xref: /netbsd-src/sys/arch/amiga/dev/clock.c (revision d9158b13b5dfe46201430699a3f7a235ecf28df3)
1 /*
2  * Copyright (c) 1988 University of Utah.
3  * Copyright (c) 1982, 1990 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * the Systems Programming Group of the University of Utah Computer
8  * Science Department.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * from: Utah $Hdr: clock.c 1.18 91/01/21$
39  *
40  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
41  *	$Id: clock.c,v 1.5 1994/06/16 14:28:45 chopps Exp $
42  */
43 
44 #include <sys/param.h>
45 #include <sys/kernel.h>
46 #include <sys/device.h>
47 #include <machine/psl.h>
48 #include <machine/cpu.h>
49 #include <amiga/amiga/device.h>
50 #include <amiga/amiga/custom.h>
51 #include <amiga/amiga/cia.h>
52 #include <amiga/dev/rtc.h>
53 #include <amiga/dev/ztwobusvar.h>
54 
55 #if defined(PROF) && defined(PROFTIMER)
56 #include <sys/PROF.h>
57 #endif
58 
59 /* the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz.
60    We're using a 100 Hz clock. */
61 
62 #define CLK_INTERVAL amiga_clk_interval
63 int amiga_clk_interval;
64 int eclockfreq;
65 
66 /*
67  * Machine-dependent clock routines.
68  *
69  * Startrtclock restarts the real-time clock, which provides
70  * hardclock interrupts to kern_clock.c.
71  *
72  * Inittodr initializes the time of day hardware which provides
73  * date functions.
74  *
75  * Resettodr restores the time of day hardware after a time change.
76  *
77  * A note on the real-time clock:
78  * We actually load the clock with CLK_INTERVAL-1 instead of CLK_INTERVAL.
79  * This is because the counter decrements to zero after N+1 enabled clock
80  * periods where N is the value loaded into the counter.
81  */
82 
83 int clockmatch __P((struct device *, struct cfdata *, void *));
84 void clockattach __P((struct device *, struct device *, void *));
85 
86 struct cfdriver clockcd = {
87 	NULL, "clock", clockmatch, clockattach,
88 	DV_DULL, sizeof(struct device), NULL, 0 };
89 
90 int
91 clockmatch(pdp, cfp, auxp)
92 	struct device *pdp;
93 	struct cfdata *cfp;
94 	void *auxp;
95 {
96 	if (matchname("clock", auxp))
97 		return(1);
98 	return(0);
99 }
100 
101 /*
102  * Start the real-time clock.
103  */
104 void
105 clockattach(pdp, dp, auxp)
106 	struct device *pdp, *dp;
107 	void *auxp;
108 {
109 	unsigned short interval;
110 
111 	if (eclockfreq == 0)
112 		eclockfreq = 715909;	/* guess NTSC */
113 
114 	CLK_INTERVAL = (eclockfreq / 100);
115 
116 	printf(": system hz %d hardware hz %d\n", hz, eclockfreq);
117 
118 	/*
119 	 * stop timer A
120 	 */
121 	ciab.cra = ciab.cra & 0xc0;
122 	ciab.icr = 1 << 0;		/* disable timer A interrupt */
123 	interval = ciab.icr;		/* and make sure it's clear */
124 
125 	/*
126 	 * load interval into registers.
127          * the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz
128 	 * supprort for PAL WHEN?!?! XXX
129 	 */
130 	interval = CLK_INTERVAL - 1;
131 
132 	/*
133 	 * order of setting is important !
134 	 */
135 	ciab.talo = interval & 0xff;
136 	ciab.tahi = interval >> 8;
137 }
138 
139 void
140 cpu_initclocks()
141 {
142 	/*
143 	 * enable interrupts for timer A
144 	 */
145 	ciab.icr = (1<<7) | (1<<0);
146 
147 	/*
148 	 * start timer A in continuous shot mode
149 	 */
150 	ciab.cra = (ciab.cra & 0xc0) | 1;
151 
152 	/*
153 	 * and globally enable interrupts for ciab
154 	 */
155 	custom.intena = INTF_SETCLR | INTF_EXTER;
156 }
157 
158 setstatclockrate(hz)
159 	int hz;
160 {
161 }
162 
163 /*
164  * Returns number of usec since last recorded clock "tick"
165  * (i.e. clock interrupt).
