1 /* $NetBSD: grf_rt.c,v 1.54 2009/10/26 19:16:54 cegger Exp $ */ 2 3 /* 4 * Copyright (c) 1993 Markus Wild 5 * Copyright (c) 1993 Lutz Vieweg 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by Lutz Vieweg. 19 * 4. The name of the author may not be used to endorse or promote products 20 * derived from this software without specific prior written permission 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 #include "opt_amigacons.h" 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: grf_rt.c,v 1.54 2009/10/26 19:16:54 cegger Exp $"); 37 38 #include "grfrt.h" 39 #if NGRFRT > 0 40 41 /* Graphics routines for the Retina board, 42 using the NCR 77C22E+ VGA controller. */ 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/errno.h> 47 #include <sys/ioctl.h> 48 #include <sys/device.h> 49 #include <machine/cpu.h> 50 #include <amiga/amiga/device.h> 51 #include <amiga/dev/zbusvar.h> 52 #include <amiga/dev/grfioctl.h> 53 #include <amiga/dev/grfvar.h> 54 #include <amiga/dev/grf_rtreg.h> 55 56 int rt_ioctl(struct grf_softc *gp, u_long, void *); 57 58 /* 59 * marked true early so that retina_cnprobe() can tell if we are alive. 60 */ 61 int retina_inited; 62 63 64 /* 65 * This driver for the MacroSystem Retina board was only possible, 66 * because MacroSystem provided information about the pecularities 67 * of the board. THANKS! Competition in Europe among gfx board 68 * manufacturers is rather tough, so Lutz Vieweg, who wrote the 69 * initial driver, has made an agreement with MS not to document 70 * the driver source (see also his comment below). 71 * -> ALL comments after 72 * -> " -------------- START OF CODE -------------- " 73 * -> have been added by myself (mw) from studying the publically 74 * -> available "NCR 77C22E+" Data Manual 75 */ 76 /* 77 * This code offers low-level routines to access the Retina graphics-board 78 * manufactured by MS MacroSystem GmbH from within NetBSD for the Amiga. 79 * 80 * Thanks to MacroSystem for providing me with the necessary information 81 * to create theese routines. The sparse documentation of this code 82 * results from the agreements between MS and me. 83 */ 84 85 extern unsigned char kernel_font_8x8_width, kernel_font_8x8_height; 86 extern unsigned char kernel_font_8x8_lo, kernel_font_8x8_hi; 87 extern unsigned char kernel_font_8x8[]; 88 89 90 #define MDF_DBL 1 91 #define MDF_LACE 2 92 #define MDF_CLKDIV2 4 93 94 95 /* standard-palette definition */ 96 97 unsigned char NCRStdPalette[16*3] = { 98 /* R G B */ 99 0, 0, 0, 100 192,192,192, 101 128, 0, 0, 102 0,128, 0, 103 0, 0,128, 104 128,128, 0, 105 0,128,128, 106 128, 0,128, 107 64, 64, 64, /* the higher 8 colors have more intensity for */ 108 255,255,255, /* compatibility with standard attributes */ 109 255, 0, 0, 110 0,255, 0, 111 0, 0,255, 112 255,255, 0, 113 0,255,255, 114 255, 0,255 115 }; 116 117 118 /* The following structures are examples for monitor-definitions. To make one 119 of your own, first use "DefineMonitor" and create the 8-bit monitor-mode of 120 your dreams. Then save it, and make a structure from the values provided in 121 the file DefineMonitor stored - the labels in the comment above the 122 structure definition show where to put what value. 123 124 Then you'll need to adapt your monitor-definition to the font you want to 125 use. Be FX the width of the font, then the following modifications have to 126 be applied to your values: 127 128 HBS = (HBS * 4) / FX 129 HSS = (HSS * 4) / FX 130 HSE = (HSE * 4) / FX 131 HBE = (HBE * 4) / FX 132 HT = (HT * 4) / FX 133 134 Make sure your maximum width (MW) and height (MH) are even multiples of 135 the fonts' width and height. 136 */ 137 138 #if 0 139 /* horizontal 31.5 kHz */ 140 141 /* FQ FLG MW MH HBS HSS HSE HBE HT VBS VSS VSE VBE VT */ 142 struct MonDef MON_640_512_60 = { 50000000, 28, 640, 512, 81, 86, 93, 98, 95, 513, 513, 521, 535, 535, 143 /* Depth, PAL, TX, TY, XY,FontX, FontY, FontData, FLo, Fhi */ 144 4, NCRStdPalette, 80, 64, 5120, 8, 8, kernel_font_8x8, 32, 255}; 145 146 struct MonDef MON_640_480_62_G = { 50000000, 4, 640, 480, 161,171,184,196,195, 481, 484, 492, 502, 502, 147 8, NCRStdPalette,640,480, 5120, 8, 8, kernel_font_8x8, 32, 255}; 148 /* Enter higher values here ^ ^ for panning! */ 149 150 /* horizontal 38kHz */ 151 152 struct MonDef MON_768_600_60 = { 75000000, 28, 768, 600, 97, 99,107,120,117, 601, 615, 625, 638, 638, 153 4, NCRStdPalette, 96, 75, 7200, 8, 8, kernel_font_8x8, 32, 255}; 154 155 /* horizontal 64kHz */ 156 157 struct MonDef MON_768_600_80 = { 50000000, 24, 768, 600, 97,104,112,122,119, 601, 606, 616, 628, 628, 158 4, NCRStdPalette, 96, 75, 7200, 8, 8, kernel_font_8x8, 32, 255}; 159 160 struct MonDef MON_1024_768_80 = { 90000000, 24, 1024, 768, 129,130,141,172,169, 769, 770, 783, 804, 804, 161 4, NCRStdPalette,128, 96, 12288, 8, 8, kernel_font_8x8, 32, 255}; 162 163 /* FQ FLG MW MH HBS HSS HSE HBE HT VBS VSS VSE VBE VT */ 164 struct MonDef MON_1024_768_80_G = { 90000000, 0, 1024, 768, 257,258,280,344,343, 769, 770, 783, 804, 804, 165 8, NCRStdPalette, 1024, 768, 