xref: /netbsd-src/sys/arch/amiga/dev/fd.c (revision ae1bfcddc410612bc8c58b807e1830becb69a24c)
1 /*-
2  * Copyright (c) 1993, 1994 Charles Hannum.
3  * Copyright (c) 1990 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * Don Ahn.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	from: @(#)fd.c	7.4 (Berkeley) 5/25/91
38  */
39 /*
40  * Copyright (c) 1994 Brad Pepers
41  * All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *      This product includes software developed by Brad Pepers
54  * 4. The name of the author may not be used to endorse or promote products
55  *    derived from this software without specific prior written permission
56  *
57  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
58  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
61  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
62  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
63  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
64  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
65  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
66  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67  *
68  *	$Id: fd.c,v 1.4 1994/04/22 02:20:48 chopps Exp $
69  *
70  *
71  */
72 
73 /*
74  * floppy interface
75  */
76 
77 #include "fd.h"
78 #if NFD > 0
79 
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/buf.h>
83 #include <sys/dkstat.h>
84 #include <sys/disklabel.h>
85 #include <sys/malloc.h>
86 #include <sys/proc.h>
87 #include <sys/reboot.h>
88 #include <sys/file.h>
89 #include <sys/ioctl.h>
90 
91 #include <amiga/dev/device.h>
92 #include <amiga/amiga/cia.h>
93 #include <amiga/amiga/custom.h>
94 
95 #define UNIT(x)		(minor(x) & 3)
96 #define	b_cylin		b_resid
97 #define FDBLK 512
98 #define MAX_SECTS 22
99 #define IMMED_WRITE 0
100 
101 int fdattach();
102 struct	driver fddriver = {
103 	fdattach, "fd",
104 };
105 
106 /* defines */
107 #define MFM_SYNC	0x4489
108 #define DSKLEN_DMAEN    (1<<15)
109 #define DSKLEN_WRITE    (1<<14)
110 
111 /* drive type values */
112 #define FD_NONE		0xffffffff
113 #define FD_DD_3		0x00000000	/* double-density 3.5" (880K) */
114 #define FD_HD_3		0xaaaaaaaa	/* high-density 3.5" (1760K) */
115 #define	FD_DD_5		0x55555555	/* double-density 5.25" (440K) */
116 
117 struct fd_type {
118 	int id;
119 	char *name;
120 	int tracks;
121 	int heads;
122 	int read_size;
123 	int write_size;
124 	int gap_size;
125 	int sect_mult;
126 	int precomp1;
127 	int precomp2;
128 	int step_delay;
129 	int side_time;
130 	int settle_time;
131 };
132 
133 struct fd_type drive_types[] = {
134 /*	    id       name      tr he  rdsz   wrsz   gap sm pc1  pc2 sd  st st  */
135 	{ FD_DD_3, "DD 3.5\"", 80, 2, 14716, 13630, 414, 1, 80, 161, 3, 2, 18 },
136 	{ FD_HD_3, "HD 3.5\"", 80, 2, 29432, 27260, 828, 2, 80, 161, 3, 2, 18 },
137 	{ FD_DD_5, "DD 5.25\"",40, 2, 14716, 13630, 414, 1, 40,  80, 3, 2, 18 },
138 	{ FD_NONE, "No Drive", 0, }
139 };
140 int num_dr_types = sizeof(drive_types) / sizeof(drive_types[0]);
141 
142 /*
143  * Per drive structure.
144  * N per controller (presently 4) (DRVS_PER_CTLR)
145  */
146 #define DRVS_PER_CTLR 4
147 struct fd_data {
148 	int fdu;		/* This unit number */
149 	struct buf head;	/* Head of buf chain      */
150 	struct buf rhead;	/* Raw head of buf chain  */
151 	int type;		/* Drive type */
152 	struct fd_type *ft;	/* Pointer to type descriptor */
153 	int flags;
154 #define	FDF_OPEN	0x01	/* it's open		*/
155 	int skip;
156 	int sects;		/* number of sectors in a track */
157 	int size;		/* size of disk in sectors */
158 	int side;		/* current side disk is on */
159 	int dir;		/* current direction of stepping */
160 	int cyl;		/* current cylinder disk is on */
161 	int buf_track;
162 	int buf_dirty;
163 	char *buf_data;
164 	char *buf_labels;
165 	int write_cnt;
166 };
167 
168 /*
169  * Per controller structure.
170  */
171 struct fdc_data
172 {
173 	int fdcu;		/* our unit number */
174 	struct fd_data *fd;	/* drive we are currently doing work for */
175 	int motor_fdu;	/* drive that has its motor on */
176 	int state;
177 	int saved;
178 	int retry;
179 	struct fd_data fd_data[DRVS_PER_CTLR];
180 };
181 struct fdc_data fdc_data[NFD];
182 
183 /*
184  * Throughout this file the following conventions will be used:
185  *
186  * fd is a pointer to the fd_data struct for the drive in question
187  * fdc is a pointer to the fdc_data struct for the controller
188  * fdu is the floppy drive unit number
189  * fdcu is the floppy controller unit number
190  * fdsu is the floppy drive unit number on that controller. (sub-unit)
191  */
192 typedef int	fdu_t;
193 typedef int	fdcu_t;
194 typedef int	fdsu_t;
195 typedef	struct fd_data *fd_p;
196 typedef struct fdc_data *fdc_p;
197 
198 /*
199  * protos.
