xref: /netbsd-src/sys/arch/arm/arm32/arm32_kvminit.c (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 /*	$NetBSD: arm32_kvminit.c,v 1.22 2013/08/29 15:46:17 riz Exp $	*/
2 
3 /*
4  * Copyright (c) 2002, 2003, 2005  Genetec Corporation.  All rights reserved.
5  * Written by Hiroyuki Bessho for Genetec Corporation.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of Genetec Corporation may not be used to endorse or
16  *    promote products derived from this software without specific prior
17  *    written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  *
31  * Copyright (c) 2001 Wasabi Systems, Inc.
32  * All rights reserved.
33  *
34  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. All advertising materials mentioning features or use of this software
45  *    must display the following acknowledgement:
46  *	This product includes software developed for the NetBSD Project by
47  *	Wasabi Systems, Inc.
48  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
49  *    or promote products derived from this software without specific prior
50  *    written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
54  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
55  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
56  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
57  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
58  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
59  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
60  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
61  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
62  * POSSIBILITY OF SUCH DAMAGE.
63  *
64  * Copyright (c) 1997,1998 Mark Brinicombe.
65  * Copyright (c) 1997,1998 Causality Limited.
66  * All rights reserved.
67  *
68  * Redistribution and use in source and binary forms, with or without
69  * modification, are permitted provided that the following conditions
70  * are met:
71  * 1. Redistributions of source code must retain the above copyright
72  *    notice, this list of conditions and the following disclaimer.
73  * 2. Redistributions in binary form must reproduce the above copyright
74  *    notice, this list of conditions and the following disclaimer in the
75  *    documentation and/or other materials provided with the distribution.
76  * 3. All advertising materials mentioning features or use of this software
77  *    must display the following acknowledgement:
78  *	This product includes software developed by Mark Brinicombe
79  *	for the NetBSD Project.
80  * 4. The name of the company nor the name of the author may be used to
81  *    endorse or promote products derived from this software without specific
82  *    prior written permission.
83  *
84  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
85  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
86  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
87  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
88  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
89  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
90  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
91  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
92  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
93  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
94  * SUCH DAMAGE.
95  *
96  * Copyright (c) 2007 Microsoft
97  * All rights reserved.
98  *
99  * Redistribution and use in source and binary forms, with or without
100  * modification, are permitted provided that the following conditions
101  * are met:
102  * 1. Redistributions of source code must retain the above copyright
103  *    notice, this list of conditions and the following disclaimer.
104  * 2. Redistributions in binary form must reproduce the above copyright
105  *    notice, this list of conditions and the following disclaimer in the
106  *    documentation and/or other materials provided with the distribution.
107  * 3. All advertising materials mentioning features or use of this software
108  *    must display the following acknowledgement:
109  *	This product includes software developed by Microsoft
110  *
111  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
112  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
113  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
114  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
115  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
116  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
117  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
118  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
119  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
120  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
121  * SUCH DAMAGE.
122  */
123 
124 #include <sys/cdefs.h>
125 __KERNEL_RCSID(0, "$NetBSD: arm32_kvminit.c,v 1.22 2013/08/29 15:46:17 riz Exp $");
126 
127 #include <sys/param.h>
128 #include <sys/device.h>
129 #include <sys/kernel.h>
130 #include <sys/reboot.h>
131 #include <sys/bus.h>
132 
133 #include <dev/cons.h>
134 
135 #include <uvm/uvm_extern.h>
136 
137 #include <arm/db_machdep.h>
138 #include <arm/undefined.h>
139 #include <arm/bootconfig.h>
140 #include <arm/arm32/machdep.h>
141 
142 #include "ksyms.h"
143 
144 struct bootmem_info bootmem_info;
145 
146 paddr_t msgbufphys;
147 paddr_t physical_start;
148 paddr_t physical_end;
149 
150 extern char etext[];
151 extern char __data_start[], _edata[];
152 extern char __bss_start[], __bss_end__[];
153 extern char _end[];
154 
155 /* Page tables for mapping kernel VM */
156 #define KERNEL_L2PT_VMDATA_NUM	8	/* start with 32MB of KVM */
157 
158 /*
159  * Macros to translate between physical and virtual for a subset of the
160  * kernel address space.  *Not* for general use.