12288, 8, 8, kernel_font_8x8, 32, 255}; 166 167 struct MonDef MON_1024_1024_59= { 90000000, 24, 1024,1024, 129,130,141,173,170,1025,1059,1076,1087,1087, 168 4, NCRStdPalette,128, 128, 16384, 8, 8, kernel_font_8x8, 32, 255}; 169 170 /* WARNING: THE FOLLOWING MONITOR MODES EXCEED THE 90-MHz LIMIT THE PROCESSOR 171 HAS BEEN SPECIFIED FOR. USE AT YOUR OWN RISK (AND THINK ABOUT 172 MOUNTING SOME COOLING DEVICE AT THE PROCESSOR AND RAMDAC)! */ 173 174 struct MonDef MON_1280_1024_60= {110000000, 24, 1280,1024, 161,162,176,211,208,1025,1026,1043,1073,1073, 175 4, NCRStdPalette,160, 128, 20480, 8, 8, kernel_font_8x8, 32, 255}; 176 177 struct MonDef MON_1280_1024_60_G= {110000000, 0, 1280,1024, 321,322,349,422,421,1025,1026,1043,1073,1073, 178 8, NCRStdPalette,1280,1024, 20480, 8, 8, kernel_font_8x8, 32, 255}; 179 180 /* horizontal 75kHz */ 181 182 struct MonDef MON_1280_1024_69= {120000000, 24, 1280,1024, 161,162,175,200,197,1025,1026,1043,1073,1073, 183 4, NCRStdPalette,160, 128, 20480, 8, 8, kernel_font_8x8, 32, 255}; 184 185 #else 186 187 struct MonDef monitor_defs[] = { 188 /* horizontal 31.5 kHz */ 189 190 { 50000000, 28, 640, 512, 81, 86, 93, 98, 95, 513, 513, 521, 535, 535, 191 4, NCRStdPalette, 80, 64, 5120, 8, 8, kernel_font_8x8, 32, 255}, 192 193 /* horizontal 38kHz */ 194 195 { 75000000, 28, 768, 600, 97, 99,107,120,117, 601, 615, 625, 638, 638, 196 4, NCRStdPalette, 96, 75, 7200, 8, 8, kernel_font_8x8, 32, 255}, 197 198 /* horizontal 64kHz */ 199 200 { 50000000, 24, 768, 600, 97,104,112,122,119, 601, 606, 616, 628, 628, 201 4, NCRStdPalette, 96, 75, 7200, 8, 8, kernel_font_8x8, 32, 255}, 202 203 { 90000000, 24, 1024, 768, 129,130,141,172,169, 769, 770, 783, 804, 804, 204 4, NCRStdPalette,128, 96, 12288, 8, 8, kernel_font_8x8, 32, 255}, 205 206 /* GFX modes */ 207 208 /* horizontal 31.5 kHz */ 209 210 { 50000000, 4, 640, 480, 161,171,184,196,195, 481, 484, 492, 502, 502, 211 8, NCRStdPalette,640, 480, 5120, 8, 8, kernel_font_8x8, 32, 255}, 212 213 /* horizontal 64kHz */ 214 215 { 90000000, 0, 1024, 768, 257,258,280,344,343, 769, 770, 783, 804, 804, 216 8, NCRStdPalette, 1024, 768, 12288, 8, 8, kernel_font_8x8, 32, 255}, 217 218 /* WARNING: THE FOLLOWING MONITOR MODES EXCEED THE 90-MHz LIMIT THE PROCESSOR 219 HAS BEEN SPECIFIED FOR. USE AT YOUR OWN RISK (AND THINK ABOUT 220 MOUNTING SOME COOLING DEVICE AT THE PROCESSOR AND RAMDAC)! */ 221 222 {110000000, 0, 1280,1024, 321,322,349,422,421,1025,1026,1043,1073,1073, 223 8, NCRStdPalette,1280,1024, 20480, 8, 8, kernel_font_8x8, 32, 255}, 224 }; 225 226 static const char *monitor_descr[] = { 227 "80x64 (640x512) 31.5kHz", 228 "96x75 (768x600) 38kHz", 229 "96x75 (768x600) 64kHz", 230 "128x96 (1024x768) 64kHz", 231 232 "GFX (640x480) 31.5kHz", 233 "GFX (1024x768) 64kHz", 234 "GFX (1280x1024) 64kHz ***EXCEEDS CHIP LIMIT!!!***", 235 }; 236 237 int retina_mon_max = sizeof (monitor_defs)/sizeof (monitor_defs[0]); 238 239 /* patchable */ 240 int retina_default_mon = 0; 241 int retina_default_gfx = 4; 242 243 #endif 244 245 246 static struct MonDef *current_mon; 247 248 /* -------------- START OF CODE -------------- */ 249 250 251 static const long FQTab[16] = 252 { 25175000, 28322000, 36000000, 65000000, 253 44900000, 50000000, 80000000, 75000000, 254 56644000, 63000000, 72000000, 130000000, 255 90000000, 100000000, 110000000, 120000000 }; 256 257 258 /*--------------------------------------------------*/ 259 /*--------------------------------------------------*/ 260 261 #if 0 262 static struct MonDef *default_monitor = &DEFAULT_MONDEF; 263 #endif 264 265 int retina_alive(struct MonDef *); 266 static int rt_load_mon(struct grf_softc *, struct MonDef *); 267 268 269 /* 270 * used to query the retina to see if its alive (?) 271 */ 272 int 273 retina_alive(struct MonDef *mdp) 274 { 275 short clksel; 276 277 for (clksel = 15; clksel; clksel--) { 278 if (FQTab[clksel] == mdp->FQ) 279 break; 280 } 281 if (clksel < 0) 282 return(0); 283 if (mdp->DEP != 4) 284 return(1); 285 if (mdp->FX == 4 || (mdp->FX >= 7 && mdp->FX <= 16)) 286 return(1); 287 return(0); 288 } 289 290 static int 291 rt_load_mon(struct grf_softc *gp, struct MonDef *md) 292 { 293 struct grfinfo *gi = &gp->g_display; 294 volatile void *ba; 295 volatile char *fb; 296 short FW, clksel, HDE, VDE; 297 298 for (clksel = 15; clksel; clksel--) { 299 if (FQTab[clksel] == md->FQ) break; 300 } 301 if (clksel < 0) 302 return(0); 303 304 ba = gp->g_regkva; 305 fb = (volatile char*)gp->g_fbkva; 306 307 FW = 0; 308 if (md->DEP == 4) { 309 switch (md->FX) { 310 case 4: 311 FW = 0; 312 break; 313 case 7: 314 FW = 1; 315 break; 316 case 8: 317 FW = 2; 318 break; 319 case 9: 320 FW = 3; 321 break; 322 case 10: 323 FW = 4; 324 break; 325 case 11: 326 FW = 5; 327 break; 328 case 12: 329 FW = 6; 330 break; 331 case 13: 332 FW = 7; 333 break; 334 case 14: 335 FW = 8; 336 break; 337 case 15: 338 FW = 9; 339 break; 340 case 16: 341 FW = 11; 342 break; 343 default: 344 return(0); 345 break; 346 }; 347 } 348 349 if (md->DEP == 4) HDE = (md->MW+md->FX-1)/md->FX; 350 else HDE = (md->MW+3)/4; 