xref: /netbsd-src/sys/arch/amiga/dev/clock.c (revision fdecd6a253f999ae92b139670d9e15cc9df4497c)
1 /*	$NetBSD: clock.c,v 1.28 1997/07/06 23:17:55 is Exp $	*/
2 
3 /*
4  * Copyright (c) 1988 University of Utah.
5  * Copyright (c) 1982, 1990 The Regents of the University of California.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  * from: Utah $Hdr: clock.c 1.18 91/01/21$
41  *
42  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
43  */
44 
45 #include <sys/param.h>
46 #include <sys/kernel.h>
47 #include <sys/device.h>
48 #include <sys/systm.h>
49 #include <machine/psl.h>
50 #include <machine/cpu.h>
51 #include <amiga/amiga/device.h>
52 #include <amiga/amiga/custom.h>
53 #include <amiga/amiga/cia.h>
54 #ifdef DRACO
55 #include <dev/ic/ds.h>
56 #include <amiga/amiga/drcustom.h>
57 #endif
58 #include <amiga/dev/rtc.h>
59 #include <amiga/dev/zbusvar.h>
60 
61 #include <dev/clock_subr.h>
62 
63 #if defined(PROF) && defined(PROFTIMER)
64 #include <sys/PROF.h>
65 #endif
66 
67 /* the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz.
68    We're using a 100 Hz clock. */
69 
70 #define CLK_INTERVAL amiga_clk_interval
71 int amiga_clk_interval;
72 int eclockfreq;
73 struct CIA *clockcia;
74 
75 /*
76  * Machine-dependent clock routines.
77  *
78  * Startrtclock restarts the real-time clock, which provides
79  * hardclock interrupts to kern_clock.c.
80  *
81  * Inittodr initializes the time of day hardware which provides
82  * date functions.
83  *
84  * Resettodr restores the time of day hardware after a time change.
85  *
86  * A note on the real-time clock:
87  * We actually load the clock with CLK_INTERVAL-1 instead of CLK_INTERVAL.
88  * This is because the counter decrements to zero after N+1 enabled clock
89  * periods where N is the value loaded into the counter.
90  */
91 
92 int clockmatch __P((struct device *, struct cfdata *, void *));
93 void clockattach __P((struct device *, struct device *, void *));
94 void cpu_initclocks __P((void));
95 void calibrate_delay __P((struct device *));
96 
97 struct cfattach clock_ca = {
98 	sizeof(struct device), clockmatch, clockattach
99 };
100 
101 struct cfdriver clock_cd = {
102 	NULL, "clock", DV_DULL, NULL, 0 };
103 
104 int
105 clockmatch(pdp, cfp, auxp)
106 	struct device *pdp;
107 	struct cfdata *cfp;
108 	void *auxp;
109 {
110 	if (matchname("clock", auxp))
111 		return(1);
112 	return(0);
113 }
114 
115 /*
116  * Start the real-time clock.
117  */
118 void
119 clockattach(pdp, dp, auxp)
120 	struct device *pdp, *dp;
121 	void *auxp;
122 {
123 	char *clockchip;
124 	unsigned short interval;
125 #ifdef DRACO
126 	u_char dracorev;
127 #endif
128 
129 	if (eclockfreq == 0)
130 		eclockfreq = 715909;	/* guess NTSC */
131 
132 	CLK_INTERVAL = (eclockfreq / 100);
133 
134 #ifdef DRACO
135 	dracorev = is_draco();
136 	if (dracorev >= 4) {
137 		CLK_INTERVAL = (eclockfreq / 700);
138 		clockchip = "QuickLogic";
139 	} else if (dracorev) {
140 		clockcia = (struct CIA *)CIAAbase;
141 		clockchip = "CIA A";
142 	} else
143 #endif
144 	{
145 		clockcia = (struct CIA *)CIABbase;
146 		clockchip = "CIA B";
147 	}
148 
149 	if (dp)
150 		printf(": %s system hz %d hardware hz %d\n", clockchip, hz,
151 #ifdef DRACO
152 		dracorev >= 4 ? eclockfreq / 7 : eclockfreq);
153 #else
154 		eclockfreq);
155 #endif
156 
157 #ifdef DRACO
158 	if (dracorev >= 4) {
159 		/*
160 		 * can't preload anything beforehand, timer is free_running;
161 		 * but need this for delay calibration.