166  */
167 clkread()
168 {
169 	u_char hi, hi2, lo;
170 	u_int interval;
171 
172 	hi  = ciab.tahi;
173 	lo  = ciab.talo;
174 	hi2 = ciab.tahi;
175 	if (hi != hi2) {
176 		lo = ciab.talo;
177 		hi = hi2;
178 	}
179 
180 	interval = (CLK_INTERVAL - 1) - ((hi<<8) | lo);
181 
182 	/*
183 	 * should read ICR and if there's an int pending, adjust interval.
184 	 * However, * since reading ICR clears the interrupt, we'd lose a
185 	 * hardclock int, and * this is not tolerable.
186 	 */
187 
188 	return((interval * tick) / CLK_INTERVAL);
189 }
190 
191 u_int micspertick;
192 
193 /*
194  * we set up as much of the CIAa as possible
195  * as all access to chip memory are very slow.
196  */
197 void
198 setmicspertick()
199 {
200 	micspertick = (1000000ULL << 20) / 715909;
201 
202 	/*
203 	 * disable interrupts (just in case.)
204 	 */
205 	ciaa.icr = 0x3;
206 
207 	/*
208 	 * stop both timers if not already
209 	 */
210 	ciaa.cra &= ~1;
211 	ciaa.crb &= ~1;
212 
213 	/*
214 	 * set timer B in "count timer A underflows" mode
215 	 * set tiemr A in one-shot mode
216 	 */
217 	ciaa.crb = (ciaa.crb & 0x80) | 0x48;
218 	ciaa.cra = (ciaa.cra & 0xc0) | 0x08;
219 }
220 
221 /*
222  * this function assumes that on any entry beyond the first
223  * the following condintions exist:
224  * Interrupts for Timers A and B are disabled.
225  * Timers A and B are stoped.
226  * Timers A and B are in one-shot mode with B counting timer A underflows
227  *
228  */
229 void
230 delay(mic)
231 	int mic;
232 {
233 	u_int temp;
234 	int s;
235 
236 	if (micspertick == 0)
237 		setmicspertick();
238 
239 	if (mic <= 1)
240 		return;
241 
242 	/*
243 	 * basically this is going to do an integer
244 	 * usec / (1000000 / 715909) with no loss of
245 	 * precision
246 	 */
247 	temp = mic >> 12;
248 	asm("divul %3,%1:%0" : "=d" (temp) : "d" (mic >> 12), "0" (mic << 20),
249 	    "d" (micspertick));
250 
251 	if ((temp & 0xffff0000) > 0x10000) {
252 		mic = (temp >> 16) - 1;
253 		temp &= 0xffff;
254 
255 		/*
256 		 * set timer A in continous mode
257 		 */
258 		ciaa.cra = (ciaa.cra & 0xc0) | 0x00;
259 
260 		/*
261 		 * latch/load/start "counts of timer A underflows" in B
262 		 */
263 		ciaa.tblo = mic & 0xff;
264 		ciaa.tbhi = mic >> 8;
265 
266 		/*
267 		 * timer A latches 0xffff
268 		 * and start it.
269 		 */
270 		ciaa.talo = 0xff;
271 		ciaa.tahi = 0xff;
272 		ciaa.cra |= 1;
273 
274 		while (ciaa.crb & 1)
275 			;
276 
277 		/*
278 		 * stop timer A
279 		 */
280 		ciaa.cra &= ~1;
281 
282 		/*
283 		 * set timer A in one shot mode
284 		 */
285 		ciaa.cra = (ciaa.cra & 0xc0) | 0x08;
286 	} else if ((temp & 0xffff0000) == 0x10000) {
287 		temp &= 0xffff;
288 
289 		/*
290 		 * timer A is in one shot latch/load/start 1 full turn
291 		 */
292 		ciaa.talo = 0xff;
293 		ciaa.tahi = 0xff;
294 		while (ciaa.cra & 1)
295 			;
296 	}
297 	if (temp < 1)
298 		return;
299 
300 	/*
301 	 * temp is now residual ammount, latch/load/start it.