351 VDE = md->MH-1; 352 353 /* hmm... */ 354 fb[0x8000] = 0; 355 356 /* enable extension registers */ 357 WSeq (ba, SEQ_ID_EXTENDED_ENABLE, 0x05); 358 359 #if 0 360 /* program the clock oscillator */ 361 vgaw (ba, GREG_MISC_OUTPUT_W, 0xe3 | ((clksel & 3) * 0x04)); 362 vgaw (ba, GREG_FEATURE_CONTROL_W, 0x00); 363 364 /* XXXX according to the NCR specs, this register should be set to 1 365 XXXX before doing the MISC_OUTPUT setting and CLOCKING_MODE 366 XXXX setting. */ 367 WSeq (ba, SEQ_ID_RESET, 0x03); 368 369 WSeq (ba, SEQ_ID_CLOCKING_MODE, 0x01 | ((md->FLG & MDF_CLKDIV2)/ MDF_CLKDIV2 * 8)); 370 WSeq (ba, SEQ_ID_MAP_MASK, 0x0f); 371 WSeq (ba, SEQ_ID_CHAR_MAP_SELECT, 0x00); 372 /* odd/even write select + extended memory */ 373 WSeq (ba, SEQ_ID_MEMORY_MODE, 0x06); 374 /* XXXX I think this order of setting RESET is wrong... */ 375 WSeq (ba, SEQ_ID_RESET, 0x01); 376 WSeq (ba, SEQ_ID_RESET, 0x03); 377 #else 378 WSeq (ba, SEQ_ID_RESET, 0x01); 379 380 /* set font width + rest of clocks */ 381 WSeq (ba, SEQ_ID_EXT_CLOCK_MODE, 0x30 | (FW & 0x0f) | ((clksel & 4) / 4 * 0x40) ); 382 /* another clock bit, plus hw stuff */ 383 WSeq (ba, SEQ_ID_MISC_FEATURE_SEL, 0xf4 | (clksel & 8) ); 384 385 /* program the clock oscillator */ 386 vgaw (ba, GREG_MISC_OUTPUT_W, 0xe3 | ((clksel & 3) * 0x04)); 387 vgaw (ba, GREG_FEATURE_CONTROL_W, 0x00); 388 389 WSeq (ba, SEQ_ID_CLOCKING_MODE, 0x01 | ((md->FLG & MDF_CLKDIV2)/ MDF_CLKDIV2 * 8)); 390 WSeq (ba, SEQ_ID_MAP_MASK, 0x0f); 391 WSeq (ba, SEQ_ID_CHAR_MAP_SELECT, 0x00); 392 /* odd/even write select + extended memory */ 393 WSeq (ba, SEQ_ID_MEMORY_MODE, 0x06); 394 WSeq (ba, SEQ_ID_RESET, 0x03); 395 #endif 396 397 /* monochrome cursor */ 398 WSeq (ba, SEQ_ID_CURSOR_CONTROL, 0x00); 399 /* bank0 */ 400 WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, 0x00); 401 WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, 0x00); 402 WSeq (ba, SEQ_ID_DISP_OFF_HI , 0x00); 403 WSeq (ba, SEQ_ID_DISP_OFF_LO , 0x00); 404 /* bank0 */ 405 WSeq (ba, SEQ_ID_SEC_HOST_OFF_HI, 0x00); 406 WSeq (ba, SEQ_ID_SEC_HOST_OFF_LO, 0x00); 407 /* 1M-chips + ena SEC + ena EMem + rw PrimA0/rw Sec/B0 */ 408 WSeq (ba, SEQ_ID_EXTENDED_MEM_ENA, 0x3 | 0x4 | 0x10 | 0x40); 409 #if 0 410 /* set font width + rest of clocks */ 411 WSeq (ba, SEQ_ID_EXT_CLOCK_MODE, 0x30 | (FW & 0x0f) | ((clksel & 4) / 4 * 0x40) ); 412 #endif 413 if (md->DEP == 4) { 414 /* no ext-chain4 + no host-addr-bit-16 */ 415 WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR, 0x00); 416 /* no packed/nibble + no 256bit gfx format */ 417 WSeq (ba, SEQ_ID_EXT_PIXEL_CNTL, 0x00); 418 } 419 else { 420 WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR, 0x02); 421 /* 256bit gfx format */ 422 WSeq (ba, SEQ_ID_EXT_PIXEL_CNTL, 0x01); 423 } 424 /* AT-interface */ 425 WSeq (ba, SEQ_ID_BUS_WIDTH_FEEDB, 0x06); 426 /* see fg/bg color expansion */ 427 WSeq (ba, SEQ_ID_COLOR_EXP_WFG, 0x01); 428 WSeq (ba, SEQ_ID_COLOR_EXP_WBG, 0x00); 429 WSeq (ba, SEQ_ID_EXT_RW_CONTROL, 0x00); 430 #if 0 431 /* another clock bit, plus hw stuff */ 432 WSeq (ba, SEQ_ID_MISC_FEATURE_SEL, 0xf4 | (clksel & 8) ); 433 #endif 434 /* don't tristate PCLK and PIX */ 435 WSeq (ba, SEQ_ID_COLOR_KEY_CNTL, 0x40 ); 436 /* reset CRC circuit */ 437 WSeq (ba, SEQ_ID_CRC_CONTROL, 0x00 ); 438 /* set RAS/CAS swap */ 439 WSeq (ba, SEQ_ID_PERF_SELECT, 0x20); 440 441 WCrt (ba, CRT_ID_END_VER_RETR, (md->VSE & 0xf ) | 0x20); 442 WCrt (ba, CRT_ID_HOR_TOTAL, md->HT & 0xff); 443 WCrt (ba, CRT_ID_HOR_DISP_ENA_END, (HDE-1) & 0xff); 444 WCrt (ba, CRT_ID_START_HOR_BLANK, md->HBS & 0xff); 445 WCrt (ba, CRT_ID_END_HOR_BLANK, (md->HBE & 0x1f) | 0x80); 446 447 WCrt (ba, CRT_ID_START_HOR_RETR, md->HSS & 0xff); 448 WCrt (ba, CRT_ID_END_HOR_RETR, (md->HSE & 0x1f) | ((md->HBE & 0x20)/ 0x20 * 0x80)); 449 WCrt (ba, CRT_ID_VER_TOTAL, (md->VT & 0xff)); 450 WCrt (ba, CRT_ID_OVERFLOW, (( (md->VSS & 0x200) / 0x200 * 0x80) 451 | ((VDE & 0x200) / 0x200 * 0x40) 452 | ((md->VT & 0x200) / 0x200 * 0x20) 453 | 0x10 454 | ((md->VBS & 0x100) / 0x100 * 8 ) 455 | ((md->VSS & 0x100) / 0x100 * 4 ) 456 | ((VDE & 0x100) / 0x100 * 2 ) 457 | ((md->VT & 0x100) / 0x100 ))); 458 WCrt (ba, CRT_ID_PRESET_ROW_SCAN, 0x00); 459 460 if (md->DEP == 4) { 461 WCrt (ba, CRT_ID_MAX_SCAN_LINE, (( (md->FLG & MDF_DBL)/ MDF_DBL * 0x80) 462 | 0x40 463 | ((md->VBS & 0x200)/0x200 * 0x20) 464 | ((md->FY-1) & 0x1f))); 465 } 466 else { 467 WCrt (ba, CRT_ID_MAX_SCAN_LINE, (( (md->FLG & MDF_DBL)/ MDF_DBL * 0x80) 468 | 0x40 469 | ((md->VBS & 0x200)/0x200 * 0x20) 470 | (0 & 0x1f))); 471 } 472 473 WCrt (ba, CRT_ID_CURSOR_START, (md->FY & 0x1f) - 2); 474 WCrt (ba, CRT_ID_CURSOR_END, (md->FY & 0x1f) - 1); 475 476 WCrt (ba, CRT_ID_START_ADDR_HIGH, 0x00); 477 WCrt (ba, CRT_ID_START_ADDR_LOW, 0x00); 478 479 WCrt (ba, CRT_ID_CURSOR_LOC_HIGH, 0x00); 480 WCrt (ba, CRT_ID_CURSOR_LOC_LOW, 0x00); 481 482 WCrt (ba, CRT_ID_START_VER_RETR, md->VSS & 0xff); 483 WCrt (ba, CRT_ID_END_VER_RETR, (md->VSE & 0x0f) | 0x80 | 0x20); 484 WCrt (ba, CRT_ID_VER_DISP_ENA_END, VDE & 0xff); 485 if (md->DEP == 4) 486 WCrt (ba, CRT_ID_OFFSET, (HDE / 2) & 