161  */
162 #define KERN_VTOPHYS(bmi, va) \
163 	((paddr_t)((vaddr_t)(va) - KERNEL_BASE + (bmi)->bmi_start))
164 #define KERN_PHYSTOV(bmi, pa) \
165 	((vaddr_t)((paddr_t)(pa) - (bmi)->bmi_start + KERNEL_BASE))
166 
167 void
168 arm32_bootmem_init(paddr_t memstart, psize_t memsize, vsize_t kernelstart)
169 {
170 	struct bootmem_info * const bmi = &bootmem_info;
171 	pv_addr_t *pv = bmi->bmi_freeblocks;
172 
173 #ifdef VERBOSE_INIT_ARM
174 	printf("%s: memstart=%#lx, memsize=%#lx, kernelstart=%#lx\n",
175 	    __func__, memstart, memsize, kernelstart);
176 #endif
177 
178 	physical_start = bmi->bmi_start = memstart;
179 	physical_end = bmi->bmi_end = memstart + memsize;
180 	physmem = memsize / PAGE_SIZE;
181 
182 	/*
183 	 * Let's record where the kernel lives.
184 	 */
185 	bmi->bmi_kernelstart = kernelstart;
186 	bmi->bmi_kernelend = KERN_VTOPHYS(bmi, round_page((vaddr_t)_end));
187 
188 #ifdef VERBOSE_INIT_ARM
189 	printf("%s: kernelend=%#lx\n", __func__, bmi->bmi_kernelend);
190 #endif
191 
192 	/*
193 	 * Now the rest of the free memory must be after the kernel.
194 	 */
195 	pv->pv_pa = bmi->bmi_kernelend;
196 	pv->pv_va = KERN_PHYSTOV(bmi, pv->pv_pa);
197 	pv->pv_size = bmi->bmi_end - bmi->bmi_kernelend;
198 	bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
199 #ifdef VERBOSE_INIT_ARM
200 	printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
201 	    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
202 	    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
203 #endif
204 	pv++;
205 
206 	/*
207 	 * Add a free block for any memory before the kernel.
208 	 */
209 	if (bmi->bmi_start < bmi->bmi_kernelstart) {
210 		pv->pv_pa = bmi->bmi_start;
211 		pv->pv_va = KERNEL_BASE;
212 		pv->pv_size = bmi->bmi_kernelstart - bmi->bmi_start;
213 		bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
214 #ifdef VERBOSE_INIT_ARM
215 		printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
216 		    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
217 		    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
218 #endif
219 		pv++;
220 	}
221 
222 	bmi->bmi_nfreeblocks = pv - bmi->bmi_freeblocks;
223 
224 	SLIST_INIT(&bmi->bmi_freechunks);
225 	SLIST_INIT(&bmi->bmi_chunks);
226 }
227 
228 static bool
229 concat_pvaddr(pv_addr_t *acc_pv, pv_addr_t *pv)
230 {
231 	if (acc_pv->pv_pa + acc_pv->pv_size == pv->pv_pa
232 	    && acc_pv->pv_va + acc_pv->pv_size == pv->pv_va
233 	    && acc_pv->pv_prot == pv->pv_prot
234 	    && acc_pv->pv_cache == pv->pv_cache) {
235 #ifdef VERBOSE_INIT_ARMX
236 		printf("%s: appending pv %p (%#lx..%#lx) to %#lx..%#lx\n",
237 		    __func__, pv, pv->pv_pa, pv->pv_pa + pv->pv_size + 1,
238 		    acc_pv->pv_pa, acc_pv->pv_pa + acc_pv->pv_size + 1);
239 #endif
240 		acc_pv->pv_size += pv->pv_size;
241 		return true;
242 	}
243 
244 	return false;
245 }
246 
247 static void
248 add_pages(struct bootmem_info *bmi, pv_addr_t *pv)
249 {
250 	pv_addr_t **pvp = &SLIST_FIRST(&bmi->bmi_chunks);
251 	while ((*pvp) != NULL && (*pvp)->pv_va <= pv->pv_va) {
252 		pv_addr_t * const pv0 = (*pvp);
253 		KASSERT(SLIST_NEXT(pv0, pv_list) == NULL || pv0->pv_pa < SLIST_NEXT(pv0, pv_list)->pv_pa);
254 		if (concat_pvaddr(pv0, pv)) {
255 #ifdef VERBOSE_INIT_ARM
256 			printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
257 			    __func__, "appending", pv,
258 			    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
259 			    pv0->pv_pa, pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
260 #endif
261 			pv = SLIST_NEXT(pv0, pv_list);
262 			if (pv != NULL && concat_pvaddr(pv0, pv)) {
263 #ifdef VERBOSE_INIT_ARM
264 				printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
265 				    __func__, "merging", pv,
266 				    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
267 				    pv0->pv_pa,
268 				    pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
269 #endif
270 				SLIST_REMOVE_AFTER(pv0, pv_list);
271 				SLIST_INSERT_HEAD(&bmi->bmi_freechunks, pv, pv_list);
272 			}
273 			return;
274 		}
275 		KASSERT(pv->pv_va != (*pvp)->pv_va);
276 		pvp = &SLIST_NEXT(*pvp, pv_list);
277 	}
278 	KASSERT((*pvp) == NULL || pv->pv_va < (*pvp)->pv_va);