200  */
201 static int delay __P((int));
202 void encode __P((u_long, u_long *, u_long *));
203 void fd_step __P((void));
204 void fd_seek __P((fd_p, int));
205 void correct __P((u_long *));
206 void fd_probe __P((fd_p));
207 void fd_turnon __P((fdc_p, fdu_t));
208 void fd_turnoff __P((fdc_p));
209 void track_read __P((fdc_p, fd_p, int));
210 void fd_timeout __P((fdc_p));
211 void fd_motor_to __P((fdcu_t));
212 void fd_motor_on __P((fdc_p, fdu_t));
213 void track_write __P((fdc_p, fd_p));
214 void amiga_write __P((fd_p));
215 void fd_calibrate __P((fd_p));
216 void encode_block __P((u_long *, u_char *, int, u_long *));
217 void fd_select_dir __P((fd_p, int));
218 void fd_pseudointr __P((fdc_p));
219 void fd_select_side __P((fd_p, int));
220 
221 u_long scan_sync __P((u_long, u_long, int));
222 u_long encode_long __P((u_long, u_long *));
223 u_long loop_read_id __P((int));
224 u_long get_drive_id __P((int));
225 
226 int fdstate __P((fdc_p));
227 int retrier __P((fdc_p));
228 int amiga_read __P((fd_p));
229 int get_drive_type __P((u_long));
230 
231 /* device routines */
232 int Fdopen __P((dev_t, int));
233 int fdsize __P((dev_t));
234 int fdioctl __P((dev_t, int, caddr_t, int, struct proc *));
235 int fdclose __P((dev_t, int));
236 int fdattach __P((struct amiga_device *));
237 
238 void fdintr __P((fdcu_t));
239 void fdstart __P((fdc_p));
240 void fdstrategy __P((struct buf *bp));
241 
242 #define DEVIDLE		0
243 #define FINDWORK	1
244 #define	DOSEEK		2
245 #define DO_IO	 	3
246 #define	DONE_IO		4
247 #define	WAIT_READ	5
248 #define	WAIT_WRITE	6
249 #define DELAY_WRITE	7
250 #define RECALCOMPLETE	8
251 #define	STARTRECAL	9
252 #define	RESETCTLR	10
253 #define	SEEKWAIT	11
254 #define	RECALWAIT	12
255 #define	MOTORWAIT	13
256 
257 #undef DEBUG
258 
259 #ifdef DEBUG
260 
261 char *fdstates[] =
262 {
263 "DEVIDLE",
264 "FINDWORK",
265 "DOSEEK",
266 "DO_IO",
267 "DONE_IO",
268 "WAIT_READ",
269 "WAIT_WRITE",
270 "DELAY_WRITE",
271 "RECALCOMPLETE",
272 "STARTRECAL",
273 "RESETCTLR",
274 "SEEKWAIT",
275 "RECALWAIT",
276 "MOTORWAIT",
277 };
278 
279 #define TRACE0(arg) if (fd_debug == 1) printf(arg)
280 #define TRACE1(arg1,arg2) if (fd_debug == 1) printf(arg1,arg2)
281 
282 #else	/* !DEBUG */
283 
284 #define TRACE0(arg)
285 #define TRACE1(arg1,arg2)
286 
287 #endif	/* !DEBUG */
288 
289 extern int hz;
290 
291 unsigned char *raw_buf = NULL;
292 #ifdef DEBUG
293 int fd_debug = 1;
294 #else
295 int fd_debug = 0;
296 #endif
297 
298 /*
299  * Floppy Support Routines
300  */
301 #define MOTOR_ON		(ciab.prb &= ~CIAB_PRB_MTR)
302 #define MOTOR_OFF		(ciab.prb |= CIAB_PRB_MTR)
303 #define SELECT(mask)		(ciab.prb &= ~mask)
304 #define DESELECT(mask)		(ciab.prb |= mask)
305 #define SELMASK(drive)		(1 << (3 + (drive & 3)))
306 
307 /*
308  * Delay for a number of milliseconds
309  *	- tried ciab.tod but seems to miss values and screw up
310  *	- stupid busy loop for now
311  */
312 static int
313 delay(delay_ms)
314 	int delay_ms;
315 {
316 	long cnt, inner;
317 	int val;
318 
319 	DELAY (delay_ms * 1000 * 25);	/* NOTE:  DELAY seems to run too fast */
320 	return(val);
321 }
322 
323 /*
324  * motor control stuff
325  */
326 void
327 fd_motor_to(fdcu)
328 	fdcu_t fdcu;
329 {
330 	printf("timeout starting motor\n");	/* XXXX */
331 	fdc_data[fdcu].motor_fdu = -2;
332 }
333 
334 void
335 fd_motor_on(fdc, fdu)
336 	fdc_p fdc;
337 	fdu_t fdu;
338 {
339 	int i;
340 
341 	/* deselect all drives */
342 	for (i = 0; i < DRVS_PER_CTLR; i++)
343 		DESELECT(SELMASK(i));
344 
345 	/* turn on the unit's motor */
346 	MOTOR_ON;
347 	SELECT(SELMASK(fdu));
348 
349 	timeout((timeout_t)fd_motor_to, (caddr_t)fdc->fdcu, hz);
350 	while (ciaa.pra & CIAA_PRA_RDY)
351 		;
352 	untimeout((timeout_t)fd_motor_to, (caddr_t)fdc->fdcu);
353 	fdc->motor_fdu = fdu;
354 }
355 
356 void
357 fd_turnoff(fdc)
358 	fdc_p fdc;
359 {
360 	int i;
361 
362 	if (fdc->motor_fdu != -1) {
363 		/* deselect all drives */
364 		for (i = 0; i < DRVS_PER_CTLR; i++)
365 			DESELECT(SELMASK(i));
366 
367 		/* turn off the unit's motor */
368 		MOTOR_OFF;
369 		SELECT(SELMASK(fdc->motor_fdu));
370 		MOTOR_ON;
371 		DESELECT(SELMASK(fdc->motor_fdu));
372 	}
373 
374 	fdc->motor_fdu = -1;
375 }
376 
377 void
378 fd_turnon(fdc, fdu)
379 	fdc_p fdc;
380 	fdu_t fdu;
381 {
382 	if (fdc->motor_fdu == fdu)
383 		return;
384 
385 	fd_turnoff(fdc);
386 	fd_motor_on(fdc, fdu);
387 }
388 
389 /*
390  * Step the drive once in its current direction
391  */
392 void
393 fd_step()
394 {
395 	ciab.prb &= ~CIAB_PRB_STEP;
396 	ciab.prb |= CIAB_PRB_STEP;
397 }
398 
399 /*
400  * Select the side to use for a particular drive.
401  * The drive must have been calibrated at some point before this.
402  * The drive must also be active and the motor must be running.