162 		 */
163 
164 		draco_ioct->io_timerlo = CLK_INTERVAL & 0xff;
165 		draco_ioct->io_timerhi = CLK_INTERVAL >> 8;
166 
167 		calibrate_delay(dp);
168 
169 		return;
170 	}
171 #endif
172 	/*
173 	 * stop timer A
174 	 */
175 	clockcia->cra = clockcia->cra & 0xc0;
176 	clockcia->icr = 1 << 0;		/* disable timer A interrupt */
177 	interval = clockcia->icr;		/* and make sure it's clear */
178 
179 	/*
180 	 * load interval into registers.
181          * the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz
182 	 * supprort for PAL WHEN?!?! XXX
183 	 */
184 	interval = CLK_INTERVAL - 1;
185 
186 	/*
187 	 * order of setting is important !
188 	 */
189 	clockcia->talo = interval & 0xff;
190 	clockcia->tahi = interval >> 8;
191 	/*
192 	 * start timer A in continuous mode
193 	 */
194 	clockcia->cra = (clockcia->cra & 0xc0) | 1;
195 
196 	calibrate_delay(dp);
197 }
198 
199 /*
200  * Calibrate delay loop.
201  * We use two iterations because we don't have enough bits to do a factor of
202  * 8 with better than 1%.
203  *
204  * XXX Note that we MUST stay below 1 tick if using clkread(), even for
205  * underestimated values of delaydivisor.
206  *
207  * XXX the "ns" below is only correct for a shift of 10 bits, and even then
208  * off by 2.4%
209  */
210 
211 void calibrate_delay(dp)
212 	struct device *dp;
213 {
214 	unsigned long t1, t2;
215 	extern u_int32_t delaydivisor;
216 		/* XXX this should be defined elsewhere */
217 
218 	if (dp)
219 		printf("Calibrating delay loop... ");
220 
221 	do {
222 		t1 = clkread();
223 		delay(1024);
224 		t2 = clkread();
225 	} while (t2 <= t1);
226 	t2 -= t1;
227 	delaydivisor = (delaydivisor * t2 + 1023) >> 10;
228 #ifdef DIAGNOSTIC
229 	if (dp)
230 		printf("\ndiff %ld us, new divisor %u/1024 us\n", t2,
231 		    delaydivisor);
232 	do {
233 		t1 = clkread();
234 		delay(1024);
235 		t2 = clkread();
236 	} while (t2 <= t1);
237 	t2 -= t1;
238 	delaydivisor = (delaydivisor * t2 + 1023) >> 10;
239 	if (dp)
240 		printf("diff %ld us, new divisor %u/1024 us\n", t2,
241 		    delaydivisor);
242 #endif
243 	do {
244 		t1 = clkread();
245 		delay(1024);
246 		t2 = clkread();
247 	} while (t2 <= t1);
248 	t2 -= t1;
249 	delaydivisor = (delaydivisor * t2 + 1023) >> 10;
250 #ifdef DIAGNOSTIC
251 	if (dp)
252 		printf("diff %ld us, new divisor ", t2);
253 #endif
254 	if (dp)
255 		printf("%u/1024 us\n", delaydivisor);
256 }
257 
258 void
259 cpu_initclocks()
260 {
261 #ifdef DRACO
262 	unsigned char dracorev;
263 	dracorev = is_draco();
264 	if (dracorev >= 4) {
265 		draco_ioct->io_timerlo = CLK_INTERVAL & 0xFF;
266 		draco_ioct->io_timerhi = CLK_INTERVAL >> 8;
267 		draco_ioct->io_timerrst = 0;	/* any value resets */
268 		draco_ioct->io_status2 |= DRSTAT2_TMRINTENA;
269 
270 		return;
271 	}
272 #endif
273 	/*
274 	 * enable interrupts for timer A
275 	 */
276 	clockcia->icr = (1<<7) | (1<<0);
277 
278 	/*
279 	 * start timer A in continuous shot mode
280 	 */
281 	clockcia->cra = (clockcia->cra & 0xc0) | 1;
282 
283 	/*
284 	 * and globally enable interrupts for ciab
285 	 */
286 #ifdef DRACO
287 	if (dracorev)		/* we use cia a on DraCo */
288 		*draco_intena |= DRIRQ_INT2;
289 	else
290 #endif
291 		custom.intena = INTF_SETCLR | INTF_EXTER;
292 
293 }
294 
295 void
296 setstatclockrate(hz)
297 	int hz;
298 {
299 }
300 
301 /*
302  * Returns number of usec since last recorded clock "tick"
303  * (i.e. clock interrupt).