279 	pv_addr_t * const new_pv = SLIST_FIRST(&bmi->bmi_freechunks);
280 	KASSERT(new_pv != NULL);
281 	SLIST_REMOVE_HEAD(&bmi->bmi_freechunks, pv_list);
282 	*new_pv = *pv;
283 	SLIST_NEXT(new_pv, pv_list) = *pvp;
284 	(*pvp) = new_pv;
285 #ifdef VERBOSE_INIT_ARM
286 	printf("%s: adding pv %p (pa %#lx, va %#lx, %lu pages) ",
287 	    __func__, new_pv, new_pv->pv_pa, new_pv->pv_va,
288 	    new_pv->pv_size / PAGE_SIZE);
289 	if (SLIST_NEXT(new_pv, pv_list))
290 		printf("before pa %#lx\n", SLIST_NEXT(new_pv, pv_list)->pv_pa);
291 	else
292 		printf("at tail\n");
293 #endif
294 }
295 
296 static void
297 valloc_pages(struct bootmem_info *bmi, pv_addr_t *pv, size_t npages,
298 	int prot, int cache, bool zero_p)
299 {
300 	size_t nbytes = npages * PAGE_SIZE;
301 	pv_addr_t *free_pv = bmi->bmi_freeblocks;
302 	size_t free_idx = 0;
303 	static bool l1pt_found;
304 
305 	/*
306 	 * If we haven't allocated the kernel L1 page table and we are aligned
307 	 * at a L1 table boundary, alloc the memory for it.
308 	 */
309 	if (!l1pt_found
310 	    && (free_pv->pv_pa & (L1_TABLE_SIZE - 1)) == 0
311 	    && free_pv->pv_size >= L1_TABLE_SIZE) {
312 		l1pt_found = true;
313 		valloc_pages(bmi, &kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
314 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
315 		add_pages(bmi, &kernel_l1pt);
316 	}
317 
318 	while (nbytes > free_pv->pv_size) {
319 		free_pv++;
320 		free_idx++;
321 		if (free_idx == bmi->bmi_nfreeblocks) {
322 			panic("%s: could not allocate %zu bytes",
323 			    __func__, nbytes);
324 		}
325 	}
326 
327 	/*
328 	 * As we allocate the memory, make sure that we don't walk over
329 	 * our current first level translation table.
330 	 */
331 	KASSERT((armreg_ttbr_read() & ~(L1_TABLE_SIZE - 1)) != free_pv->pv_pa);
332 
333 	pv->pv_pa = free_pv->pv_pa;
334 	pv->pv_va = free_pv->pv_va;
335 	pv->pv_size = nbytes;
336 	pv->pv_prot = prot;
337 	pv->pv_cache = cache;
338 
339 	/*
340 	 * If PTE_PAGETABLE uses the same cache modes as PTE_CACHE
341 	 * just use PTE_CACHE.
342 	 */
343 	if (cache == PTE_PAGETABLE
344 	    && pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
345 	    && pte_l2_l_cache_mode == pte_l2_l_cache_mode_pt
346 	    && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
347 		pv->pv_cache = PTE_CACHE;
348 
349 	free_pv->pv_pa += nbytes;
350 	free_pv->pv_va += nbytes;
351 	free_pv->pv_size -= nbytes;
352 	if (free_pv->pv_size == 0) {
353 		--bmi->bmi_nfreeblocks;
354 		for (; free_idx < bmi->bmi_nfreeblocks; free_idx++) {
355 			free_pv[0] = free_pv[1];
356 		}
357 	}
358 
359 	bmi->bmi_freepages -= npages;
360 
361 	if (zero_p)
362 		memset((void *)pv->pv_va, 0, nbytes);
363 }
364 
365 void
366 arm32_kernel_vm_init(vaddr_t kernel_vm_base, vaddr_t vectors, vaddr_t iovbase,
367 	const struct pmap_devmap *devmap, bool mapallmem_p)
368 {
369 	struct bootmem_info * const bmi = &bootmem_info;
370 #ifdef MULTIPROCESSOR
371 	const size_t cpu_num = arm_cpu_max + 1;
372 #else
373 	const size_t cpu_num = 1;
374 #endif
375 #ifdef ARM_HAS_VBAR
376 	const bool map_vectors_p = false;
377 #elif defined(CPU_ARMV7) || defined(CPU_ARM11)
378 	const bool map_vectors_p = vectors == ARM_VECTORS_HIGH
379 	    || (armreg_pfr1_read() & ARM_PFR1_SEC_MASK) == 0;
380 #else
381 	const bool map_vectors_p = true;
382 #endif
383 
384 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
385 	KASSERT(mapallmem_p);
386 #endif
387 
388 	/*
389 	 * Calculate the number of L2 pages needed for mapping the
390 	 * kernel + data + stuff.  Assume 2 L2 pages for kernel, 1 for vectors,
391 	 * and 1 for IO
392 	 */
393 	size_t kernel_size = bmi->bmi_kernelend;
394 	kernel_size -= (bmi->bmi_kernelstart & -L2_S_SEGSIZE);
395 	kernel_size += L1_TABLE_SIZE;
396 	kernel_size += L2_TABLE_SIZE * (2 + 1 + KERNEL_L2PT_VMDATA_NUM + 1);
397 	kernel_size +=
398 	    cpu_num * (ABT_STACK_SIZE + FIQ_STACK_SIZE + IRQ_STACK_SIZE
399 	    + UND_STACK_SIZE + UPAGES) * PAGE_SIZE;
400 	kernel_size += round_page(MSGBUFSIZE);
401 	kernel_size += 0x10000;	/* slop */
402 	kernel_size += PAGE_SIZE * (kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
403 	kernel_size = round_page(kernel_size);
404 
405 	/*
406 	 * Now we know how many L2 pages it will take.