0xff); 487 else 488 WCrt (ba, CRT_ID_OFFSET, (md->TX / 8) & 0xff); 489 490 WCrt (ba, CRT_ID_UNDERLINE_LOC, (md->FY-1) & 0x1f); 491 WCrt (ba, CRT_ID_START_VER_BLANK, md->VBS & 0xff); 492 WCrt (ba, CRT_ID_END_VER_BLANK, md->VBE & 0xff); 493 /* byte mode + wrap + select row scan counter + cms */ 494 WCrt (ba, CRT_ID_MODE_CONTROL, 0xe3); 495 WCrt (ba, CRT_ID_LINE_COMPARE, 0xff); 496 497 /* enable extended end bits + those bits */ 498 WCrt (ba, CRT_ID_EXT_HOR_TIMING1, ( 0x20 499 | ((md->FLG & MDF_LACE) / MDF_LACE * 0x10) 500 | ((md->HT & 0x100) / 0x100 * 0x01) 501 | (((HDE-1) & 0x100) / 0x100 * 0x02) 502 | ((md->HBS & 0x100) / 0x100 * 0x04) 503 | ((md->HSS & 0x100) / 0x100 * 0x08))); 504 505 if (md->DEP == 4) 506 WCrt (ba, CRT_ID_EXT_START_ADDR, (((HDE / 2) & 0x100)/0x100 * 16)); 507 else 508 WCrt (ba, CRT_ID_EXT_START_ADDR, (((md->TX / 8) & 0x100)/0x100 * 16)); 509 510 WCrt (ba, CRT_ID_EXT_HOR_TIMING2, ( ((md->HT & 0x200)/ 0x200 * 0x01) 511 | (((HDE-1) & 0x200)/ 0x200 * 0x02) 512 | ((md->HBS & 0x200)/ 0x200 * 0x04) 513 | ((md->HSS & 0x200)/ 0x200 * 0x08) 514 | ((md->HBE & 0xc0) / 0x40 * 0x10) 515 | ((md->HSE & 0x60) / 0x20 * 0x40))); 516 517 WCrt (ba, CRT_ID_EXT_VER_TIMING, ( ((md->VSE & 0x10) / 0x10 * 0x80) 518 | ((md->VBE & 0x300)/ 0x100 * 0x20) 519 | 0x10 520 | ((md->VSS & 0x400)/ 0x400 * 0x08) 521 | ((md->VBS & 0x400)/ 0x400 * 0x04) 522 | ((VDE & 0x400)/ 0x400 * 0x02) 523 | ((md->VT & 0x400)/ 0x400 * 0x01))); 524 525 WGfx (ba, GCT_ID_SET_RESET, 0x00); 526 WGfx (ba, GCT_ID_ENABLE_SET_RESET, 0x00); 527 WGfx (ba, GCT_ID_COLOR_COMPARE, 0x00); 528 WGfx (ba, GCT_ID_DATA_ROTATE, 0x00); 529 WGfx (ba, GCT_ID_READ_MAP_SELECT, 0x00); 530 WGfx (ba, GCT_ID_GRAPHICS_MODE, 0x00); 531 if (md->DEP == 4) 532 WGfx (ba, GCT_ID_MISC, 0x04); 533 else 534 WGfx (ba, GCT_ID_MISC, 0x05); 535 WGfx (ba, GCT_ID_COLOR_XCARE, 0xff); 536 WGfx (ba, GCT_ID_BITMASK, 0xff); 537 538 /* reset the Attribute Controller flipflop */ 539 vgar (ba, GREG_STATUS1_R); 540 WAttr (ba, ACT_ID_PALETTE0, 0x00); 541 WAttr (ba, ACT_ID_PALETTE1, 0x01); 542 WAttr (ba, ACT_ID_PALETTE2, 0x02); 543 WAttr (ba, ACT_ID_PALETTE3, 0x03); 544 WAttr (ba, ACT_ID_PALETTE4, 0x04); 545 WAttr (ba, ACT_ID_PALETTE5, 0x05); 546 WAttr (ba, ACT_ID_PALETTE6, 0x06); 547 WAttr (ba, ACT_ID_PALETTE7, 0x07); 548 WAttr (ba, ACT_ID_PALETTE8, 0x08); 549 WAttr (ba, ACT_ID_PALETTE9, 0x09); 550 WAttr (ba, ACT_ID_PALETTE10, 0x0a); 551 WAttr (ba, ACT_ID_PALETTE11, 0x0b); 552 WAttr (ba, ACT_ID_PALETTE12, 0x0c); 553 WAttr (ba, ACT_ID_PALETTE13, 0x0d); 554 WAttr (ba, ACT_ID_PALETTE14, 0x0e); 555 WAttr (ba, ACT_ID_PALETTE15, 0x0f); 556 557 vgar (ba, GREG_STATUS1_R); 558 if (md->DEP == 4) 559 WAttr (ba, ACT_ID_ATTR_MODE_CNTL, 0x08); 560 else 561 WAttr (ba, ACT_ID_ATTR_MODE_CNTL, 0x09); 562 563 WAttr (ba, ACT_ID_OVERSCAN_COLOR, 0x00); 564 WAttr (ba, ACT_ID_COLOR_PLANE_ENA, 0x0f); 565 WAttr (ba, ACT_ID_HOR_PEL_PANNING, 0x00); 566 WAttr (ba, ACT_ID_COLOR_SELECT, 0x00); 567 568 vgar (ba, GREG_STATUS1_R); 569 /* I have *NO* idea what strobing reg-0x20 might do... */ 570 vgaw (ba, ACT_ADDRESS_W, 0x20); 571 572 if (md->DEP == 4) 573 WCrt (ba, CRT_ID_MAX_SCAN_LINE, ( ((md->FLG & MDF_DBL)/ MDF_DBL * 0x80) 574 | 0x40 575 | ((md->VBS & 0x200)/0x200 * 0x20) 576 | ((md->FY-1) & 0x1f))); 577 else 578 WCrt (ba, CRT_ID_MAX_SCAN_LINE, ( ((md->FLG & MDF_DBL)/ MDF_DBL * 0x80) 579 | 0x40 580 | ((md->VBS & 0x200)/0x200 * 0x20) 581 | (0 & 0x1f))); 582 583 584 /* not it's time for guessing... */ 585 586 vgaw (ba, VDAC_REG_D, 0x02); 587 588 /* if this does what I think it does, it selects DAC 589 register 0, and writes the palette in subsequent 590 registers, thus it works similar to the WD33C93 591 select/data mechanism */ 592 vgaw (ba, VDAC_REG_SELECT, 0x00); 593 594 { 595 596 short x = 15; 597 const unsigned char * col = md->PAL; 598 do { 599 600 vgaw (ba, VDAC_REG_DATA, *col++); 601 vgaw (ba, VDAC_REG_DATA, *col++); 602 vgaw (ba, VDAC_REG_DATA, *col++); 603 604 605 } while (x--); 606 607 if (md->DEP != 4) { 608 short xx = 256-17; 609 unsigned char cols = 16; 610 do { 611 612 vgaw(ba, VDAC_REG_DATA, cols); 613 vgaw(ba, VDAC_REG_DATA, cols); 614 vgaw(ba, VDAC_REG_DATA, cols); 615 cols++; 616 617 } while (xx--); 618 } 619 } 620 621 622 /* now load the font into maps 2 (and 3 for fonts wider than 8 pixels) */ 623 if (md->DEP == 4) { 624 625 /* first set the whole font memory to a test-pattern, so we 626 can see if something that shouldn't be drawn IS drawn.. */ 627 { 628 volatile char *c = fb; 629 long x; 630 Map(2); 631 632 for (x = 0; x < 65536; x++) { 633 *c++ = (x & 1)? 0xaa : 0x55; 634 } 635 } 636 637 { 638 volatile char *c = fb; 639 long x; 640 Map(3); 641 642 for (x = 0; x < 65536; x++) { 643 *c++ = (x & 1)? 