403  */
404 void
405 fd_select_side(fd, side)
406 	fd_p fd;
407 	int side;
408 {
409 	if (fd->side == side)
410 		return;
411 
412 	/* select the requested side */
413 	if (side == 0)
414 		ciab.prb &= ~CIAB_PRB_SIDE;
415 	else
416 		ciab.prb |= CIAB_PRB_SIDE;
417 	delay(fd->ft->side_time);
418 	fd->side = side;
419 }
420 
421 /*
422  * Select the direction to use for the current particular drive.
423  */
424 void
425 fd_select_dir(fd, dir)
426 	fd_p fd;
427 	int dir;
428 {
429 	if (fd->dir == dir)
430 		return;
431 
432 	/* select the requested direction */
433 	if (dir == 0)
434 		ciab.prb &= ~CIAB_PRB_DIR;
435 	else
436 		ciab.prb |= CIAB_PRB_DIR;
437 	delay(fd->ft->settle_time);
438 	fd->dir = dir;
439 }
440 
441 /*
442  * Seek the drive to track 0.
443  * The drive must be active and the motor must be running.
444  * Returns standard floppy error code. /* XXXX doesn't return anything
445  */
446 void
447 fd_calibrate(fd)
448 	fd_p fd;
449 {
450 	fd_select_dir(fd, 1);
451 
452 	/* loop until we hit track 0 */
453 	while (ciaa.pra & CIAA_PRA_TK0) {
454 		fd_step();
455 		delay(4);
456 	}
457 
458 	/* set known values */
459 	fd->cyl = 0;
460 
461 	delay (fd->ft->settle_time);
462 }
463 
464 /*
465  * Seek the drive to the requested track.
466  * The drive must be active and the motor must be running.
467  */
468 void
469 fd_seek(fd, track)
470 	fd_p fd;
471 	int track;
472 {
473 	int cyl, side;
474 	int dir, cnt;
475 
476 	cyl = track >> 1;
477 	side = (track % 2) ^ 1;
478 
479 	if (fd->cyl == -1)
480 		fd_calibrate(fd);
481 
482 	fd_select_side(fd, side);
483 
484 	if (cyl < fd->cyl) {
485 		dir = 1;
486 		cnt = fd->cyl - cyl;
487 	} else {
488 		dir = 0;
489 		cnt = cyl - fd->cyl;
490 	}
491 
492 	fd_select_dir(fd, dir);
493 
494 	if (cnt) {
495 		while (cnt) {
496 			fd_step();
497 			delay(fd->ft->step_delay);
498 			--cnt;
499 		}
500 		delay(fd->ft->settle_time);
501 	}
502 
503 	fd->cyl = cyl;
504 }
505 
506 void
507 encode(data, dest, csum)
508 	u_long data;
509 	u_long *dest, *csum;
510 {
511 	u_long data2;
512 
513 	data &= 0x55555555;
514 	data2 = data ^ 0x55555555;
515 	data |= ((data2 >> 1) | 0x80000000) & (data2 << 1);
516 
517 	if (*(dest - 1) & 0x00000001)
518 		data &= 0x7FFFFFFF;
519 
520 	*csum ^= data;
521 	*dest = data;
522 }
523 
524 u_long
525 encode_long(data, dest)
526 	u_long data;
527 	u_long *dest;
528 {
529 	u_long csum;
530 
531 	csum = 0;
532 
533 	encode(data >> 1, dest, &csum);
534 	encode(data, dest + 1, &csum);
535 
536 	return(csum & 0x55555555);
537 }
538 
539 void
540 encode_block(dest, from, len, csum)
541 	u_long *dest, *csum;
542 	u_char *from;
543 	int len;
544 {
545 	int cnt, to_cnt = 0;
546 	u_long data, *src;
547 
548 	to_cnt = 0;
549 	src = (u_long *)from;
550 
551 	/* odd bits */
552 	for (cnt = 0; cnt < len / 4; cnt++) {
553 		data = src[cnt] >> 1;
554 		encode(data, dest + to_cnt++, csum);
555 	}
556 
557 	/* even bits */
558 	for (cnt = 0; cnt < len / 4; cnt++) {
559 		data = src[cnt];
560 		encode(data, dest + to_cnt++, csum);
561 	}
562 
563 	*csum &= 0x55555555;
564 }
565 
566 void
567 correct(raw)
568 	u_long *raw;
569 {
570 	u_char data, *ptr;
571 
572 	ptr = (u_char *)raw;
573 
574 	data = *ptr;
575 	if (*(ptr - 1) & 0x01) {	/* XXXX will choke on old GVP's */
576 		*ptr = data & 0x7f;
577 		return;
578 	}
579 
580 	if (data & 0x40)
581 		return;
582 
583 	*ptr |= 0x80;
584 }
585 
586 /*
587  * amiga_write converts track/labels data to raw track data
588  */
589 void
590 amiga_write(fd)
591 	fd_p fd;
592 {
593 	u_long *raw, csum, format;
594 	u_char *data, *labels;
595 	int cnt, track;
596 
597 	raw = (u_long *)raw_buf;	/* XXXX never used while intr? */
598 					/* XXXX never waits after here? */
599 	data = fd->buf_data;
600 	labels = fd->buf_labels;
601 	track = fd->buf_track;
602 
603 	/* gap space */
604 	for (cnt = fd->ft->gap_size; cnt; cnt--)
605 		*raw++ = 0xaaaaaaaa;
606 
607 	/* sectors */
608 	for (cnt = 0; cnt < fd->sects; cnt++) {
609 		*raw = 0xaaaaaaaa;
610 		correct(raw);
611 		++raw;
612 
613 		*raw++ = 0x44894489;
614 
615 		format = 0xff000000 | (track << 16) | (cnt << 8) | (fd->sects - cnt);
616 		csum = encode_long(format,raw);
617 		raw += 2;
618 
619 		encode_block(raw, labels + cnt * 16, 16, &csum);
620 		raw += 8;
621 		csum = encode_long(csum, raw);
622 		raw += 2;
623 
624 		csum = 0;
625 		encode_block(raw+2, data + cnt * 512, 512, &csum);
626 		csum = encode_long(csum, raw);
627 		correct (raw+2);
628 		raw += 256 + 2;
629 	}
630 	*raw = 0xaaa80000;
631 	correct(raw);
632 
633 }
634 
635 #define get_word(raw) (*(u_short *)(raw))
636 #define get_long(raw) (*(u_long *)(raw))
637 
638 #define decode_long(raw) \
639     (((get_long(raw) & 0x55555555) << 1) | \
640     (get_long((raw)+4) & 0x55555555))
641 
642 #define MFM_NOSYNC	1
643 #define MFM_HEADER	2
644 #define MFM_DATA	3
645 #define MFM_TRACK	4
646 
647 /*
648  * scan_sync - looks for the next start of sector marked by a sync. When
649  *	sect != 0, can't be certain of a starting sync.