407 	 */
408 	const size_t KERNEL_L2PT_KERNEL_NUM =
409 	    (kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
410 
411 #ifdef VERBOSE_INIT_ARM
412 	printf("%s: %zu L2 pages are needed to map %#zx kernel bytes\n",
413 	    __func__, KERNEL_L2PT_KERNEL_NUM, kernel_size);
414 #endif
415 
416 	KASSERT(KERNEL_L2PT_KERNEL_NUM + KERNEL_L2PT_VMDATA_NUM < __arraycount(bmi->bmi_l2pts));
417 	pv_addr_t * const kernel_l2pt = bmi->bmi_l2pts;
418 	pv_addr_t * const vmdata_l2pt = kernel_l2pt + KERNEL_L2PT_KERNEL_NUM;
419 	pv_addr_t msgbuf;
420 	pv_addr_t text;
421 	pv_addr_t data;
422 	pv_addr_t chunks[KERNEL_L2PT_KERNEL_NUM+KERNEL_L2PT_VMDATA_NUM+11];
423 #if ARM_MMU_XSCALE == 1
424 	pv_addr_t minidataclean;
425 #endif
426 
427 	/*
428 	 * We need to allocate some fixed page tables to get the kernel going.
429 	 *
430 	 * We are going to allocate our bootstrap pages from the beginning of
431 	 * the free space that we just calculated.  We allocate one page
432 	 * directory and a number of page tables and store the physical
433 	 * addresses in the bmi_l2pts array in bootmem_info.
434 	 *
435 	 * The kernel page directory must be on a 16K boundary.  The page
436 	 * tables must be on 4K boundaries.  What we do is allocate the
437 	 * page directory on the first 16K boundary that we encounter, and
438 	 * the page tables on 4K boundaries otherwise.  Since we allocate
439 	 * at least 3 L2 page tables, we are guaranteed to encounter at
440 	 * least one 16K aligned region.
441 	 */
442 
443 #ifdef VERBOSE_INIT_ARM
444 	printf("%s: allocating page tables for", __func__);
445 #endif
446 	for (size_t i = 0; i < __arraycount(chunks); i++) {
447 		SLIST_INSERT_HEAD(&bmi->bmi_freechunks, &chunks[i], pv_list);
448 	}
449 
450 	kernel_l1pt.pv_pa = 0;
451 	kernel_l1pt.pv_va = 0;
452 
453 	/*
454 	 * Allocate the L2 pages, but if we get to a page that is aligned for
455 	 * an L1 page table, we will allocate the pages for it first and then
456 	 * allocate the L2 page.
457 	 */
458 
459 	if (map_vectors_p) {
460 		/*
461 		 * First allocate L2 page for the vectors.
462 		 */
463 #ifdef VERBOSE_INIT_ARM
464 		printf(" vector");
465 #endif
466 		valloc_pages(bmi, &bmi->bmi_vector_l2pt,
467 		    L2_TABLE_SIZE / PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE,
468 		    PTE_PAGETABLE, true);
469 		add_pages(bmi, &bmi->bmi_vector_l2pt);
470 	}
471 
472 	/*
473 	 * Now allocate L2 pages for the kernel
474 	 */
475 #ifdef VERBOSE_INIT_ARM
476 	printf(" kernel");
477 #endif
478 	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; ++idx) {
479 		valloc_pages(bmi, &kernel_l2pt[idx], L2_TABLE_SIZE / PAGE_SIZE,
480 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
481 		add_pages(bmi, &kernel_l2pt[idx]);
482 	}
483 
484 	/*
485 	 * Now allocate L2 pages for the initial kernel VA space.