302 	 */
303 	ciaa.talo = temp & 0xff;
304 	ciaa.tahi = temp >> 8;
305 	while (ciaa.cra & 1)
306 		;
307 }
308 
309 /*
310  * Needs to be calibrated for use, its way off most of the time
311  */
312 void
313 DELAY(mic)
314 	int mic;
315 {
316 	u_long n;
317 	short hpos;
318 
319 	/*
320 	 * this function uses HSync pulses as base units. The custom chips
321 	 * display only deals with 31.6kHz/2 refresh, this gives us a
322 	 * resolution of 1/15800 s, which is ~63us (add some fuzz so we really
323 	 * wait awhile, even if using small timeouts)
324 	 */
325 	n = mic/63 + 2;
326 	do {
327 		hpos = custom.vhposr & 0xff00;
328 		while (hpos == (custom.vhposr & 0xff00))
329 			;
330 	} while (n--);
331 }
332 
333 #if notyet
334 
335 /* implement this later. I'd suggest using both timers in CIA-A, they're
336    not yet used. */
337 
338 #include "clock.h"
339 #if NCLOCK > 0
340 /*
341  * /dev/clock: mappable high resolution timer.
342  *
343  * This code implements a 32-bit recycling counter (with a 4 usec period)
344  * using timers 2 & 3 on the 6840 clock chip.  The counter can be mapped
345  * RO into a user's address space to achieve low overhead (no system calls),
346  * high-precision timing.
347  *
348  * Note that timer 3 is also used for the high precision profiling timer
349  * (PROFTIMER code above).  Care should be taken when both uses are
350  * configured as only a token effort is made to avoid conflicting use.
351  */
352 #include <sys/proc.h>
353 #include <sys/resourcevar.h>
354 #include <sys/ioctl.h>
355 #include <sys/malloc.h>
356 #include <vm/vm.h>
357 #include <amiga/amiga/clockioctl.h>
358 #include <sys/specdev.h>
359 #include <sys/vnode.h>
360 #include <sys/mman.h>
361 
362 int clockon = 0;		/* non-zero if high-res timer enabled */
363 #ifdef PROFTIMER
364 int  profprocs = 0;		/* # of procs using profiling timer */
365 #endif
366 #ifdef DEBUG
367 int clockdebug = 0;
368 #endif
369 
370 /*ARGSUSED*/
371 clockopen(dev, flags)
372 	dev_t dev;
373 {
374 #ifdef PROFTIMER
375 #ifdef PROF
376 	/*
377 	 * Kernel profiling enabled, give up.
378 	 */
379 	if (profiling)
380 		return(EBUSY);
381 #endif
382 	/*
383 	 * If any user processes are profiling, give up.