650  */
651 u_long
652 scan_sync(raw, end, sect)
653 	u_long raw, end;
654 	int sect;
655 {
656 	u_short data;
657 
658 	if (sect == 0) {
659 		while (raw < end) {
660 			data = get_word(raw);
661 			if (data == 0x4489)
662 				break;
663 			raw += 2;
664 		}
665 		if (raw > end)
666 			return(0);
667 	}
668 
669 	while (raw < end) {
670 		data = get_word(raw);
671 		if (data != 0x4489)
672 			break;
673 		raw += 2;
674 	}
675 	if (raw > end)
676 		return(0);
677 	return(raw);
678 }
679 
680 /*
681  * amiga_read reads a raw track of data into a track buffer
682  */
683 int
684 amiga_read(fd)
685 	fd_p fd;
686 {
687 	u_char *track_data, *label_data;
688 	u_long raw, end, val1, val2, csum, data_csum;
689 	u_long *data, *labels;
690 	int scnt, cnt, format, tnum, sect, snext;
691 
692 	track_data = fd->buf_data;
693 	label_data = fd->buf_labels;
694 	raw = (u_long)raw_buf;		/* XXXX see above about glb */
695 
696 	end = raw + fd->ft->read_size;
697 
698 	for (scnt = fd->sects-1; scnt >= 0; scnt--) {
699 		if ((raw = scan_sync(raw, end, scnt == fd->sects-1)) == 0) {
700 			/* XXXX */
701 			printf("can't find sync for sector %d\n", scnt);
702 			return(1);
703 		}
704 
705 		val1 = decode_long(raw);
706 
707 		format = (val1 >> 24) & 0xFF;
708 		tnum   = (val1 >> 16) & 0xFF;
709 		sect   = (val1 >>  8) & 0xFF;
710 		snext  = (val1)       & 0xFF;
711 
712 		labels = (u_long *)(label_data + (sect << 4));
713 
714 		csum = 0;
715 		val1 = get_long(raw);
716 		raw += 4;
717 		csum ^= val1;
718 		val1 = get_long(raw);
719 		raw += 4;
720 		csum ^= val1;
721 
722 		for (cnt = 0; cnt < 4; cnt++) {
723 			val1 = get_long(raw+16);
724 			csum ^= val1;
725 			val1 &= 0x55555555;
726 			val2 = get_long(raw);
727 			raw += 4;
728 			csum ^= val2;
729 			val2 &= 0x55555555;
730 			val2 = val2 << 1;
731 			val1 |= val2;
732 			*labels++ = val1;
733 		}
734 
735 		csum &= 0x55555555;
736 		raw += 16;
737 		val1 = decode_long(raw);
738 		raw += 8;
739 		if (val1 != csum) {
740 			/* XXXX */
741 			printf("MFM_HEADER %d: %08x,%08x\n", scnt,
742 			    val1, csum);
743 			return(MFM_HEADER);
744 		}
745 
746 		/* verify track */
747 		if (tnum != fd->buf_track) {
748 			/* XXXX */
749 			printf("MFM_TRACK %d: %d, %d\n", scnt, tnum,
750 			    fd->buf_track);
751 			return(MFM_TRACK);
752 		}
753 
754 		data_csum = decode_long(raw);
755 		raw += 8;
756 		data = (u_long *)(track_data + (sect << 9));
757 
758 		csum = 0;
759 		for (cnt = 0; cnt < 128; cnt++) {
760 			val1 = get_long(raw + 512);
761 			csum ^= val1;
762 			val1 &= 0x55555555;
763 			val2 = get_long(raw);
764 			raw += 4;
765 			csum ^= val2;
766 			val2 &= 0x55555555;
767 			val2 = val2 << 1;
768 			val1 |= val2;
769 			*data++ = val1;
770 		}
771 
772 		csum &= 0x55555555;
773 		raw += 512;
774 
775 		if (data_csum != csum) {
776 			printf(
777 			    "MFM_DATA: f=%d t=%d s=%d sn=%d sc=%d %lx, %lx\n",
778 			    format, tnum, sect, snext, scnt, data_csum, csum);
779 			return(MFM_DATA);
780 		}
781 	}
782 	return(0);
783 }
784 
785 /*
786  * Return unit ID number of given disk
787  * XXXX This function doesn't return anything.