486 	 */
487 #ifdef VERBOSE_INIT_ARM
488 	printf(" vm");
489 #endif
490 	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; ++idx) {
491 		valloc_pages(bmi, &vmdata_l2pt[idx], L2_TABLE_SIZE / PAGE_SIZE,
492 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
493 		add_pages(bmi, &vmdata_l2pt[idx]);
494 	}
495 
496 	/*
497 	 * If someone wanted a L2 page for I/O, allocate it now.
498 	 */
499 	if (iovbase != 0) {
500 #ifdef VERBOSE_INIT_ARM
501 		printf(" io");
502 #endif
503 		valloc_pages(bmi, &bmi->bmi_io_l2pt, L2_TABLE_SIZE / PAGE_SIZE,
504 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
505 		add_pages(bmi, &bmi->bmi_io_l2pt);
506 	}
507 
508 #ifdef VERBOSE_INIT_ARM
509 	printf("%s: allocating stacks\n", __func__);
510 #endif
511 
512 	/* Allocate stacks for all modes and CPUs */
513 	valloc_pages(bmi, &abtstack, ABT_STACK_SIZE * cpu_num,
514 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
515 	add_pages(bmi, &abtstack);
516 	valloc_pages(bmi, &fiqstack, FIQ_STACK_SIZE * cpu_num,
517 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
518 	add_pages(bmi, &fiqstack);
519 	valloc_pages(bmi, &irqstack, IRQ_STACK_SIZE * cpu_num,
520 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
521 	add_pages(bmi, &irqstack);
522 	valloc_pages(bmi, &undstack, UND_STACK_SIZE * cpu_num,
523 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
524 	add_pages(bmi, &undstack);
525 	valloc_pages(bmi, &idlestack, UPAGES * cpu_num,		/* SVC32 */
526 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
527 	add_pages(bmi, &idlestack);
528 	valloc_pages(bmi, &kernelstack, UPAGES,			/* SVC32 */
529 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
530 	add_pages(bmi, &kernelstack);
531 
532 	/* Allocate the message buffer from the end of memory. */
533 	const size_t msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
534 	valloc_pages(bmi, &msgbuf, msgbuf_pgs,
535 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, false);
536 	add_pages(bmi, &msgbuf);
537 	msgbufphys = msgbuf.pv_pa;
538 
539 	if (map_vectors_p) {
540 		/*
541 		 * Allocate a page for the system vector page.
542 		 * This page will just contain the system vectors and can be
543 		 * shared by all processes.
544 		 */
545 		valloc_pages(bmi, &systempage, 1, VM_PROT_READ|VM_PROT_WRITE,
546 		    PTE_CACHE, true);
547 	}
548 	systempage.pv_va = vectors;
549 
550 	/*
551 	 * If the caller needed a few extra pages for some reason, allocate
552 	 * them now.
553 	 */
554 #if ARM_MMU_XSCALE == 1
555 #if (ARM_NMMUS > 1)
556 	if (xscale_use_minidata)
557 #endif
558 		valloc_pages(bmi, extrapv, nextrapages,
559 		    VM_PROT_READ|VM_PROT_WRITE, 0, true);
560 #endif
561 
562 	/*
563 	 * Ok we have allocated physical pages for the primary kernel
564 	 * page tables and stacks.  Let's just confirm that.
565 	 */
566 	if (kernel_l1pt.pv_va == 0
567 	    && (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0))
568 		panic("%s: Failed to allocate or align the kernel "
569 		    "page directory", __func__);
570 
571 
572 #ifdef VERBOSE_INIT_ARM
573 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
574 #endif
575 
576 	/*
577 	 * Now we start construction of the L1 page table
578 	 * We start by mapping the L2 page tables into the L1.