304  */
305 u_long
306 clkread()
307 {
308 	u_int interval;
309 	u_char hi, hi2, lo;
310 
311 #ifdef DRACO
312 	if (is_draco() >= 4) {
313 		hi2 = draco_ioct->io_chiprev;	/* latch timer */
314 		hi = draco_ioct->io_timerhi;
315 		lo = draco_ioct->io_timerlo;
316 		interval = ((hi<<8) | lo);
317 		if (interval > CLK_INTERVAL)	/* timer underflow */
318 			interval = 65536 + CLK_INTERVAL - interval;
319 		else
320 			interval = CLK_INTERVAL - interval;
321 
322 	} else
323 #endif
324 	{
325 		hi  = clockcia->tahi;
326 		lo  = clockcia->talo;
327 		hi2 = clockcia->tahi;
328 		if (hi != hi2) {
329 			lo = clockcia->talo;
330 			hi = hi2;
331 		}
332 
333 		interval = (CLK_INTERVAL - 1) - ((hi<<8) | lo);
334 
335 		/*
336 		 * should read ICR and if there's an int pending, adjust
337 		 * interval. However, since reading ICR clears the interrupt,
338 		 * we'd lose a hardclock int, and this is not tolerable.
339 		 */
340 	}
341 
342 	return((interval * tick) / CLK_INTERVAL);
343 }
344 
345 #if notyet
346 
347 /* implement this later. I'd suggest using both timers in CIA-A, they're
348    not yet used. */
349 
350 #include "clock.h"
351 #if NCLOCK > 0
352 /*
353  * /dev/clock: mappable high resolution timer.
354  *
355  * This code implements a 32-bit recycling counter (with a 4 usec period)
356  * using timers 2 & 3 on the 6840 clock chip.  The counter can be mapped
357  * RO into a user's address space to achieve low overhead (no system calls),
358  * high-precision timing.
359  *
360  * Note that timer 3 is also used for the high precision profiling timer
361  * (PROFTIMER code above).  Care should be taken when both uses are
362  * configured as only a token effort is made to avoid conflicting use.
363  */
364 #include <sys/proc.h>
365 #include <sys/resourcevar.h>
366 #include <sys/ioctl.h>
367 #include <sys/malloc.h>
368 #include <vm/vm.h>
369 #include <amiga/amiga/clockioctl.h>
370 #include <sys/specdev.h>
371 #include <sys/vnode.h>
372 #include <sys/mman.h>
373 
374 int clockon = 0;		/* non-zero if high-res timer enabled */
375 #ifdef PROFTIMER
376 int  profprocs = 0;		/* # of procs using profiling timer */
377 #endif
378 #ifdef DEBUG
379 int clockdebug = 0;
380 #endif
381 
382 /*ARGSUSED*/
383 clockopen(dev, flags)
384 	dev_t dev;
385 {
386 #ifdef PROFTIMER
387 #ifdef PROF
388 	/*
389 	 * Kernel profiling enabled, give up.
390 	 */
391 	if (profiling)
392 		return(EBUSY);
393 #endif
394 	/*
395 	 * If any user processes are profiling, give up.