384 	 */
385 	if (profprocs)
386 		return(EBUSY);
387 #endif
388 	if (!clockon) {
389 		startclock();
390 		clockon++;
391 	}
392 	return(0);
393 }
394 
395 /*ARGSUSED*/
396 clockclose(dev, flags)
397 	dev_t dev;
398 {
399 	(void) clockunmmap(dev, (caddr_t)0, curproc);	/* XXX */
400 	stopclock();
401 	clockon = 0;
402 	return(0);
403 }
404 
405 /*ARGSUSED*/
406 clockioctl(dev, cmd, data, flag, p)
407 	dev_t dev;
408 	caddr_t data;
409 	struct proc *p;
410 {
411 	int error = 0;
412 
413 	switch (cmd) {
414 
415 	case CLOCKMAP:
416 		error = clockmmap(dev, (caddr_t *)data, p);
417 		break;
418 
419 	case CLOCKUNMAP:
420 		error = clockunmmap(dev, *(caddr_t *)data, p);
421 		break;
422 
423 	case CLOCKGETRES:
424 		*(int *)data = CLK_RESOLUTION;
425 		break;
426 
427 	default:
428 		error = EINVAL;
429 		break;
430 	}
431 	return(error);
432 }
433 
434 /*ARGSUSED*/
435 clockmap(dev, off, prot)
436 	dev_t dev;
437 {
438 	return((off + (INTIOBASE+CLKBASE+CLKSR-1)) >> PGSHIFT);
439 }
440 
441 clockmmap(dev, addrp, p)
442 	dev_t dev;
443 	caddr_t *addrp;
444 	struct proc *p;
445 {
446 	int error;
447 	struct vnode vn;
448 	struct specinfo si;
449 	int flags;
450 
451 	flags = MAP_FILE|MAP_SHARED;
452 	if (*addrp)
453 		flags |= MAP_FIXED;
454 	else
455 		*addrp = (caddr_t)0x1000000;	/* XXX */
456 	vn.v_type = VCHR;			/* XXX */
457 	vn.v_specinfo = &si;			/* XXX */
458 	vn.v_rdev = dev;			/* XXX */
459 	error = vm_mmap(&p->p_vmspace->vm_map, (vm_offset_t *)addrp,
460 			PAGE_SIZE, VM_PROT_ALL, flags, (caddr_t)&vn, 0);
461 	return(error);
462 }
463 
464 clockunmmap(dev, addr, p)
465 	dev_t dev;
466 	caddr_t addr;
467 	struct proc *p;
468 {
469 	int rv;
470 
471 	if (addr == 0)
472 		return(EINVAL);		/* XXX: how do we deal with this? */
473 	rv = vm_deallocate(p->p_vmspace->vm_map, (vm_offset_t)addr, PAGE_SIZE);
474 	return(rv == KERN_SUCCESS ? 0 : EINVAL);
475 }
476 
477 startclock()
478 {
479 	register struct clkreg *clk = (struct clkreg *)clkstd[0];
480 
481 	clk->clk_msb2 = -1; clk->clk_lsb2 = -1;
482 	clk->clk_msb3 = -1; clk->clk_lsb3 = -1;
483 
484 	clk->clk_cr2 = CLK_CR3;
485 	clk->clk_cr3 = CLK_OENAB|CLK_8BIT;
486 	clk->clk_cr2 = CLK_CR1;
487 	clk->clk_cr1 = CLK_IENAB;
488 }
489 
490 stopclock()
491 {
492 	register struct clkreg *clk = (struct clkreg *)clkstd[0];
493 
494 	clk->clk_cr2 = CLK_CR3;
495 	clk->clk_cr3 = 0;
496 	clk->clk_cr2 = CLK_CR1;
497 	clk->clk_cr1 = CLK_IENAB;
498 }
499 #endif
500 
501 #endif
502 
503 
504 #ifdef PROFTIMER
505 /*
506  * This code allows the amiga kernel to use one of the extra timers on
507  * the clock chip for profiling, instead of the regular system timer.
508  * The advantage of this is that the profiling timer can be turned up to
509  * a higher interrupt rate, giving finer resolution timing. The profclock
510  * routine is called from the lev6intr in locore, and is a specialized
511  * routine that calls addupc. The overhead then is far less than if
512  * hardclock/softclock was called. Further, the context switch code in
513  * locore has been changed to turn the profile clock on/off when switching
514  * into/out of a process that is profiling (startprofclock/stopprofclock).
515  * This reduces the impact of the profiling clock on other users, and might
516  * possibly increase the accuracy of the profiling.
517  */
518 int  profint   = PRF_INTERVAL;	/* Clock ticks between interrupts */
519 int  profscale = 0;		/* Scale factor from sys clock to prof clock */
520 char profon    = 0;		/* Is profiling clock on? */
521 
522 /* profon values - do not change, locore.s assumes these values */
523 #define PRF_NONE	0x00
524 #define	PRF_USER	0x01
525 #define	PRF_KERNEL	0x80
526 
527 initprofclock()
528 {
529 #if NCLOCK > 0
530 	struct proc *p = curproc;		/* XXX */
531 
532 	/*
533 	 * If the high-res timer is running, force profiling off.