788  */
789 u_long
790 loop_read_id(unit)
791 	int unit;
792 {
793 	u_long id;
794 	u_long id_bit;
795 
796 	id = 0;
797 
798 	/* loop and read disk ID */
799 	for (id_bit = 0x80000000; id_bit; id_bit >>= 1) {
800 		SELECT(SELMASK(unit));
801 
802 		/* read and store value of DSKRDY */
803 		if (ciaa.pra & CIAA_PRA_RDY)
804 			id |= id_bit;
805 
806 		DESELECT(SELMASK(unit));
807 	}
808 }
809 
810 u_long
811 get_drive_id(unit)
812 	int unit;
813 {
814 	int t;
815 	u_long id, id_bit;
816 	u_char mask1, mask2;
817 	volatile u_char *a_ptr;
818 	volatile u_char *b_ptr;
819 
820 	id = 0;
821 	a_ptr = &ciaa.pra;
822 	b_ptr = &ciab.prb;
823 	mask1 = ~(1 << (3 + unit));
824 	mask2 = 1 << (3 + unit);
825 
826 	*b_ptr &= ~CIAB_PRB_MTR;
827 	*b_ptr &= mask1;
828 	*b_ptr |= mask2;
829 	*b_ptr |= CIAB_PRB_MTR;
830 	*b_ptr &= mask1;
831 	*b_ptr |= mask2;
832 
833 	for (id_bit = 0x80000000; id_bit;  id_bit >>= 1) {
834 		*b_ptr &= mask1;
835 		if ((*a_ptr) & CIAA_PRA_RDY)
836 			id |= id_bit;
837 		*b_ptr |= mask2;
838 	}
839 
840 	/* all amigas have internal drives at 0. */
841 	if (unit == 0 && id == FD_NONE)
842 		return(FD_DD_3);
843 	return(id);
844 #if 0
845   /* set up for ID */
846   MOTOR_ON;
847   SELECT(SELMASK(unit));
848   DESELECT(SELMASK(unit));
849   MOTOR_OFF;
850   SELECT(SELMASK(unit));
851   DESELECT(SELMASK(unit));
852 
853   return loop_read_id(unit); /* XXXX gotta fix loop_read_id() if use */
854 #endif
855 }
856 
857 int
858 get_drive_type(u_long id)
859 {
860 	int type;
861 
862 	for (type = 0; type < num_dr_types; type++)
863 		if (drive_types[type].id == id)
864 			return(type);
865 	return(-1);
866 }
867 
868 void
869 fd_probe(fd)
870 	fd_p fd;
871 {
872 	u_long id;
873 	int type, data;
874 
875 	fd->ft = NULL;
876 
877 	id = get_drive_id(fd->fdu);
878 	type = get_drive_type(id);
879 
880 	/* get_drive_id shuts off the motor */
881 	/* XXXX fdc_data[0] only as long as there is one controller */
882 	if (fd->fdu == fdc_data[0].motor_fdu)
883 		fdc_data[0].motor_fdu = -1;
884 
885 	if (type == -1) {
886 		/* XXXX */
887 		printf("fd_probe: unsupported drive type %08x found\n", id);
888 		return;
889 	}
890 
891 	fd->type = type;
892 	fd->ft = &drive_types[type];
893 	if (fd->ft->tracks == 0) {
894 		/* XXXX */
895 		printf("no drive type %d\n", type);
896 	}
897 	fd->side = -1;
898 	fd->dir = -1;
899 	fd->cyl = -1;
900 
901 	fd->sects = 11 * drive_types[type].sect_mult;
902 	fd->size = fd->sects *
903 	    drive_types[type].tracks *
904 	    drive_types[type].heads;
905 	fd->flags = 0;
906 }
907 
908 void
909 track_read(fdc, fd, track)
910 	fdc_p fdc;
911 	fd_p fd;
912 	int track;
913 {
914 	u_long len;
915 
916 	fd->buf_track = track;
917 	fdc->state = WAIT_READ;
918 
919 	fd_seek(fd, track);
920 
921 	len = fd->ft->read_size >> 1;
922 
923 	/* setup adkcon bits correctly */
924 	custom.adkcon = ADKF_MSBSYNC;
925 	custom.adkcon = ADKF_SETCLR | ADKF_WORDSYNC | ADKF_FAST;
926 
927 	custom.dsksync = MFM_SYNC;
928 
929 	custom.dsklen = 0;
930 	delay(fd->ft->side_time);
931 	timeout((timeout_t)fd_timeout, (caddr_t)fdc, 2 * hz);
932 
933 	custom.dskpt = (u_char *)kvtop(raw_buf);
934 	custom.dsklen = len | DSKLEN_DMAEN;
935 	custom.dsklen = len | DSKLEN_DMAEN;
936 }
937 
938 void
939 track_write(fdc, fd)
940 	fdc_p fdc;
941 	fd_p fd;
942 {
943 	int track;
944 	u_long len;
945 	u_short adk;
946 
947 	amiga_write(fd);
948 
949 	track = fd->buf_track;
950 	fd->write_cnt += 1;
951 
952 	fdc->saved = fdc->state;
953 	fdc->state = WAIT_WRITE;
954 
955 	fd_seek(fd, track);
956 
957 	len = fd->ft->write_size >> 1;
958 
959 	if ((ciaa.pra & CIAA_PRA_WPRO) == 0)
960 		return;
961 
962 	/* clear adkcon bits */
963 	custom.adkcon = ADKF_PRECOMP1 | ADKF_PRECOMP0 | ADKF_WORDSYNC |
964 	    ADKF_MSBSYNC;
965 
966 	/* set appropriate adkcon bits */
967 	adk = ADKF_SETCLR | ADKF_FAST | ADKF_MFMPREC;
968 	if (track >= fd->ft->precomp2)
969 		adk |= ADKF_PRECOMP1;
970 	else if (track >= fd->ft->precomp1)
971 		adk |= ADKF_PRECOMP0;
972 	custom.adkcon = adk;
973 
974 	custom.dsklen = DSKLEN_WRITE;
975 	delay(fd->ft->side_time);
976 	timeout((timeout_t)fd_timeout, (caddr_t)fdc, 2 * hz);
977 
978 	custom.dskpt = (u_char *)kvtop(raw_buf);	/* XXXX again raw */
979 	custom.dsklen = len | DSKLEN_DMAEN | DSKLEN_WRITE;
980 	custom.dsklen = len | DSKLEN_DMAEN | DSKLEN_WRITE;
981 }
982 
983 /*
984  * Floppy Device Code
985  */
986 int
987 fdattach(ad)
988 	struct amiga_device *ad;
989 {
990 	int fdcu = 0;
991 	fdc_p fdc = fdc_data + fdcu;
992 	int i;
993 	unsigned long id;
994 	int type;
995 
996 	fdc->fdcu = fdcu;
997 	fdc->state = FINDWORK;
998 	fdc->fd = NULL;
999 	fdc->motor_fdu = -1;
1000 
1001 	for (i = 0; i < DRVS_PER_CTLR; i++) {
1002 		fdc->fd_data[i].fdu = i;
1003 		fdc->fd_data[i].flags = 0;
1004 
1005 		fdc->fd_data[i].buf_track = -1;
1006 		fdc->fd_data[i].buf_dirty = 0;