396 	 */
397 	if (profprocs)
398 		return(EBUSY);
399 #endif
400 	if (!clockon) {
401 		startclock();
402 		clockon++;
403 	}
404 	return(0);
405 }
406 
407 /*ARGSUSED*/
408 clockclose(dev, flags)
409 	dev_t dev;
410 {
411 	(void) clockunmmap(dev, (caddr_t)0, curproc);	/* XXX */
412 	stopclock();
413 	clockon = 0;
414 	return(0);
415 }
416 
417 /*ARGSUSED*/
418 clockioctl(dev, cmd, data, flag, p)
419 	dev_t dev;
420 	u_long cmd;
421 	caddr_t data;
422 	struct proc *p;
423 {
424 	int error = 0;
425 
426 	switch (cmd) {
427 
428 	case CLOCKMAP:
429 		error = clockmmap(dev, (caddr_t *)data, p);
430 		break;
431 
432 	case CLOCKUNMAP:
433 		error = clockunmmap(dev, *(caddr_t *)data, p);
434 		break;
435 
436 	case CLOCKGETRES:
437 		*(int *)data = CLK_RESOLUTION;
438 		break;
439 
440 	default:
441 		error = EINVAL;
442 		break;
443 	}
444 	return(error);
445 }
446 
447 /*ARGSUSED*/
448 clockmap(dev, off, prot)
449 	dev_t dev;
450 {
451 	return((off + (INTIOBASE+CLKBASE+CLKSR-1)) >> PGSHIFT);
452 }
453 
454 clockmmap(dev, addrp, p)
455 	dev_t dev;
456 	caddr_t *addrp;
457 	struct proc *p;
458 {
459 	int error;
460 	struct vnode vn;
461 	struct specinfo si;
462 	int flags;
463 
464 	flags = MAP_FILE|MAP_SHARED;
465 	if (*addrp)
466 		flags |= MAP_FIXED;
467 	else
468 		*addrp = (caddr_t)0x1000000;	/* XXX */
469 	vn.v_type = VCHR;			/* XXX */
470 	vn.v_specinfo = &si;			/* XXX */
471 	vn.v_rdev = dev;			/* XXX */
472 	error = vm_mmap(&p->p_vmspace->vm_map, (vm_offset_t *)addrp,
473 			PAGE_SIZE, VM_PROT_ALL, flags, (caddr_t)&vn, 0);
474 	return(error);
475 }
476 
477 clockunmmap(dev, addr, p)
478 	dev_t dev;
479 	caddr_t addr;
480 	struct proc *p;
481 {
482 	int rv;
483 
484 	if (addr == 0)
485 		return(EINVAL);		/* XXX: how do we deal with this? */
486 	rv = vm_deallocate(p->p_vmspace->vm_map, (vm_offset_t)addr, PAGE_SIZE);
487 	return(rv == KERN_SUCCESS ? 0 : EINVAL);
488 }
489 
490 startclock()
491 {
492 	register struct clkreg *clk = (struct clkreg *)clkstd[0];
493 
494 	clk->clk_msb2 = -1; clk->clk_lsb2 = -1;
495 	clk->clk_msb3 = -1; clk->clk_lsb3 = -1;
496 
497 	clk->clk_cr2 = CLK_CR3;
498 	clk->clk_cr3 = CLK_OENAB|CLK_8BIT;
499 	clk->clk_cr2 = CLK_CR1;
500 	clk->clk_cr1 = CLK_IENAB;
501 }
502 
503 stopclock()
504 {
505 	register struct clkreg *clk = (struct clkreg *)clkstd[0];
506 
507 	clk->clk_cr2 = CLK_CR3;
508 	clk->clk_cr3 = 0;
509 	clk->clk_cr2 = CLK_CR1;
510 	clk->clk_cr1 = CLK_IENAB;
511 }
512 #endif
513 
514 #endif
515 
516 
517 #ifdef PROFTIMER
518 /*
519  * This code allows the amiga kernel to use one of the extra timers on
520  * the clock chip for profiling, instead of the regular system timer.
521  * The advantage of this is that the profiling timer can be turned up to
522  * a higher interrupt rate, giving finer resolution timing. The profclock
523  * routine is called from the lev6intr in locore, and is a specialized
524  * routine that calls addupc. The overhead then is far less than if
525  * hardclock/softclock was called. Further, the context switch code in
526  * locore has been changed to turn the profile clock on/off when switching
527  * into/out of a process that is profiling (startprofclock/stopprofclock).
528  * This reduces the impact of the profiling clock on other users, and might
529  * possibly increase the accuracy of the profiling.
530  */
531 int  profint   = PRF_INTERVAL;	/* Clock ticks between interrupts */
532 int  profscale = 0;		/* Scale factor from sys clock to prof clock */
533 char profon    = 0;		/* Is profiling clock on? */
534 
535 /* profon values - do not change, locore.s assumes these values */
536 #define PRF_NONE	0x00
537 #define	PRF_USER	0x01
538 #define	PRF_KERNEL	0x80
539 
540 initprofclock()
541 {
542 #if NCLOCK > 0
543 	struct proc *p = curproc;		/* XXX */
544 
545 	/*
546 	 * If the high-res timer is running, force profiling off.