534 	 * Unfortunately, this gets reflected back to the user not as
535 	 * an error but as a lack of results.
536 	 */
537 	if (clockon) {
538 		p->p_stats->p_prof.pr_scale = 0;
539 		return;
540 	}
541 	/*
542 	 * Keep track of the number of user processes that are profiling
543 	 * by checking the scale value.
544 	 *
545 	 * XXX: this all assumes that the profiling code is well behaved;
546 	 * i.e. profil() is called once per process with pcscale non-zero
547 	 * to turn it on, and once with pcscale zero to turn it off.
548 	 * Also assumes you don't do any forks or execs.  Oh well, there
549 	 * is always adb...
550 	 */
551 	if (p->p_stats->p_prof.pr_scale)
552 		profprocs++;
553 	else
554 		profprocs--;
555 #endif
556 	/*
557 	 * The profile interrupt interval must be an even divisor
558 	 * of the CLK_INTERVAL so that scaling from a system clock
559 	 * tick to a profile clock tick is possible using integer math.
560 	 */
561 	if (profint > CLK_INTERVAL || (CLK_INTERVAL % profint) != 0)
562 		profint = CLK_INTERVAL;
563 	profscale = CLK_INTERVAL / profint;
564 }
565 
566 startprofclock()
567 {
568   unsigned short interval;
569 
570   /* stop timer B */
571   ciab.crb = ciab.crb & 0xc0;
572 
573   /* load interval into registers.
574      the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz */
575 
576   interval = profint - 1;
577 
578   /* order of setting is important ! */
579   ciab.tblo = interval & 0xff;
580   ciab.tbhi = interval >> 8;
581 
582   /* enable interrupts for timer B */
583   ciab.icr = (1<<7) | (1<<1);
584 
585   /* start timer B in continuous shot mode */
586   ciab.crb = (ciab.crb & 0xc0) | 1;
587 }
588 
589 stopprofclock()
590 {
591   /* stop timer B */
592   ciab.crb = ciab.crb & 0xc0;
593 }
594 
595 #ifdef PROF
596 /*
597  * profclock() is expanded in line in lev6intr() unless profiling kernel.
598  * Assumes it is called with clock interrupts blocked.
599  */
600 profclock(pc, ps)
601 	caddr_t pc;
602 	int ps;
603 {
604 	/*
605 	 * Came from user mode.
606 	 * If this process is being profiled record the tick.
607 	 */
608 	if (USERMODE(ps)) {
609 		if (p->p_stats.p_prof.pr_scale)
610 			addupc(pc, &curproc->p_stats.p_prof, 1);
611 	}
612 	/*
613 	 * Came from kernel (supervisor) mode.
614 	 * If we are profiling the kernel, record the tick.
615 	 */
616 	else if (profiling < 2) {
617 		register int s = pc - s_lowpc;
618 
619 		if (s < s_textsize)
620 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
621 	}
622 	/*
623 	 * Kernel profiling was on but has been disabled.
624 	 * Mark as no longer profiling kernel and if all profiling done,
625 	 * disable the clock.
626 	 */
627 	if (profiling && (profon & PRF_KERNEL)) {
628 		profon &= ~PRF_KERNEL;
629 		if (profon == PRF_NONE)
630 			stopprofclock();
631 	}
632 }
633 #endif
634 #endif
635 
636 /* this is a hook set by a clock driver for the configured realtime clock,
637    returning plain current unix-time */
638 long (*gettod) __P((void));
639 int (*settod) __P((long));
640 void *clockaddr;
641 
642 long a3gettod __P((void));
643 long a2gettod __P((void));
644 int a3settod __P((long));
645 int a2settod __P((long));
646 int rtcinit __P((void));
647 
648 /*
649  * Initialize the time of day register, based on the time base which is, e.g.