1007 		fdc->fd_data[i].buf_data =
1008 		    malloc(MAX_SECTS * 512, M_DEVBUF, 0);
1009 		fdc->fd_data[i].buf_labels =
1010 		    malloc(MAX_SECTS * 16, M_DEVBUF, 0);
1011 
1012 		if (fdc->fd_data[i].buf_data == NULL ||
1013 		    fdc->fd_data[i].buf_labels == NULL) {
1014 			printf("Cannot alloc buffer memory for fd device\n");
1015 			return(0);
1016 		}
1017 
1018 		id = get_drive_id(i);
1019 		type = get_drive_type(id);
1020 
1021 		if (type != -1 && drive_types[type].tracks != 0) {
1022 			printf("floppy drive %d: %s\n", i,
1023 			    drive_types[type].name);
1024 		}
1025 	}
1026 
1027 	raw_buf = (char *)alloc_chipmem(30000);
1028 	if (raw_buf == NULL) {
1029 		printf("Cannot alloc chipmem for fd device\n");
1030 		return 0;
1031 	}
1032 
1033 	/* enable disk DMA */
1034 	custom.dmacon = DMAF_SETCLR | DMAF_DISK;
1035 
1036 	/* enable interrupts for IRQ_DSKBLK */
1037 	ciaa.icr = CIA_ICR_IR_SC | CIA_ICR_FLG;
1038 	custom.intena = INTF_SETCLR | INTF_SOFTINT;
1039 
1040 	/* enable disk block interrupts */
1041 	custom.intena = INTF_SETCLR | INTF_DSKBLK;
1042 
1043 	return(1);
1044 }
1045 
1046 int
1047 Fdopen(dev, flags)
1048 	dev_t dev;
1049 	int flags;
1050 {
1051 	fdcu_t fdcu;
1052 	fdc_p fdc;
1053 	fdu_t fdu;
1054 	fd_p fd;
1055 
1056 	fdcu = 0;
1057 	fdc = fdc_data + fdcu;
1058 	fdu = UNIT(dev);
1059 	fd = fdc->fd_data + fdu;
1060 
1061 	/* check bounds */
1062 	if (fdu >= DRVS_PER_CTLR)
1063 		return(ENXIO);
1064 
1065 	/*
1066 	 * XXXX don't probe if device is currently selected
1067 	 * it may be in the middle of a DMA transfer and fd_probe
1068 	 * will deselect all drives
1069 	 */
1070 	if (fdc->motor_fdu < 0)
1071 		fd_probe(fd);
1072 #if 0
1073 	else
1074 		printf ("fd: Fdopen called with a drive selected\n");
1075 #endif
1076 
1077 
1078 	if (fd->ft == NULL || fd->ft->tracks == 0)
1079 		return(ENXIO);
1080 
1081 	fd->flags |= FDF_OPEN;
1082 	fd->write_cnt = 0;
1083 
1084 	return(0);
1085 }
1086 
1087 int
1088 fdclose(dev, flags)
1089 	dev_t dev;
1090 	int flags;
1091 {
1092 	struct buf *dp,*bp;
1093 	fdcu_t fdcu;
1094 	fdc_p fdc;
1095 	fdu_t fdu;
1096 	fd_p fd;
1097 
1098 	fdcu = 0;
1099 	fdc = fdc_data + fdcu;
1100 	fdu = UNIT(dev);
1101 	fd = fdc->fd_data + fdu;
1102 
1103 
1104 	/* wait until activity is done for this drive */
1105 	/* XXXX ACK! sleep.. */
1106 	do {
1107 		dp = &(fd->head);
1108 		bp = dp->b_actf;
1109 	} while (bp);
1110 
1111 	/* XXXX */
1112 	printf("wrote %d tracks (%d)\n", fd->write_cnt, fd->buf_dirty);
1113 
1114 	fd->buf_track = -1;
1115 	fd->buf_dirty = 0;
1116 	fd->flags &= ~FDF_OPEN;
1117 
1118 	return(0);
1119 }
1120 
1121 int
1122 fdioctl(dev, cmd, data, flag, p)
1123 	dev_t dev;
1124 	int cmd, flag;
1125 	caddr_t data;
1126 	struct proc *p;
1127 {
1128 	struct disklabel *fd_label;
1129 	fdcu_t fdcu;
1130 	fdc_p fdc;
1131 	fdu_t fdu;
1132 	fd_p fd;
1133 	int error;
1134 
1135 	fdcu = 0;
1136 	fdc = fdc_data + fdcu;
1137 	fdu = UNIT(dev);
1138 	fd = fdc->fd_data + fdu;
1139 	error = 0;
1140 
1141 	if (cmd != DIOCGDINFO)
1142 		return (EINVAL);
1143 
1144 	fd_label = (struct disklabel *)data;
1145 
1146 	bzero(fd_label, sizeof(fd_label));
1147 	fd_label->d_magic = DISKMAGIC;
1148 	fd_label->d_type = DTYPE_FLOPPY;
1149 	strncpy(fd_label->d_typename, "fd", sizeof(fd_label->d_typename) - 1);
1150 	strcpy(fd_label->d_packname, fd->ft->name);
1151 
1152 	fd_label->d_rpm = 300 / fd->ft->sect_mult;
1153 	fd_label->d_secsize = 512;
1154 	fd_label->d_nsectors = fd->sects;
1155 	fd_label->d_ntracks = fd->ft->heads;
1156 	fd_label->d_ncylinders = fd->ft->tracks;
1157 	fd_label->d_secpercyl = fd_label->d_nsectors * fd_label->d_ntracks;
1158 	fd_label->d_secperunit= fd_label->d_ncylinders * fd_label->d_secpercyl;
1159 
1160 	fd_label->d_magic2 = DISKMAGIC;
1161 	fd_label->d_partitions[0].p_offset = 0;
1162 	fd_label->d_partitions[0].p_size = fd_label->d_secperunit;
1163 	fd_label->d_partitions[0].p_fstype = FS_UNUSED;
1164 	fd_label->d_npartitions = 1;
1165 
1166 	fd_label->d_checksum = 0;
1167 	fd_label->d_checksum = dkcksum(fd_label);
1168 
1169 	return(0);
1170 }
1171 
1172 int
1173 fdsize(dev)
1174 	dev_t dev;
1175 {
1176 	/* check UNIT? */
1177 	return((fdc_data + 0)->fd_data[UNIT(dev)].size);
1178 }
1179 
1180 void
1181 fdstrategy(bp)
1182 	struct buf *bp;
1183 {
1184 	fdcu_t fdcu;
1185 	fdc_p fdc;
1186 	fdu_t fdu;
1187 	fd_p fd;
1188 	long nblocks, blknum;
1189 	struct buf *dp;
1190 	int s;
1191 
1192 	fdcu = 0;
1193 	fdc = fdc_data + fdcu;
1194 	fdu = UNIT(bp->b_dev);
1195 	fd = fdc->fd_data + fdu;
1196 
1197 	if (bp->b_blkno < 0) {
1198 		/* XXXX */
1199 		printf("fdstrat error: fdu = %d, blkno = %d, bcount = %d\n",
1200 		    fdu, bp->b_blkno, bp->b_bcount);
1201 		bp->b_error = EINVAL;
1202 		bp->b_flags |= B_ERROR;
1203 		biodone(bp);
1204 		return;
1205 	}
1206 
1207 	/*
1208 	 * Set up block calculations.