547 	 * Unfortunately, this gets reflected back to the user not as
548 	 * an error but as a lack of results.
549 	 */
550 	if (clockon) {
551 		p->p_stats->p_prof.pr_scale = 0;
552 		return;
553 	}
554 	/*
555 	 * Keep track of the number of user processes that are profiling
556 	 * by checking the scale value.
557 	 *
558 	 * XXX: this all assumes that the profiling code is well behaved;
559 	 * i.e. profil() is called once per process with pcscale non-zero
560 	 * to turn it on, and once with pcscale zero to turn it off.
561 	 * Also assumes you don't do any forks or execs.  Oh well, there
562 	 * is always adb...
563 	 */
564 	if (p->p_stats->p_prof.pr_scale)
565 		profprocs++;
566 	else
567 		profprocs--;
568 #endif
569 	/*
570 	 * The profile interrupt interval must be an even divisor
571 	 * of the CLK_INTERVAL so that scaling from a system clock
572 	 * tick to a profile clock tick is possible using integer math.
573 	 */
574 	if (profint > CLK_INTERVAL || (CLK_INTERVAL % profint) != 0)
575 		profint = CLK_INTERVAL;
576 	profscale = CLK_INTERVAL / profint;
577 }
578 
579 startprofclock()
580 {
581   unsigned short interval;
582 
583   /* stop timer B */
584   clockcia->crb = clockcia->crb & 0xc0;
585 
586   /* load interval into registers.
587      the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz */
588 
589   interval = profint - 1;
590 
591   /* order of setting is important ! */
592   clockcia->tblo = interval & 0xff;
593   clockcia->tbhi = interval >> 8;
594 
595   /* enable interrupts for timer B */
596   clockcia->icr = (1<<7) | (1<<1);
597 
598   /* start timer B in continuous shot mode */
599   clockcia->crb = (clockcia->crb & 0xc0) | 1;
600 }
601 
602 stopprofclock()
603 {
604   /* stop timer B */
605   clockcia->crb = clockcia->crb & 0xc0;
606 }
607 
608 #ifdef PROF
609 /*
610  * profclock() is expanded in line in lev6intr() unless profiling kernel.
611  * Assumes it is called with clock interrupts blocked.
612  */
613 profclock(pc, ps)
614 	caddr_t pc;
615 	int ps;
616 {
617 	/*
618 	 * Came from user mode.
619 	 * If this process is being profiled record the tick.
620 	 */
621 	if (USERMODE(ps)) {
622 		if (p->p_stats.p_prof.pr_scale)
623 			addupc(pc, &curproc->p_stats.p_prof, 1);
624 	}
625 	/*
626 	 * Came from kernel (supervisor) mode.
627 	 * If we are profiling the kernel, record the tick.
628 	 */
629 	else if (profiling < 2) {
630 		register int s = pc - s_lowpc;
631 
632 		if (s < s_textsize)
633 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
634 	}
635 	/*
636 	 * Kernel profiling was on but has been disabled.
637 	 * Mark as no longer profiling kernel and if all profiling done,
638 	 * disable the clock.
639 	 */
640 	if (profiling && (profon & PRF_KERNEL)) {
641 		profon &= ~PRF_KERNEL;
642 		if (profon == PRF_NONE)
643 			stopprofclock();
644 	}
645 }
646 #endif
647 #endif
648 
649 /* this is a hook set by a clock driver for the configured realtime clock,
650    returning plain current unix-time */
651 time_t (*gettod) __P((void));
652 int (*settod) __P((time_t));
653 void *clockaddr;
654 
655 time_t a3gettod __P((void));
656 time_t a2gettod __P((void));
657 int a3settod __P((time_t));
658 int a2settod __P((time_t));
659 
660 #ifdef DRACO
661 int draco_ds_read_bit __P((void *));
662 void draco_ds_write_bit __P((void *, int));
663 void draco_ds_reset __P((void *));
664 
665 time_t dracogettod __P((void));
666 
667 #ifdef __NOTYET__
668 int dracosettod __P((time_t));
669 #endif
670 #endif
671 
672 int rtcinit __P((void));
673 
674 /*
675  * Initialize the time of day register, based on the time base which is, e.g.
676  * from a filesystem.