650  * from a filesystem.
651  */
652 inittodr(base)
653 	time_t base;
654 {
655 	u_long timbuf = base;	/* assume no battery clock exists */
656 
657 	if (gettod == NULL && rtcinit() == 0)
658 		printf("WARNING: no battery clock\n");
659 	else
660 		timbuf = gettod();
661 
662 	if (timbuf < base) {
663 		printf("WARNING: bad date in battery clock\n");
664 		timbuf = base;
665 	}
666 
667 	/* Battery clock does not store usec's, so forget about it. */
668 	time.tv_sec = timbuf;
669 }
670 
671 resettodr()
672 {
673 	if (settod && settod(time.tv_sec) == 1)
674 		return;
675 	printf("Cannot set battery backed clock\n");
676 }
677 
678 int
679 rtcinit()
680 {
681 	clockaddr = (void *)ztwomap(0xdc0000);
682 	if (is_a3000() || is_a4000()) {
683 		if (a3gettod() == 0)
684 			return(0);
685 		gettod = a3gettod;
686 		settod = a3settod;
687 	} else {
688 		if (a2gettod() == 0)
689 			return(0);
690 		gettod = a2gettod;
691 		settod = a2settod;
692 	}
693 	return(1);
694 }
695 
696 static int month_days[12] = {
697 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
698 };
699 
700 long
701 a3gettod()
702 {
703 	struct rtclock3000 *rt;
704 	int i, year, month, day, hour, min, sec;
705 	u_long tmp;
706 
707 	rt = clockaddr;
708 
709 	/* hold clock */
710 	rt->control1 = A3CONTROL1_HOLD_CLOCK;
711 
712 	/* read it */
713 	sec   = rt->second1 * 10 + rt->second2;
714 	min   = rt->minute1 * 10 + rt->minute2;
715 	hour  = rt->hour1   * 10 + rt->hour2;
716 	day   = rt->day1    * 10 + rt->day2;
717 	month = rt->month1  * 10 + rt->month2;
718 	year  = rt->year1   * 10 + rt->year2   + 1900;
719 
720 	/* let it run again.. */
721 	rt->control1 = A3CONTROL1_FREE_CLOCK;
722 
723 	if (range_test(hour, 0, 23))
724 		return(0);
725 	if (range_test(day, 1, 31))
726 		return(0);
727 	if (range_test(month, 1, 12))
728 		return(0);
729 	if (range_test(year, STARTOFTIME, 2000))
730 		return(0);
731 
732 	tmp = 0;
733 
734 	for (i = STARTOFTIME; i < year; i++)
735 		tmp += days_in_year(i);
736 	if (leapyear(year) && month > FEBRUARY)
737 		tmp++;
738 
739 	for (i = 1; i < month; i++)
740 		tmp += days_in_month(i);
741 
742 	tmp += (day - 1);
743 	tmp = ((tmp * 24 + hour) * 60 + min) * 60 + sec;
744 
745 	return(tmp);
746 }
747 
748 int
749 a3settod(tim)
750 	long tim;
751 {
752 	register int i;
753 	register long hms, day;
754 	u_char sec1, sec2;
755 	u_char min1, min2;
756 	u_char hour1, hour2;
757 	u_char day1, day2;
758 	u_char mon1, mon2;
759 	u_char year1, year2;
760 	struct rtclock3000 *rt;
761 
762 	rt = clockaddr;
763 	/*
764 	 * there seem to be problems with the bitfield addressing
765 	 * currently used..