579 	 * This means that we can replace L1 mappings later on if necessary
580 	 */
581 	vaddr_t l1pt_va = kernel_l1pt.pv_va;
582 	paddr_t l1pt_pa = kernel_l1pt.pv_pa;
583 
584 	if (map_vectors_p) {
585 		/* Map the L2 pages tables in the L1 page table */
586 		pmap_link_l2pt(l1pt_va, systempage.pv_va & -L2_S_SEGSIZE,
587 		    &bmi->bmi_vector_l2pt);
588 #ifdef VERBOSE_INIT_ARM
589 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) "
590 		    "for VA %#lx\n (vectors)",
591 		    __func__, bmi->bmi_vector_l2pt.pv_va,
592 		    bmi->bmi_vector_l2pt.pv_pa, systempage.pv_va);
593 #endif
594 	}
595 
596 	const vaddr_t kernel_base =
597 	    KERN_PHYSTOV(bmi, bmi->bmi_kernelstart & -L2_S_SEGSIZE);
598 	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; idx++) {
599 		pmap_link_l2pt(l1pt_va, kernel_base + idx * L2_S_SEGSIZE,
600 		    &kernel_l2pt[idx]);
601 #ifdef VERBOSE_INIT_ARM
602 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (kernel)\n",
603 		    __func__, kernel_l2pt[idx].pv_va, kernel_l2pt[idx].pv_pa,
604 		    kernel_base + idx * L2_S_SEGSIZE);
605 #endif
606 	}
607 
608 	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; idx++) {
609 		pmap_link_l2pt(l1pt_va, kernel_vm_base + idx * L2_S_SEGSIZE,
610 		    &vmdata_l2pt[idx]);
611 #ifdef VERBOSE_INIT_ARM
612 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (vm)\n",
613 		    __func__, vmdata_l2pt[idx].pv_va, vmdata_l2pt[idx].pv_pa,
614 		    kernel_vm_base + idx * L2_S_SEGSIZE);
615 #endif
616 	}
617 	if (iovbase) {
618 		pmap_link_l2pt(l1pt_va, iovbase & -L2_S_SEGSIZE, &bmi->bmi_io_l2pt);
619 #ifdef VERBOSE_INIT_ARM
620 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (io)\n",
621 		    __func__, bmi->bmi_io_l2pt.pv_va, bmi->bmi_io_l2pt.pv_pa,
622 		    iovbase & -L2_S_SEGSIZE);
623 #endif
624 	}
625 
626 	/* update the top of the kernel VM */
627 	pmap_curmaxkvaddr =
628 	    kernel_vm_base + (KERNEL_L2PT_VMDATA_NUM * L2_S_SEGSIZE);
629 
630 #ifdef VERBOSE_INIT_ARM
631 	printf("Mapping kernel\n");
632 #endif
633 
634 	extern char etext[], _end[];
635 	size_t totalsize = bmi->bmi_kernelend - bmi->bmi_kernelstart;
636 	size_t textsize = KERN_VTOPHYS(bmi, (uintptr_t)etext) - bmi->bmi_kernelstart;
637 
638 	textsize = (textsize + PGOFSET) & ~PGOFSET;
639 
640 	/* start at offset of kernel in RAM */
641 
642 	text.pv_pa = bmi->bmi_kernelstart;
643 	text.pv_va = KERN_PHYSTOV(bmi, bmi->bmi_kernelstart);
644 	text.pv_size = textsize;
645 	text.pv_prot = VM_PROT_READ|VM_PROT_WRITE; /* XXX VM_PROT_EXECUTE */
646 	text.pv_cache = PTE_CACHE;
647 
648 #ifdef VERBOSE_INIT_ARM
649 	printf("%s: adding chunk for kernel text %#lx..%#lx (VA %#lx)\n",
650 	    __func__, text.pv_pa, text.pv_pa + text.pv_size - 1, text.pv_va);
651 #endif
652 
653 	add_pages(bmi, &text);
654 
655 	data.pv_pa = text.pv_pa + textsize;
656 	data.pv_va = text.pv_va + textsize;
657 	data.pv_size = totalsize - textsize;
658 	data.pv_prot = VM_PROT_READ|VM_PROT_WRITE;
659 	data.pv_cache = PTE_CACHE;
660 
661 #ifdef VERBOSE_INIT_ARM
662 	printf("%s: adding chunk for kernel data/bss %#lx..%#lx (VA %#lx)\n",
663 	    __func__, data.pv_pa, data.pv_pa + data.pv_size - 1, data.pv_va);
664 #endif
665 
666 	add_pages(bmi, &data);
667 
668 #ifdef VERBOSE_INIT_ARM
669 	printf("Listing Chunks\n");
670 	{
671 		pv_addr_t *pv;
672 		SLIST_FOREACH(pv, &bmi->bmi_chunks, pv_list) {
673 			printf("%s: pv %p: chunk VA %#lx..%#lx "
674 			    "(PA %#lx, prot %d, cache %d)\n",
675 			    __func__, pv, pv->pv_va, pv->pv_va + pv->pv_size - 1,
676 			    pv->pv_pa, pv->pv_prot, pv->pv_cache);
677 		}
678 	}
679 	printf("\nMapping Chunks\n");
680 #endif
681 
682 	pv_addr_t cur_pv;
683 	pv_addr_t *pv = SLIST_FIRST(&bmi->bmi_chunks);
684 	if (!mapallmem_p || pv->pv_pa == bmi->bmi_start) {
685 		cur_pv = *pv;
686 		pv = SLIST_NEXT(pv, pv_list);
687 	} else {
688 		cur_pv.pv_va = KERNEL_BASE;
689 		cur_pv.pv_pa = bmi->bmi_start;
690 		cur_pv.pv_size = pv->pv_pa - bmi->bmi_start;
691 		cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
692 		cur_pv.pv_cache = PTE_CACHE;
693 	}
694 	while (pv != NULL) {
695 		if (mapallmem_p) {
696 			if (concat_pvaddr(&cur_pv, pv)) {
697 				pv = SLIST_NEXT(pv, pv_list);
698 				continue;
699 			}
700 			if (cur_pv.pv_pa + cur_pv.pv_size < pv->pv_pa) {
701 				/*
702 				 * See if we can extend the current pv to emcompass the
703 				 * hole, and if so do it and retry the concatenation.