677  */
678 void
679 inittodr(base)
680 	time_t base;
681 {
682 	time_t timbuf = base;	/* assume no battery clock exists */
683 
684 	if (gettod == NULL && rtcinit() == 0)
685 		printf("WARNING: no battery clock\n");
686 	else
687 		timbuf = gettod() + rtc_offset * 60;
688 
689 	if (timbuf < base) {
690 		printf("WARNING: bad date in battery clock\n");
691 		timbuf = base;
692 	}
693 
694 	/* Battery clock does not store usec's, so forget about it. */
695 	time.tv_sec = timbuf;
696 }
697 
698 void
699 resettodr()
700 {
701 	if (settod && settod(time.tv_sec - rtc_offset * 60) == 0)
702 		printf("Cannot set battery backed clock\n");
703 }
704 
705 int
706 rtcinit()
707 {
708 	clockaddr = (void *)ztwomap(0xdc0000);
709 #ifdef DRACO
710 	if (is_draco()) {
711 		/* XXX to be done */
712 		gettod = dracogettod;
713 		settod = (void *)0;
714 	} else
715 #endif
716 	if (is_a3000() || is_a4000()) {
717 		if (a3gettod() == 0)
718 			return(0);
719 		gettod = a3gettod;
720 		settod = a3settod;
721 	} else {
722 		if (a2gettod() == 0)
723 			return(0);
724 		gettod = a2gettod;
725 		settod = a2settod;
726 	}
727 	return(1);
728 }
729 
730 time_t
731 a3gettod()
732 {
733 	struct rtclock3000 *rt;
734 	struct clock_ymdhms dt;
735 	time_t secs;
736 
737 	rt = clockaddr;
738 
739 	/* hold clock */
740 	rt->control1 = A3CONTROL1_HOLD_CLOCK;
741 
742 	/* Copy the info.  Careful about the order! */
743 	dt.dt_sec   = rt->second1 * 10 + rt->second2;
744 	dt.dt_min   = rt->minute1 * 10 + rt->minute2;
745 	dt.dt_hour  = rt->hour1   * 10 + rt->hour2;
746 	dt.dt_wday  = rt->weekday;
747 	dt.dt_day   = rt->day1    * 10 + rt->day2;
748 	dt.dt_mon   = rt->month1  * 10 + rt->month2;
749 	dt.dt_year  = rt->year1   * 10 + rt->year2;
750 
751 	dt.dt_year += CLOCK_BASE_YEAR;
752 
753 	/* let it run again.. */
754 	rt->control1 = A3CONTROL1_FREE_CLOCK;
755 
756 	if ((dt.dt_hour > 23) ||
757 	    (dt.dt_wday > 6) ||
758 	    (dt.dt_day  > 31) ||
759 	    (dt.dt_mon  > 12) ||
760 	    (dt.dt_year < STARTOFTIME) || (dt.dt_year > 2036))
761 		return (0);
762 
763 	secs = clock_ymdhms_to_secs(&dt);
764 	return (secs);
765 }
766 
767 int
768 a3settod(secs)
769 	time_t secs;
770 {
771 	struct rtclock3000 *rt;
772 	struct clock_ymdhms dt;
773 
774 	rt = clockaddr;
775 	/*
776 	 * there seem to be problems with the bitfield addressing
777 	 * currently used..