1209 	 */
1210 	blknum = (unsigned long) bp->b_blkno * DEV_BSIZE / FDBLK;
1211 	nblocks = fd->sects * fd->ft->tracks * fd->ft->heads;
1212 	if (blknum + (bp->b_bcount / FDBLK) > nblocks) {
1213 		nblocks -= blknum;
1214 		if (nblocks == 0) {
1215 			bp->b_resid = bp->b_bcount;
1216 			goto done;
1217 		}
1218 		if (nblocks < 0) {
1219 			bp->b_error = EINVAL;
1220 			bp->b_flags |= B_ERROR;
1221 done:
1222 			biodone(bp);
1223 			return;
1224 		}
1225 		bp->b_bcount = dbtob(nblocks);
1226 	}
1227 
1228 	bp->b_cylin = blknum;	/* set here for disksort */
1229 	dp = &(fd->head);
1230 
1231 	s = splbio();
1232 	disksort(dp, bp);
1233 	untimeout((timeout_t)fd_turnoff, (caddr_t)fdc); /* a good idea */
1234 	fdstart(fdc);
1235 	splx(s);
1236 }
1237 
1238 /*
1239  * We have just queued something.. if the controller is not busy
1240  * then simulate the case where it has just finished a command
1241  * So that it (the interrupt routine) looks on the queue for more
1242  * work to do and picks up what we just added.
1243  * If the controller is already busy, we need do nothing, as it
1244  * will pick up our work when the present work completes
1245  */
1246 void
1247 fdstart(fdc)
1248 	fdc_p fdc;
1249 {
1250 	int s;
1251 
1252 	s = splbio();
1253 	if (fdc->state == FINDWORK)
1254 		fdintr(fdc->fdcu);
1255 	splx(s);
1256 }
1257 
1258 /*
1259  * just ensure it has the right spl
1260  */
1261 void
1262 fd_pseudointr(fdc)
1263 	fdc_p fdc;
1264 {
1265 	int s;
1266 
1267 	s = splbio();
1268 	fdintr(fdc->fdcu);
1269 	splx(s);
1270 }
1271 
1272 void
1273 fd_timeout(fdc)
1274 	fdc_p fdc;
1275 {
1276 	struct buf *dp,*bp;
1277 	fd_p fd;
1278 
1279 	fd = fdc->fd;
1280 	dp = &fd->head;
1281 	bp = dp->b_actf;
1282 
1283 	if (fd == NULL) {
1284 		printf ("fd_timeout called with no active drive?\n");
1285 		return;
1286 	}
1287 
1288 	/* XXXX */
1289 	printf("fd%d: Operation timeout; state %d\n", fd->fdu, fdc->state);
1290 	if (bp) {
1291 		retrier(fdc);
1292 #if 0	/* XXX retrier already set fdc->state? */
1293 		fdc->state = DONE_IO;
1294 #endif
1295 		if (fdc->retry < 6)
1296 			fdc->retry = 6;
1297 	} else {
1298 		fdc->fd = NULL;
1299 		fdc->state = FINDWORK;
1300 	}
1301 
1302 	fd_pseudointr(fdc);
1303 }
1304 
1305 /*
1306  * keep calling the state machine until it returns a 0
1307  * ALWAYS called at SPLBIO
1308  */
1309 void
1310 fdintr(fdcu)
1311 	fdcu_t fdcu;
1312 {
1313 	fdc_p fdc;
1314 
1315 	fdc = fdc_data + fdcu;
1316 	while (fdstate(fdc))
1317 		;
1318 }
1319 
1320 /*
1321  * The controller state machine.