0xaa : 0x55; 644 } 645 } 646 647 { 648 /* ok, now position at first defined character, and 649 copy over the images */ 650 volatile char *c = fb + md->FLo * 32; 651 const unsigned char * f = md->FData; 652 unsigned short z; 653 654 Map(2); 655 for (z = md->FLo; z <= md->FHi; z++) { 656 657 short y = md->FY-1; 658 if (md->FX > 8){ 659 do { 660 *c++ = *f; 661 f += 2; 662 } while (y--); 663 } 664 else { 665 do { 666 *c++ = *f++; 667 } while (y--); 668 } 669 670 c += 32-md->FY; 671 672 } 673 674 if (md->FX > 8) { 675 unsigned short zz; 676 677 Map(3); 678 c = fb + md->FLo*32; 679 f = md->FData+1; 680 for (zz = md->FLo; z <= md->FHi; zz++) { 681 682 short y = md->FY-1; 683 do { 684 *c++ = *f; 685 f += 2; 686 } while (y--); 687 688 c += 32-md->FY; 689 690 } 691 } 692 } 693 694 } 695 696 /* select map 0 */ 697 WGfx (ba, GCT_ID_READ_MAP_SELECT, 0); 698 if (md->DEP == 4) 699 /* allow writes into maps 0 and 1 */ 700 WSeq (ba, SEQ_ID_MAP_MASK, 3); 701 else 702 /* allow writes into all maps */ 703 WSeq (ba, SEQ_ID_MAP_MASK, 0x0f); 704 705 /* select extended chain4 addressing: 706 !A0/!A1 map 0 character to be displayed 707 !A1/ A1 map 1 attribute of that character 708 A0/!A1 map 2 not used (masked out, ignored) 709 A0/ A1 map 3 not used (masked out, ignored) */ 710 WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR, RSeq(ba, SEQ_ID_EXT_VIDEO_ADDR) | 0x02); 711 712 if (md->DEP == 4) { 713 /* position in display memory */ 714 volatile unsigned short * c = (volatile unsigned short *) fb; 715 716 /* fill with blank, white on black */ 717 const unsigned short fill_val = 0x2010; 718 short x = md->XY; 719 do { 720 *c = fill_val; 721 c += 2; } while (x--); 722 723 /* I won't comment this :-)) */ 724 c = (volatile unsigned short *) fb; 725 c += (md->TX-6)*2; 726 { 727 unsigned short init_msg[6] = {0x520a, 0x450b, 0x540c, 0x490d, 0x4e0e, 0x410f}; 728 unsigned short * f = init_msg; 729 x = 5; 730 do { 731 *c = *f++; 732 c += 2; 733 } while (x--); 734 } 735 } 736 else if (md->DEP == 8) { 737 /* could clear the gfx screen here, but that's what the X server does anyway */ 738 ; 739 } 740 741 gp->g_data = (void *)md; 742 gi->gd_regaddr = (void *)ztwopa(ba); 743 gi->gd_regsize = 64*1024; 744 745 gi->gd_fbaddr = (void *)ztwopa(fb); 746 gi->gd_fbsize = 64*1024; /* larger, but that's whats mappable */ 747 748 gi->gd_colors = 1 << md->DEP; 749 gi->gd_planes = md->DEP; 750 751 gi->gd_fbwidth = md->MW; 752 gi->gd_fbheight = md->MH; 753 gi->gd_fbx = 0; 754 gi->gd_fby = 0; 755 gi->gd_dwidth = md->TX * md->FX; 756 gi->gd_dheight = md->TY * md->FY; 757 gi->gd_dx = 0; 758 gi->gd_dy = 0; 759 760 /* initialized, works, return 1 */ 761 return(1); 762 } 763 764 void grfrtattach(struct device *, struct device *, void *); 765 int grfrtprint(void *, const char *); 766 int grfrtmatch(struct device *, struct cfdata *, void *); 767 768 int rt_mode(struct grf_softc *, u_long, void *, u_long, int); 769 static int rt_getvmode(struct grf_softc *, struct grfvideo_mode *); 770 static int rt_setvmode(struct grf_softc *, unsigned, int); 771 int rt_getspritepos(struct grf_softc *, struct grf_position *); 772 int rt_setspritepos(struct grf_softc *, struct grf_position *); 773 int rt_getspriteinfo(struct grf_softc *, struct grf_spriteinfo *); 774 int rt_setspriteinfo(struct grf_softc *, struct grf_spriteinfo *); 775 int rt_getspritemax(struct grf_softc *, struct grf_position *); 776 int rt_getcmap(struct grf_softc *, struct grf_colormap *); 777 int rt_putcmap(struct grf_softc *, struct grf_colormap *); 778 int rt_bitblt(struct grf_softc *, struct grf_bitblt *); 779 int rt_blank(struct grf_softc *, int *); 780 781 CFATTACH_DECL(grfrt, sizeof(struct grf_softc), 782 grfrtmatch, grfrtattach, NULL, NULL); 783 784 /* 785 * only used in console init 786 */ 787 static struct cfdata *cfdata; 788 789 /* 790 * we make sure to only init things once. this is somewhat 791 * tricky regarding the console. 792 */ 793 int 794 grfrtmatch(struct device *pdp, struct cfdata *cfp, void *auxp) 795 { 796 #ifdef RETINACONSOLE 797 static int rtconunit = -1; 798 #endif 799 struct zbus_args *zap; 800 801 zap = auxp; 802 803 /* 804 * allow only one retina console 805 */ 806 if (amiga_realconfig == 0) 807 #ifdef RETINACONSOLE 808 if (rtconunit != -1) 809 #endif 810 return(0); 811 /* 812 * check that this is a retina board. 813 */ 814 if (zap->manid != 18260 || zap->prodid != 6) 815 return(0); 816 817 #ifdef RETINACONSOLE 818 if (amiga_realconfig == 0 || rtconunit != cfp->cf_unit) { 819 #endif 820 if ((unsigned)retina_default_mon >= retina_mon_max || 821 monitor_defs[retina_default_mon].DEP == 8) 822 retina_default_mon = 0; 823 824 current_mon = monitor_defs + retina_default_mon; 825 if (retina_alive(current_mon) == 0) 826 return(0); 827 #ifdef RETINACONSOLE 828 if (amiga_realconfig == 0) { 829 rtconunit = cfp->cf_unit; 830 cfdata = cfp; 831 } 832 } 833 #endif 834 return(1); 835 } 836 837 /* 838 * attach to the grfbus (zbus) 839 */ 840 void 841 grfrtattach(struct device *pdp, struct device *dp, void *auxp) 842 { 843 static struct grf_softc congrf; 844 struct zbus_args *zap; 845 struct grf_softc *gp; 846 847 zap = auxp; 848 849 if (dp == NULL) 850 gp = &congrf; 851 else 852 gp = (struct grf_softc *)dp; 853 854 if (dp != NULL && congrf.g_regkva != 0) { 855 /* 856 * we inited earlier just copy the info 857 * take care not to copy the device struct though. 