704 				 */
705 				if (cur_pv.pv_prot == (VM_PROT_READ|VM_PROT_WRITE)
706 				    && cur_pv.pv_cache == PTE_CACHE) {
707 					cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
708 					continue;
709 				}
710 
711 				/*
712 				 * We couldn't so emit the current chunk and then
713 				 */
714 #ifdef VERBOSE_INIT_ARM
715 				printf("%s: mapping chunk VA %#lx..%#lx "
716 				    "(PA %#lx, prot %d, cache %d)\n",
717 				    __func__,
718 				    cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
719 				    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
720 #endif
721 				pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
722 				    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
723 
724 				/*
725 				 * set the current chunk to the hole and try again.
726 				 */
727 				cur_pv.pv_pa += cur_pv.pv_size;
728 				cur_pv.pv_va += cur_pv.pv_size;
729 				cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
730 				cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
731 				cur_pv.pv_cache = PTE_CACHE;
732 				continue;
733 			}
734 		}
735 
736 		/*
737 		 * The new pv didn't concatenate so emit the current one
738 		 * and use the new pv as the current pv.
739 		 */
740 #ifdef VERBOSE_INIT_ARM
741 		printf("%s: mapping chunk VA %#lx..%#lx "
742 		    "(PA %#lx, prot %d, cache %d)\n",
743 		    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
744 		    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
745 #endif
746 		pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
747 		    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
748 		cur_pv = *pv;
749 		pv = SLIST_NEXT(pv, pv_list);
750 	}
751 
752 	/*
753 	 * If we are mapping all of memory, let's map the rest of memory.
754 	 */
755 	if (mapallmem_p && cur_pv.pv_pa + cur_pv.pv_size < bmi->bmi_end) {
756 		if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
757 		    && cur_pv.pv_cache == PTE_CACHE) {
758 			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
759 		} else {
760 #ifdef VERBOSE_INIT_ARM
761 			printf("%s: mapping chunk VA %#lx..%#lx "
762 			    "(PA %#lx, prot %d, cache %d)\n",
763 			    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
764 			    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
765 #endif
766 			pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
767 			    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
768 			cur_pv.pv_pa += cur_pv.pv_size;
769 			cur_pv.pv_va += cur_pv.pv_size;
770 			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
771 			cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
772 			cur_pv.pv_cache = PTE_CACHE;
773 		}
774 	}
775 
776 	/*
777 	 * Now we map the final chunk.
778 	 */
779 #ifdef VERBOSE_INIT_ARM
780 	printf("%s: mapping last chunk VA %#lx..%#lx (PA %#lx, prot %d, cache %d)\n",
781 	    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
782 	    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
783 #endif
784 	pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
785 	    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
786 
787 	/*
788 	 * Now we map the stuff that isn't directly after the kernel
789 	 */
790 
791 	if (map_vectors_p) {
792 		/* Map the vector page. */
793 		pmap_map_entry(l1pt_va, systempage.pv_va, systempage.pv_pa,
794 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
795 	}
796 
797 	/* Map the Mini-Data cache clean area. */
798 #if ARM_MMU_XSCALE == 1
799 #if (ARM_NMMUS > 1)
800 	if (xscale_use_minidata)
801 #endif
802 		xscale_setup_minidata(l1_va, minidataclean.pv_va,
803 		    minidataclean.pv_pa);
804 #endif
805 
806 	/*
807 	 * Map integrated peripherals at same address in first level page
808 	 * table so that we can continue to use console.
