
365 	if ((cpu->cpu_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
366 		strcat(cpu->cpu_model, " WB disabled");
367 	else
368 		strcat(cpu->cpu_model, " WB enabled");
369 
370 	if (cpu->cpu_ctrl & CPU_CONTROL_LABT_ENABLE)
371 		strcat(cpu->cpu_model, " LABT");
372 	else
373 		strcat(cpu->cpu_model, " EABT");
374 
375 	if (cpu->cpu_ctrl & CPU_CONTROL_BPRD_ENABLE)
376 		strcat(cpu->cpu_model, " branch prediction enabled");
377 
378 	/* Print the info */
379 
380 	printf(": %s\n", cpu->cpu_model);
381 
382 	switch (cpu->cpu_class) {
383 #ifdef CPU_ARM2
384 	case CPU_CLASS_ARM2:
385 #endif
386 #ifdef CPU_ARM250
387 	case CPU_CLASS_ARM2AS:
388 #endif
389 #ifdef CPU_ARM3
390 	case CPU_CLASS_ARM3:
391 #endif
392 #ifdef CPU_ARM6
393 	case CPU_CLASS_ARM6:
394 #endif
395 #ifdef CPU_ARM7
396 	case CPU_CLASS_ARM7:
397 #endif
398 #ifdef CPU_ARM7TDMI
399 	case CPU_CLASS_ARM7TDMI:
400 #endif
401 #ifdef CPU_ARM8
402 	case CPU_CLASS_ARM8:
403 #endif
404 #ifdef CPU_ARM9
405 	case CPU_CLASS_ARM9TDMI:
406 #endif
407 #ifdef CPU_SA110
408 	case CPU_CLASS_SA1:
409 #endif
410 #ifdef CPU_XSCALE
411 	case CPU_CLASS_XSCALE:
412 #endif
413 		break;
414 	default:
415 		if (cpu_classes[cpu->cpu_class].class_option != NULL)
416 			printf("%s: %s does not fully support this CPU."
417 			       "\n", dv->dv_xname, ostype);
418 		else {
419 			printf("%s: This kernel does not fully support "
420 			       "this CPU.\n", dv->dv_xname);
421 			printf("%s: Recompile with \"options %s\" to "
422 			       "correct this.\n", dv->dv_xname,
423 			       cpu_classes[cpu->cpu_class].class_option);
424 		}
425 		break;
426 	}
427 
428 }
429 
430 
431 /*
432  * Report the type of the specifed arm fpu. This uses the generic and arm
433  * specific information in the cpu structure to identify the fpu. The
434  * remaining fields in the cpu structure are filled in appropriately.
435  */
436 
437 void
438 identify_arm_fpu(dv, cpu_number)
439 	struct device *dv;
440 	int cpu_number;
441 {
442 	cpu_t *cpu;
443 
444 	cpu = &cpus[cpu_number];
445 
446 	/* Now for the FP info */
447 
448 	switch (cpu->fpu_class) {
449 	case FPU_CLASS_NONE :
450 		strcpy(cpu->fpu_model, "None");
451 		break;
452 	case FPU_CLASS_FPE :
453 		printf("%s: FPE: %s\n", dv->dv_xname, cpu->fpu_model);
454 		printf("%s: no FP hardware found\n", dv->dv_xname);
455 		break;
456 	case FPU_CLASS_FPA :
457 		printf("%s: FPE: %s\n", dv->dv_xname, cpu->fpu_model);
458 		if (cpu->fpu_type == FPU_TYPE_FPA11) {
459 			strcpy(cpu->fpu_model, "FPA11");
460 			printf("%s: FPA11 found\n", dv->dv_xname);
461 		} else {
462 			strcpy(cpu->fpu_model, "FPA");
463 			printf("%s: FPA10 found\n", dv->dv_xname);
464 		}
465 		if ((cpu->fpu_flags & 4) == 0)
466 			strcat(cpu->fpu_model, "");
467 		else
468 			strcat(cpu->fpu_model, " clk/2");
469 		break;
470 	case FPU_CLASS_FPU :
471 		sprintf(cpu->fpu_model, "Unknown FPU (ID=%02x)\n",
472 		    cpu->fpu_type);
473 		printf("%s: %s\n", dv->dv_xname, cpu->fpu_model);
474 		break;
475 	}
476 }
477 
478 /* End of cpu.c */
479