1322  * if it returns a non zero value, it should be called again immediatly
1323  */
1324 int
1325 fdstate(fdc)
1326 	fdc_p fdc;
1327 {
1328 	struct buf *dp,*bp;
1329 	int track, read, sec, i;
1330 	u_long blknum;
1331 	fd_p fd;
1332 
1333 	fd = fdc->fd;
1334 
1335 	if (fd == NULL) {
1336 		/* search for a unit do work with */
1337 		for (i = 0; i < DRVS_PER_CTLR; i++) {
1338 			fd = fdc->fd_data + i;
1339 			dp = &(fd->head);
1340 			bp = dp->b_actf;
1341 			if (bp) {
1342 				fdc->fd = fd;
1343 				break;
1344 			}
1345 		}
1346 
1347 		if (fdc->fd)
1348 			return(1);
1349 
1350 		fdc->state = FINDWORK;
1351 		TRACE1("[fdc%d IDLE]\n", fdc->fdcu);
1352 		return(0);
1353 	}
1354 
1355 	dp = &(fd->head);
1356 	bp = dp->b_actf;
1357 
1358 	blknum = (u_long)bp->b_blkno * DEV_BSIZE / FDBLK + fd->skip / FDBLK;
1359 	track = blknum / fd->sects;
1360 	sec = blknum % fd->sects;
1361 
1362 	read = bp->b_flags & B_READ;
1363 	TRACE1("fd%d", fd->fdu);
1364 	TRACE1("[%s]", fdstates[fdc->state]);
1365 	TRACE1("(0x%x) ", fd->flags);
1366 	TRACE1("%d\n", fd->buf_track);
1367 
1368 	untimeout((timeout_t)fd_turnoff, (caddr_t)fdc);
1369 	timeout((timeout_t)fd_turnoff, (caddr_t)fdc, 4 * hz);
1370 
1371 	switch (fdc->state) {
1372 	case FINDWORK:
1373 		if (!bp) {
1374 			if (fd->buf_dirty) {
1375 				track_write(fdc, fd);
1376 				return(0);
1377 			}
1378 			fdc->fd = NULL;
1379 			return(1);
1380 		}
1381 
1382 		fdc->state = DOSEEK;
1383 		fdc->retry = 0;
1384 		fd->skip = 0;
1385 		return(1);
1386 	case DOSEEK:
1387 		fd_turnon(fdc, fd->fdu);
1388 
1389 		/*
1390 		 * If not started, error starting it
1391 		 */
1392 		if (fdc->motor_fdu != fd->fdu) {
1393 			/* XXXX */
1394 			printf("motor not on!\n");
1395 		}
1396 
1397 		/*
1398 		 * If track not in buffer, read it in
1399 		 */
1400 		if (fd->buf_track != track) {
1401 			TRACE1("do track %d\n", track);
1402 
1403 			if (fd->buf_dirty) {
1404 				track_write(fdc, fd);
1405 				return (0);
1406 			} else {
1407 				if (read || sec != 0 ||
1408 				    ((bp->b_bcount - fd->skip)/FDBLK) % fd->sects) {
1409 					track_read(fdc, fd, track);
1410 					return(0);
1411 				}
1412 				/*
1413 				 * if writing a full track, don't bother reading
1414 				 * in the old track - we're just going to overwrite
1415 				 * it all anyway.
1416 				 */
1417 				fd_seek (fd, track);
1418 				fd->buf_track = track;
1419 				/* clear sector labels */
1420 				bzero(fd->buf_labels, MAX_SECTS * 16);
1421 			}
1422 		}
1423 
1424 		fdc->state = DO_IO;
1425 		return(1);
1426 	case DO_IO:
1427 		if (read)
1428 			bcopy(&fd->buf_data[sec * FDBLK],
1429 			    bp->b_un.b_addr + fd->skip, FDBLK);
1430 		else {
1431 			bcopy(bp->b_un.b_addr + fd->skip,
1432 			    &fd->buf_data[sec * FDBLK], FDBLK);
1433 			fd->buf_dirty = 1;
1434 			if (IMMED_WRITE) {
1435 				fdc->state = DONE_IO;
1436 				track_write(fdc, fd);
1437 				return(0);
1438 			}
1439 		}
1440 	case DONE_IO:
1441 		fd->skip += FDBLK;
1442 		if (fd->skip < bp->b_bcount)
1443 			fdc->state = DOSEEK;
1444 		else {
1445 			fd->skip = 0;
1446 			if (bp == NULL)
1447 				printf ("fd: fdstate DONE_IO bp == NULL\n");
1448 			else {
1449 				bp->b_resid = 0;
1450 				dp->b_actf = bp->b_actf;
1451 				biodone(bp);
1452 			}
1453 			fdc->state = FINDWORK;
1454 		}
1455 		return(1);
1456 	case WAIT_READ:
1457 		untimeout((timeout_t)fd_timeout, (caddr_t)fdc);
1458 		custom.dsklen = 0;
1459 		if (amiga_read(fd) == 0) {
1460 			fdc->retry = 0;
1461 			fdc->state = DO_IO;
1462 			return(1);
1463 		}
1464 		if (fdc->retry++ < 6) {
1465 			track_read(fdc, fd, track);
1466 			return(0);
1467 		}
1468 		if (bp) {
1469 			bp->b_flags |= B_ERROR;
1470 			bp->b_error = EIO;
1471 			bp->b_resid = bp->b_bcount - fd->skip;
1472 			dp->b_actf = bp->b_actf;
1473 			fd->skip = 0;
1474 			biodone(bp);
1475 		}
1476 		fdc->state = FINDWORK;
1477 		return (1);
1478 	case WAIT_WRITE:
1479 		untimeout((timeout_t)fd_timeout, (caddr_t)fdc);
1480 		custom.dsklen = 0;
1481 		fdc->state = fdc->saved;
1482 		fd->buf_dirty = 0;
1483 		/*
1484 		 * post-write delay - should delay only if changing sides
1485 		 * after a write?
1486 		 */
1487 		delay (4);
1488 		return(1);
1489 	default:
1490 		/* XXXX */
1491 		printf("Unexpected FD int->%d\n", fdc->state);
1492 		return 0;
1493 	}
1494 
1495 	/* Come back immediatly to new state */
1496 	return(1);
1497 }
1498 
1499 int
1500 retrier(fdc)
1501 	fdc_p fdc;
1502 {
1503 	struct buf *dp,*bp;
1504 	fd_p fd;
1505 
1506 	fd = fdc->fd;
1507 	dp = &(fd->head);
1508 	bp = dp->b_actf;
1509 
1510 #if 0
1511 	switch(fdc->retry) {
1512 	case 0:
1513 	case 1:
1514 	case 2:
1515 		fdc->state = SEEKCOMPLETE;
1516 		break;
1517 	case 3:
1518 	case 4:
1519 	case 5:
1520 		fdc->state = STARTRECAL;
1521 		break;
1522 	case 6:
1523 		fdc->state = RESETCTLR;
1524 		break;
1525 	case 7:
1526 		break;
1527 	default:
1528 #endif
1529 	/* XXXX */
1530 	printf("fd%d: hard error\n", fd->fdu);
1531 
1532 	if (bp == NULL)
1533 		printf ("fd: retrier bp == NULL\n");
1534 	else {
1535 		bp->b_flags |= B_ERROR;
1536 		bp->b_error = EIO;
1537 		bp->b_resid = bp->b_bcount - fd->skip;
1538 		dp->b_actf = bp->b_actf;
1539 		fd->skip = 0;
1540 		biodone(bp);
1541 	}
1542 	fdc->state = FINDWORK;
1543 	return(1);
1544 #if 0
1545 	fdc->retry++;
1546 	return(1);
1547 #endif
1548 }
1549 
1550 #endif
1551