858 */ 859 memcpy(&gp->g_display, &congrf.g_display, 860 (char *)&gp[1] - (char *)&gp->g_display); 861 } else { 862 gp->g_regkva = (volatile void *)zap->va; 863 gp->g_fbkva = (volatile char *)zap->va + 64 * 1024; 864 gp->g_unit = GRF_RETINAII_UNIT; 865 gp->g_flags = GF_ALIVE; 866 gp->g_mode = rt_mode; 867 gp->g_conpri = grfrt_cnprobe(); 868 grfrt_iteinit(gp); 869 (void)rt_load_mon(gp, current_mon); 870 } 871 if (dp != NULL) 872 printf("\n"); 873 /* 874 * attach grf 875 */ 876 amiga_config_found(cfdata, &gp->g_device, gp, grfrtprint); 877 } 878 879 int 880 grfrtprint(void *auxp, const char *pnp) 881 { 882 if (pnp) 883 aprint_normal("grf%d at %s", ((struct grf_softc *)auxp)->g_unit, 884 pnp); 885 return(UNCONF); 886 } 887 888 static int 889 rt_getvmode(struct grf_softc *gp, struct grfvideo_mode *vm) 890 { 891 struct MonDef *md; 892 int vmul; 893 894 if (vm->mode_num && vm->mode_num > retina_mon_max) 895 return (EINVAL); 896 897 if (! vm->mode_num) 898 vm->mode_num = (current_mon - monitor_defs) + 1; 899 900 md = monitor_defs + (vm->mode_num - 1); 901 strncpy (vm->mode_descr, monitor_descr[vm->mode_num - 1], 902 sizeof (vm->mode_descr)); 903 vm->pixel_clock = md->FQ; 904 vm->disp_width = md->MW; 905 vm->disp_height = md->MH; 906 vm->depth = md->DEP; 907 908 /* 909 * From observation of the monitor definition table above, I guess that 910 * the horizontal timings are in units of longwords. Hence, I get the 911 * pixels by multiplication with 32 and division by the depth. 912 * The text modes, apparently marked by depth == 4, are even more weird. 913 * According to a comment above, they are computed from a depth==8 mode 914 * (thats for us: * 32 / 8) by applying another factor of 4 / font width. 915 * Reverse applying the latter formula most of the constants cancel 916 * themselves and we are left with a nice (* font width). 917 * That is, internal timings are in units of longwords for graphics 918 * modes, or in units of characters widths for text modes. 919 * We better don't WRITE modes until this has been real live checked. 920 * - Ignatios Souvatzis 921 */ 922 923 if (md->DEP != 4) { 924 vm->hblank_start = md->HBS * 32 / md->DEP; 925 vm->hsync_start = md->HSS * 32 / md->DEP; 926 vm->hsync_stop = md->HSE * 32 / md->DEP; 927 vm->htotal = md->HT * 32 / md->DEP; 928 } else { 929 vm->hblank_start = md->HBS * md->FX; 930 vm->hsync_start = md->HSS * md->FX; 931 vm->hsync_stop = md->HSE * md->FX; 932 vm->htotal = md->HT * md->FX; 933 } 934 935 936 /* XXX move vm->disp_flags and vmul to rt_load_mon 937 * if rt_setvmode can add new modes with grfconfig */ 938 vm->disp_flags = 0; 939 vmul = 2; 940 if (md->FLG & MDF_DBL) { 941 vm->disp_flags |= GRF_FLAGS_DBLSCAN; 942 vmul = 4; 943 } 944 if (md->FLG & MDF_LACE) { 945 vm->disp_flags |= GRF_FLAGS_LACE; 946 vmul = 1; 947 } 948 vm->vblank_start = md->VBS * vmul / 2; 949 vm->vsync_start = md->VSS * vmul / 2; 950 vm->vsync_stop = md->VSE * vmul / 2; 951 vm->vtotal = md->VT * vmul / 2; 952 953 return (0); 954 } 955 956 957 static int 958 rt_setvmode(struct grf_softc *gp, unsigned mode, int txtonly) 959 { 960 int error; 961 962 if (!mode || mode > retina_mon_max) 963 return (EINVAL); 964 965 if (txtonly && monitor_defs[mode-1].DEP == 8) 966 return (EINVAL); 967 968 current_mon = monitor_defs + (mode - 1); 969 970 error = rt_load_mon (gp, current_mon) ? 0 : EINVAL; 971 972 return (error); 973 } 974 975 976 /* 977 * Change the mode of the display. 978 * Return a UNIX error number or 0 for success. 979 */ 980 int 981 rt_mode(struct grf_softc *gp, u_long cmd, void *arg, u_long a2, int a3) 982 { 983 /* implement these later... */ 984 985 switch (cmd) { 986 case GM_GRFON: 987 rt_setvmode (gp, retina_default_gfx + 1, 0); 988 return (0); 989 990 case GM_GRFOFF: 991 rt_setvmode (gp, retina_default_mon + 1, 0); 992 return (0); 993 994 case GM_GRFCONFIG: 995 return (0); 996 997 case GM_GRFGETVMODE: 998 return (rt_getvmode (gp, (struct grfvideo_mode *) arg)); 999 1000 case GM_GRFSETVMODE: 1001 return (rt_setvmode (gp, *(unsigned *) arg, 1)); 1002 1003 case GM_GRFGETNUMVM: 1004 *(int *)arg = retina_mon_max; 1005 return (0); 1006 1007 case GM_GRFIOCTL: 1008 return (rt_ioctl (gp, a2, arg)); 1009 1010 default: 1011 break; 1012 } 1013 1014 return (EPASSTHROUGH); 1015 } 1016 1017 int 1018 rt_ioctl(register struct grf_softc *gp, u_long cmd, void *data) 1019 { 1020 switch (cmd) { 1021 case GRFIOCGSPRITEPOS: 1022 return (rt_getspritepos (gp, (struct grf_position *) data)); 1023 1024 case GRFIOCSSPRITEPOS: 1025 return (rt_setspritepos (gp, (struct grf_position *) data)); 1026 1027 case GRFIOCSSPRITEINF: 1028 return (rt_setspriteinfo (gp, (struct grf_spriteinfo *) data)); 1029 1030 case GRFIOCGSPRITEINF: 1031 return (rt_getspriteinfo (gp, (struct grf_spriteinfo *) data)); 1032 1033 case GRFIOCGSPRITEMAX: 1034 return (rt_getspritemax (gp, (struct grf_position *) data)); 1035 1036 case GRFIOCGETCMAP: 1037 return (rt_getcmap (gp, (struct grf_colormap *) data)); 1038 1039 case GRFIOCPUTCMAP: 1040 return (rt_putcmap (gp, (struct grf_colormap *) data)); 1041 1042 case GRFIOCBITBLT: 1043 return (rt_bitblt (gp, (struct grf_bitblt *) data)); 1044 1045 case GRFIOCBLANK: 1046 return (rt_blank(gp, (int *)data)); 1047 } 1048 1049 return (EPASSTHROUGH); 1050 } 1051 1052 int 1053 rt_getcmap(struct grf_softc *gfp, struct grf_colormap *cmap) 1054 { 1055 volatile unsigned char *ba; 1056 u_char red[256], green[256], blue[256], *rp, *gp, *bp; 1057 short x; 1058 int error; 1059 1060 if (cmap->count == 0 || cmap->index >= 256) 1061 return (0); 1062 1063 if (cmap->count > 256 - cmap->index) 1064 cmap->count = 256 - cmap->index; 1065 1066 ba = gfp->g_regkva; 1067 /* first read colors out of the chip, then copyout to userspace */ 1068 vgaw (ba, VDAC_REG_SELECT, cmap->index); 1069 x = cmap->count - 1; 1070 rp = red + cmap->index; 1071 gp = green + cmap->index; 1072 bp = blue + cmap->index; 1073 do { 1074 *rp++ = vgar (ba, VDAC_REG_DATA); 1075 *gp++ = vgar (ba, VDAC_REG_DATA); 1076 *bp++ = vgar (ba, VDAC_REG_DATA); 1077 } 1078 while (x--); 1079 1080 if (!(error = copyout (red + cmap->index, cmap->red, cmap->count)) 1081 && !(error = copyout (green + cmap->index, cmap->green, cmap->count)) 1082 && !(error = copyout (blue + cmap->index, cmap->blue, cmap->count))) 1083 return (0); 1084 1085 return (error); 1086 } 1087 1088 int 1089 rt_putcmap(struct grf_softc *gfp, struct grf_colormap *cmap) 1090 { 1091 volatile unsigned char *ba; 1092 u_char red[256], green[256], blue[256], *rp, *gp, *bp; 1093 short x; 1094 int error; 1095 1096 if (cmap->count == 0 || cmap->index >= 256) 1097 return 0; 1098 1099 if (cmap->count > 256 - cmap->index) 1100 cmap->count = 256 - cmap->index; 1101 1102 /* first copy the colors into kernelspace */ 1103 if (!(error = copyin (cmap->red, red + cmap->index, cmap->count)) 1104 && !(error = copyin (cmap->green, green + cmap->index, cmap->count)) 1105 && !(error = copyin (cmap->blue, blue + cmap->index, cmap->count))) 1106 { 1107 ba = gfp->g_regkva; 1108 vgaw (ba, VDAC_REG_SELECT, cmap->index); 1109 x = cmap->count - 1; 1110 rp = red + cmap->index; 1111 gp = green + cmap->index; 1112 bp = blue + cmap->index; 1113 do { 1114 vgaw (ba, VDAC_REG_DATA, *rp++); 1115 vgaw (ba, VDAC_REG_DATA, *gp++); 1116 vgaw (ba, VDAC_REG_DATA, *bp++); 1117 } 1118 while (x--); 1119 return (0); 1120 } else 1121 return (error); 1122 } 1123 1124 1125 int 1126 rt_getspritepos(struct grf_softc *gp, struct grf_position *pos) 1127 { 1128 volatile unsigned char *ba; 1129 1130 ba = gp->g_regkva; 1131 pos->x = vgar (ba, SEQ_ID_CURSOR_X_LOC_LO) | 1132 (vgar (ba, SEQ_ID_CURSOR_X_LOC_HI) << 8); 1133 pos->y = vgar (ba, SEQ_ID_CURSOR_Y_LOC_LO) | 1134 (vgar (ba, SEQ_ID_CURSOR_Y_LOC_HI) << 8); 1135 return (0); 1136 } 1137 1138 int 1139 rt_setspritepos(struct grf_softc *gp, struct grf_position *pos) 1140 { 1141 volatile unsigned char *ba; 1142 1143 ba = gp->g_regkva; 1144 vgaw (ba, SEQ_ID_CURSOR_X_LOC_LO, pos->x & 0xff); 1145 vgaw (ba, SEQ_ID_CURSOR_X_LOC_HI, (pos->x >> 8) & 0x07); 1146 vgaw (ba, SEQ_ID_CURSOR_Y_LOC_LO, pos->y & 0xff); 1147 vgaw (ba, SEQ_ID_CURSOR_Y_LOC_HI, (pos->y >> 8) & 0x07); 1148 return (0); 1149 } 1150 1151 /* assume an at least 2M retina (XXX), sprite is last in memory. 1152 * According to the bogus docs, the cursor can be at most 128 lines 1153 * in height, and the x-hostspot can be placed at most at pos 31, 1154 * this gives width of a long 1155 */ 1156 #define SPRITE_ADDR (2*1024*1024 - 128*4) 1157 1158 int 1159 rt_getspriteinfo(struct grf_softc *gp, struct grf_spriteinfo *info) 1160 { 1161 volatile void *ba, *fb; 1162 1163 ba = gp->g_regkva; 1164 fb = gp->g_fbkva; 1165 if (info->set & GRFSPRSET_ENABLE) 1166 info->enable = vgar (ba, SEQ_ID_CURSOR_CONTROL) & 0x01; 1167 if (info->set & GRFSPRSET_POS) 1168 rt_getspritepos (gp, &info->pos); 1169 if (info->set & GRFSPRSET_HOT) { 1170 info->hot.x = vgar (ba, SEQ_ID_CURSOR_X_INDEX) & 0x1f; 1171 info->hot.y = vgar (ba, SEQ_ID_CURSOR_Y_INDEX) & 0x7f; 1172 } 1173 if (info->set & GRFSPRSET_CMAP) { 1174 struct grf_colormap cmap; 1175 int index; 1176 cmap.index = 0; 1177 cmap.count = 256; 1178 rt_getcmap (gp, &cmap); 1179 index = vgar (ba, SEQ_ID_CURSOR_COLOR0); 1180 info->cmap.red[0] = cmap.red[index]; 1181 info->cmap.green[0] = cmap.green[index]; 1182 info->cmap.blue[0] = cmap.blue[index]; 1183 index = vgar (ba, SEQ_ID_CURSOR_COLOR1); 1184 info->cmap.red[1] = cmap.red[index]; 1185 info->cmap.green[1] = cmap.green[index]; 1186 info->cmap.blue[1] = cmap.blue[index]; 1187 } 1188 if (info->set & GRFSPRSET_SHAPE) { 1189 int saved_bank_lo = RSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO); 1190 int saved_bank_hi = RSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI); 1191 int last_bank = SPRITE_ADDR >> 6; 1192 int last_bank_lo = last_bank & 0xff; 1193 int last_bank_hi = last_bank >> 8; 1194 u_char mask; 1195 WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, last_bank_lo); 1196 WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, last_bank_hi); 1197 copyout (__UNVOLATILE(fb), info->image, 128*4); 1198 mask = RSeq (ba, SEQ_ID_CURSOR_PIXELMASK); 1199 WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, saved_bank_lo); 1200 WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, saved_bank_hi); 1201 copyout (&mask, info->mask, 1); 1202 info->size.x = 32; /* ??? */ 1203 info->size.y = (RSeq (ba, SEQ_ID_CURSOR_CONTROL) & 6) << 4; 1204 } 1205 1206 return (0); 1207 } 1208 1209 1210 int 1211 rt_setspriteinfo(struct grf_softc *gp, struct grf_spriteinfo *info) 1212 { 1213 volatile void *ba, *fb; 1214 u_char control; 1215 1216 ba = gp->g_regkva; 1217 fb = gp->g_fbkva; 1218 control = vgar (ba, SEQ_ID_CURSOR_CONTROL); 1219 if (info->set & GRFSPRSET_ENABLE) { 1220 if (info->enable) 1221 control |= 1; 1222 else 1223 control &= ~1; 1224 vgaw (ba, SEQ_ID_CURSOR_CONTROL, control); 1225 } 1226 if (info->set & GRFSPRSET_POS) 1227 rt_setspritepos (gp, &info->pos); 1228 if (info->set & GRFSPRSET_HOT) { 1229 vgaw (ba, SEQ_ID_CURSOR_X_INDEX, info->hot.x & 0x1f); 1230 vgaw (ba, SEQ_ID_CURSOR_Y_INDEX, info->hot.y & 0x7f); 1231 } 1232 if (info->set & GRFSPRSET_CMAP) { 1233 /* hey cheat a bit here.. XXX */ 1234 vgaw (ba, SEQ_ID_CURSOR_COLOR0, 0); 1235 vgaw (ba, SEQ_ID_CURSOR_COLOR1, 1); 1236 } 1237 if (info->set & GRFSPRSET_SHAPE) { 1238 int saved_bank_lo = RSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO); 1239 int saved_bank_hi = RSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI); 1240 int last_bank = SPRITE_ADDR >> 6; 1241 int last_bank_lo = last_bank & 0xff; 1242 int last_bank_hi = last_bank >> 8; 1243 u_char mask; 1244 WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, last_bank_lo); 1245 WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, last_bank_hi); 1246 copyin (info->image, __UNVOLATILE(fb), 128*4); 1247 WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, saved_bank_lo); 1248 WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, saved_bank_hi); 1249 copyin (info->mask, &mask, 1); 1250 WSeq (ba, SEQ_ID_CURSOR_PIXELMASK, mask); 1251 /* info->size.x = 32; *//* ??? */ 1252 1253 info->size.y = (RSeq (ba, SEQ_ID_CURSOR_CONTROL) & 6) << 4; 1254 control = (control & ~6) | ((info->size.y >> 4) & 6); 1255 vgaw (ba, SEQ_ID_CURSOR_CONTROL, control); 1256 1257 /* sick intel bull-addressing.. */ 1258 WSeq (ba, SEQ_ID_CURSOR_STORE_LO, SPRITE_ADDR & 0x0f); 1259 WSeq (ba, SEQ_ID_CURSOR_STORE_HI, 0); 1260 WSeq (ba, SEQ_ID_CURSOR_ST_OFF_LO, (SPRITE_ADDR >> 4) & 0xff); 1261 WSeq (ba, SEQ_ID_CURSOR_ST_OFF_HI, ((SPRITE_ADDR >> 4) >> 8) & 0xff); 1262 } 1263 1264 return (0); 1265 } 1266 1267 1268 int 1269 rt_getspritemax(struct grf_softc *gp, struct grf_position *pos) 1270 { 1271 pos->x = 32; 1272 pos->y = 128; 1273 1274 return (0); 1275 } 1276 1277 1278 /* 1279 * !!! THIS AREA UNDER CONSTRUCTION !!! 1280 */ 1281 1282 int 1283 rt_bitblt(struct grf_softc *gp, struct grf_bitblt *bb) 1284 { 1285 return (EINVAL); 1286 1287 #if 0 1288 volatile void *ba, fb; 1289 u_char control; 1290 u_char saved_bank_lo; 1291 u_char saved_bank_hi; 1292 u_char src_bank_lo, src_bank_hi; 1293 u_char dst_bank_lo, dst_bank_hi; 1294 u_long src_offset, dst_offset; 1295 u_short src_bank, dst_bank; 1296 u_char *srcp, *dstp; 1297 short x, y; 1298 u_long tot; 1299 1300 ba = gp->g_regkva; 1301 fb = gp->g_fbkva; 1302 1303 saved_bank_lo = RSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO); 1304 saved_bank_hi = RSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI); 1305 1306 /* for now, only GRFBBcopy is supported, and only for depth 8. No 1307 clipping is performed, either... */ 1308 1309 if (bb->op != GRFBBcopy && gp->g_display.gd_planes != 8) 1310 return EINVAL; 1311 1312 src_offset = op->src_x + op->src_y * gp->g_display.gd_fbwidth; 1313 dst_offset = op->dst_x + op->dst_y * gp->g_display.gd_fbwidth; 1314 tot = op->w * op->h; 1315 1316 /* set write mode 1, "[...] data in the read latches is written 1317 to memory during CPU memory write cycles. [...]" */ 1318 WGfx (ba, GCT_ID_GRAPHICS_MODE, (RGfx(ba, GCT_ID_GRAPHICS_MODE) & 0xfc) | 1); 1319 /* write to primary, read from secondary */ 1320 WSeq (ba, SEQ_ID_EXTENDED_MEM_ENA, (RSeq(ba, SEQ_ID_EXTENDED_MEM_ENA) & 0x1f) | 0 ); 1321 1322 if (src_offset < dst_offset) 1323 { 1324 /* start at end */ 1325 src_offset += tot; 1326 dst_offset += tot; 1327 } 1328 1329 src_bank_lo = (src_offset >> 6) & 0xff; 1330 src_bank_hi = (src_offset >> 14) & 0xff; 1331 dst_bank_lo = (dst_offset >> 6) & 0xff; 1332 dst_bank_hi = (dst_offset >> 14) & 0xff; 1333 1334 while (tot) 1335 { 1336 WSeq (ba, SEQ_ID_SEC_HOST_OFF_LO, src_bank_lo); 1337 WSeq (ba, SEQ_ID_SEC_HOST_OFF_HI, src_bank_hi); 1338 WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, dst_bank_lo); 1339 WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, dst_bank_hi); 1340 1341 if (src_offset < dst_offset) 1342 { 1343 1344 1345 } 1346 else 1347 { 1348 1349 } 1350 } 1351 1352 1353 #endif 1354 } 1355 1356 1357 int 1358 rt_blank(struct grf_softc *gp, int *on) 1359 { 1360 struct MonDef *md = (struct MonDef *)gp->g_data; 1361 int r; 1362 1363 r = 0x01 | ((md->FLG & MDF_CLKDIV2)/ MDF_CLKDIV2 * 8); 1364 1365 WSeq(gp->g_regkva, SEQ_ID_CLOCKING_MODE, *on > 0 ? r : 0x21); 1366 1367 return(0); 1368 } 1369 1370 #endif /* NGRF */ 1371