778 	 */
779 
780 	if (! rt)
781 		return (0);
782 
783 	clock_secs_to_ymdhms(secs, &dt);
784 	dt.dt_year -= CLOCK_BASE_YEAR;
785 
786 	rt->control1 = A3CONTROL1_HOLD_CLOCK;
787 	rt->second1 = dt.dt_sec / 10;
788 	rt->second2 = dt.dt_sec % 10;
789 	rt->minute1 = dt.dt_min / 10;
790 	rt->minute2 = dt.dt_min % 10;
791 	rt->hour1   = dt.dt_hour / 10;
792 	rt->hour2   = dt.dt_hour % 10;
793 	rt->weekday = dt.dt_wday;
794 	rt->day1    = dt.dt_day / 10;
795 	rt->day2    = dt.dt_day % 10;
796 	rt->month1  = dt.dt_mon / 10;
797 	rt->month2  = dt.dt_mon % 10;
798 	rt->year1   = dt.dt_year / 10;
799 	rt->year2   = dt.dt_year % 10;
800 	rt->control1 = A3CONTROL1_FREE_CLOCK;
801 
802 	return (1);
803 }
804 
805 time_t
806 a2gettod()
807 {
808 	struct rtclock2000 *rt;
809 	struct clock_ymdhms dt;
810 	time_t secs;
811 	int i;
812 
813 	rt = clockaddr;
814 
815 	/*
816 	 * hold clock
817 	 */
818 	rt->control1 |= A2CONTROL1_HOLD;
819 	i = 0x1000;
820 	while (rt->control1 & A2CONTROL1_BUSY && i--)
821 		;
822 	if (rt->control1 & A2CONTROL1_BUSY)
823 		return (0);	/* Give up and say it's not there */
824 
825 	/* Copy the info.  Careful about the order! */
826 	dt.dt_sec   = rt->second1 * 10 + rt->second2;
827 	dt.dt_min   = rt->minute1 * 10 + rt->minute2;
828 	dt.dt_hour  = (rt->hour1 & 3) * 10 + rt->hour2;
829 	dt.dt_day   = rt->day1    * 10 + rt->day2;
830 	dt.dt_mon   = rt->month1  * 10 + rt->month2;
831 	dt.dt_year  = rt->year1   * 10 + rt->year2;
832 	dt.dt_wday  = rt->weekday;
833 
834 	/*
835 	 * The oki clock chip has a register to put the clock into
836 	 * 12/24h mode.
837 	 *
838 	 *  clockmode   |    A2HOUR1_PM
839 	 *  24h   12h   |  am = 0, pm = 1
840 	 * ---------------------------------
841 	 *   0    12    |       0
842 	 *   1     1    |       0
843 	 *  ..    ..    |       0
844 	 *  11    11    |       0
845 	 *  12    12    |       1
846 	 *  13     1    |       1
847 	 *  ..    ..    |       1
848 	 *  23    11    |       1
849 	 *
850 	 */
851 
852 	if ((rt->control3 & A2CONTROL3_24HMODE) == 0) {
853 		if ((rt->hour1 & A2HOUR1_PM) == 0 && dt.dt_hour == 12)
854 			dt.dt_hour = 0;
855 		else if ((rt->hour1 & A2HOUR1_PM) && dt.dt_hour != 12)
856 			dt.dt_hour += 12;
857 	}
858 
859 	/*
860 	 * release the clock
861 	 */
862 	rt->control1 &= ~A2CONTROL1_HOLD;
863 
864 	dt.dt_year += CLOCK_BASE_YEAR;
865 
866 	if ((dt.dt_hour > 23) ||
867 	    (dt.dt_day  > 31) ||
868 	    (dt.dt_mon  > 12) ||
869 	    (dt.dt_year < STARTOFTIME) || (dt.dt_year > 2036))
870 		return (0);
871 
872 	secs = clock_ymdhms_to_secs(&dt);
873 	return (secs);
874 }
875 
876 int
877 a2settod(secs)
878 	time_t secs;
879 {
880 	struct rtclock2000 *rt;
881 	struct clock_ymdhms dt;
882 	int ampm, i;
883 
884 	rt = clockaddr;
885 	/*
886 	 * there seem to be problems with the bitfield addressing
887 	 * currently used..