809 	 */
810 	if (devmap)
811 		pmap_devmap_bootstrap(l1pt_va, devmap);
812 
813 #ifdef VERBOSE_INIT_ARM
814 	/* Tell the user about where all the bits and pieces live. */
815 	printf("%22s       Physical              Virtual        Num\n", " ");
816 	printf("%22s Starting    Ending    Starting    Ending   Pages\n", " ");
817 
818 	static const char mem_fmt[] =
819 	    "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %u\n";
820 	static const char mem_fmt_nov[] =
821 	    "%20s: 0x%08lx 0x%08lx                       %zu\n";
822 
823 	printf(mem_fmt, "SDRAM", bmi->bmi_start, bmi->bmi_end - 1,
824 	    KERN_PHYSTOV(bmi, bmi->bmi_start), KERN_PHYSTOV(bmi, bmi->bmi_end - 1),
825 	    physmem);
826 	printf(mem_fmt, "text section",
827 	       text.pv_pa, text.pv_pa + text.pv_size - 1,
828 	       text.pv_va, text.pv_va + text.pv_size - 1,
829 	       (int)(text.pv_size / PAGE_SIZE));
830 	printf(mem_fmt, "data section",
831 	       KERN_VTOPHYS(bmi, __data_start), KERN_VTOPHYS(bmi, _edata),
832 	       (vaddr_t)__data_start, (vaddr_t)_edata,
833 	       (int)((round_page((vaddr_t)_edata)
834 		      - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
835 	printf(mem_fmt, "bss section",
836 	       KERN_VTOPHYS(bmi, __bss_start), KERN_VTOPHYS(bmi, __bss_end__),
837 	       (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
838 	       (int)((round_page((vaddr_t)__bss_end__)
839 		      - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
840 	printf(mem_fmt, "L1 page directory",
841 	    kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
842 	    kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
843 	    L1_TABLE_SIZE / PAGE_SIZE);
844 	printf(mem_fmt, "ABT stack (CPU 0)",
845 	    abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
846 	    abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
847 	    ABT_STACK_SIZE);
848 	printf(mem_fmt, "FIQ stack (CPU 0)",
849 	    fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
850 	    fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
851 	    FIQ_STACK_SIZE);
852 	printf(mem_fmt, "IRQ stack (CPU 0)",
853 	    irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
854 	    irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
855 	    IRQ_STACK_SIZE);
856 	printf(mem_fmt, "UND stack (CPU 0)",
857 	    undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
858 	    undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
859 	    UND_STACK_SIZE);
860 	printf(mem_fmt, "IDLE stack (CPU 0)",
861 	    idlestack.pv_pa, idlestack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
862 	    idlestack.pv_va, idlestack.pv_va + (UPAGES * PAGE_SIZE) - 1,
863 	    UPAGES);
864 	printf(mem_fmt, "SVC stack",
865 	    kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
866 	    kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
867 	    UPAGES);
868 	printf(mem_fmt, "Message Buffer",
869 	    msgbuf.pv_pa, msgbuf.pv_pa + (msgbuf_pgs * PAGE_SIZE) - 1,
870 	    msgbuf.pv_va, msgbuf.pv_va + (msgbuf_pgs * PAGE_SIZE) - 1,
871 	    (int)msgbuf_pgs);
872 	if (map_vectors_p) {
873 		printf(mem_fmt, "Exception Vectors",
874 		    systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
875 		    systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
876 		    1);
877 	}
878 	for (size_t i = 0; i < bmi->bmi_nfreeblocks; i++) {
879 		pv = &bmi->bmi_freeblocks[i];
880 
881 		printf(mem_fmt_nov, "Free Memory",
882 		    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
883 		    pv->pv_size / PAGE_SIZE);
884 	}
885 #endif
886 	/*
887 	 * Now we have the real page tables in place so we can switch to them.
888 	 * Once this is done we will be running with the REAL kernel page
889 	 * tables.
890 	 */
891 
892 #if defined(VERBOSE_INIT_ARM) && 0
893 	printf("TTBR0=%#x", armreg_ttbr_read());
894 #ifdef _ARM_ARCH_6
895 	printf(" TTBR1=%#x TTBCR=%#x",
896 	    armreg_ttbr1_read(), armreg_ttbcr_read());
897 #endif
898 	printf("\n");
899 #endif
900 
901 	/* Switch tables */
902 #ifdef VERBOSE_INIT_ARM
903 	printf("switching to new L1 page table @%#lx...", l1pt_pa);
904 #endif
905 
906 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
907 	cpu_idcache_wbinv_all();
908 #ifdef ARM_MMU_EXTENDED
909 	cpu_setttb(l1pt_pa, KERNEL_PID);
910 #else
911 	cpu_setttb(l1pt_pa, true);
912 #endif
913 	cpu_tlb_flushID();
914 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
915 
916 #ifdef VERBOSE_INIT_ARM
917 	printf("TTBR0=%#x OK\n", armreg_ttbr_read());
918 #endif
919 }
920