888 	 */
889 	if (! rt)
890 		return (0);
891 
892 	clock_secs_to_ymdhms(secs, &dt);
893 	dt.dt_year -= CLOCK_BASE_YEAR;
894 
895 	/*
896 	 * hold clock
897 	 */
898 	rt->control1 |= A2CONTROL1_HOLD;
899 	i = 0x1000;
900 	while (rt->control1 & A2CONTROL1_BUSY && i--)
901 		;
902 	if (rt->control1 & A2CONTROL1_BUSY)
903 		return (0);	/* Give up and say it's not there */
904 
905 	ampm = 0;
906 	if ((rt->control3 & A2CONTROL3_24HMODE) == 0) {
907 		if (dt.dt_hour >= 12) {
908 			ampm = A2HOUR1_PM;
909 			if (dt.dt_hour != 12)
910 				dt.dt_hour -= 12;
911 		} else if (dt.dt_hour == 0) {
912 			dt.dt_hour = 12;
913 		}
914 	}
915 	rt->hour1   = (dt.dt_hour / 10) | ampm;
916 	rt->hour2   = dt.dt_hour % 10;
917 	rt->second1 = dt.dt_sec / 10;
918 	rt->second2 = dt.dt_sec % 10;
919 	rt->minute1 = dt.dt_min / 10;
920 	rt->minute2 = dt.dt_min % 10;
921 	rt->day1    = dt.dt_day / 10;
922 	rt->day2    = dt.dt_day % 10;
923 	rt->month1  = dt.dt_mon / 10;
924 	rt->month2  = dt.dt_mon % 10;
925 	rt->year1   = dt.dt_year / 10;
926 	rt->year2   = dt.dt_year % 10;
927 	rt->weekday = dt.dt_wday;
928 
929 	/*
930 	 * release the clock
931 	 */
932 	rt->control2 &= ~A2CONTROL1_HOLD;
933 
934 	return (1);
935 }
936 
937 #ifdef DRACO
938 
939 
940 int
941 draco_ds_read_bit(p)
942 	void *p;
943 {
944 	struct drioct *draco_ioct;
945 
946 	draco_ioct = p;
947 
948 	while (draco_ioct->io_status & DRSTAT_CLKBUSY);
949 
950 	draco_ioct->io_clockw1 = 0;
951 
952 	while (draco_ioct->io_status & DRSTAT_CLKBUSY);
953 
954 	return (draco_ioct->io_status & DRSTAT_CLKDAT);
955 }
956 
957 void
958 draco_ds_write_bit(p, b)
959 	void *p;
960 	int b;
961 {
962 	struct drioct *draco_ioct;
963 
964 	draco_ioct = p;
965 
966 	while (draco_ioct->io_status & DRSTAT_CLKBUSY);
967 
968 	if (b)
969 		draco_ioct->io_clockw1 = 0;
970 	else
971 		draco_ioct->io_clockw0 = 0;
972 }
973 
974 void
975 draco_ds_reset(p)
976 	void *p;
977 {
978 	struct drioct *draco_ioct;
979 
980 	draco_ioct = p;
981 
982 	draco_ioct->io_clockrst = 0;
983 }
984 
985 /*
986  * We could return 1/256 of a seconds, but would need to change the interface
987  */
988 
989 time_t
990 dracogettod()
991 {
992 	u_int32_t clkbuf;
993 	u_int8_t rombuf[8];
994 	int i;
995 	struct ds_handle draco_dsh;
996 
997 	draco_dsh.ds_read_bit = draco_ds_read_bit;
998 	draco_dsh.ds_write_bit = draco_ds_write_bit;
999 	draco_dsh.ds_reset = draco_ds_reset;
1000 	draco_dsh.ds_hw_handle = (void *)(DRCCADDR + DRIOCTLPG*NBPG);
1001 
1002 	draco_dsh.ds_reset(draco_dsh.ds_hw_handle);
1003 
1004 	ds_write_byte(&draco_dsh, DS_ROM_READ);
1005 	for (i=0; i<8; ++i)
1006 		rombuf[i] = ds_read_byte(&draco_dsh);
1007 
1008 	printf("DraCo RTC: sernum %d (ROM %02x%02x%02x%02x%02x%02x%02x%02x)\n",
1009 		(rombuf[3] << 24) + (rombuf[2] << 16) +
1010 		(rombuf[1] << 8) + rombuf[7],
1011 		rombuf[7], rombuf[6], rombuf[5], rombuf[4],
1012 		rombuf[3], rombuf[2], rombuf[1], rombuf[0]);
1013 
1014 
1015 	ds_write_byte(&draco_dsh, DS_MEM_READ_MEMORY);
1016 	ds_write_byte(&draco_dsh, 0x03); /* low ads byte of realtime second */
1017 	ds_write_byte(&draco_dsh, 0x02); /* high ads byte of realtime second */
1018 
1019 	clkbuf = ds_read_byte(&draco_dsh)
1020 	    + (ds_read_byte(&draco_dsh)<<8)
1021 	    + (ds_read_byte(&draco_dsh)<<16)
1022 	    + (ds_read_byte(&draco_dsh)<<24);
1023 
1024 	/* BSD time is wr. 1.1.1970; AmigaOS time wrt. 1.1.1978 */
1025 
1026 	clkbuf += (8*365 + 2) * 86400;
1027 
1028 	return ((time_t)clkbuf);
1029 }
1030 
1031 #endif
1032