766 	 */
767 return(0);
768 #if not_yet
769 	if (rt)
770 		return 0;
771 
772 	/* prepare values to be written to clock */
773 	day = tim / SECDAY;
774 	hms = tim % SECDAY;
775 
776 	hour2 = hms / 3600;
777 	hour1 = hour2 / 10;
778 	hour2 %= 10;
779 
780 	min2 = (hms % 3600) / 60;
781 	min1 = min2 / 10;
782 	min2 %= 10;
783 
784 
785 	sec2 = (hms % 3600) % 60;
786 	sec1 = sec2 / 10;
787 	sec2 %= 10;
788 
789 	/* Number of years in days */
790 	for (i = STARTOFTIME - 1900; day >= days_in_year(i); i++)
791 		day -= days_in_year(i);
792 	year1 = i / 10;
793 	year2 = i % 10;
794 
795 	/* Number of months in days left */
796 	if (leapyear(i))
797 		days_in_month(FEBRUARY) = 29;
798 	for (i = 1; day >= days_in_month(i); i++)
799 		day -= days_in_month(i);
800 	days_in_month(FEBRUARY) = 28;
801 
802 	mon1 = i / 10;
803 	mon2 = i % 10;
804 
805 	/* Days are what is left over (+1) from all that. */
806 	day ++;
807 	day1 = day / 10;
808 	day2 = day % 10;
809 
810 	rt->control1 = CONTROL1_HOLD_CLOCK;
811 	rt->second1 = sec1;
812 	rt->second2 = sec2;
813 	rt->minute1 = min1;
814 	rt->minute2 = min2;
815 	rt->hour1   = hour1;
816 	rt->hour2   = hour2;
817 	rt->day1    = day1;
818 	rt->day2    = day2;
819 	rt->month1  = mon1;
820 	rt->month2  = mon2;
821 	rt->year1   = year1;
822 	rt->year2   = year2;
823 	rt->control2 = CONTROL1_FREE_CLOCK;
824 
825 	return 1;
826 #endif
827 }
828 
829 long
830 a2gettod()
831 {
832 	struct rtclock2000 *rt;
833 	int i, year, month, day, hour, min, sec;
834 	u_long tmp;
835 
836 	rt = clockaddr;
837 
838 	/*
839 	 * hold clock
840 	 */
841 	rt->control1 |= A2CONTROL1_HOLD;
842 	while (rt->control1 & A2CONTROL1_BUSY)
843 		;
844 
845 	/*
846 	 * read it
847 	 */
848 	sec = rt->second1 * 10 + rt->second2;
849 	min = rt->minute1 * 10 + rt->minute2;
850 	hour = (rt->hour1 & 3)  * 10 + rt->hour2;
851 	day = rt->day1 * 10 + rt->day2;
852 	month = rt->month1 * 10 + rt->month2;
853 	year = rt->year1 * 10 + rt->year2   + 1900;
854 
855 	if ((rt->control3 & A2CONTROL3_24HMODE) == 0) {
856 		if ((rt->hour1 & A2HOUR1_PM) == 0 && hour == 12)
857 			hour = 0;
858 		else if ((rt->hour1 & A2HOUR1_PM) && hour != 12)
859 			hour += 12;
860 	}
861 
862 	/*
863 	 * release the clock
864 	 */
865 	rt->control1 &= ~A2CONTROL1_HOLD;
866 
867 	if (range_test(hour, 0, 23))
868 		return(0);
869 	if (range_test(day, 1, 31))
870 		return(0);
871 	if (range_test(month, 1, 12))
872 		return(0);
873 	if (range_test(year, STARTOFTIME, 2000))
874 		return(0);
875 
876 	tmp = 0;
877 
878 	for (i = STARTOFTIME; i < year; i++)
879 		tmp += days_in_year(i);
880 	if (leapyear(year) && month > FEBRUARY)
881 		tmp++;
882 
883 	for (i = 1; i < month; i++)
884 		tmp += days_in_month(i);
885 
886 	tmp += (day - 1);
887 	tmp = ((tmp * 24 + hour) * 60 + min) * 60 + sec;
888 
889 	return(tmp);
890 }
891 
892 /*
893  * there is some question as to whether this works
894  * I guess
895  */
896 int
897 a2settod(tim)
898 	long tim;
899 {
900 
901 	int i;
902 	long hms, day;
903 	u_char sec1, sec2;
904 	u_char min1, min2;
905 	u_char hour1, hour2;
906 	u_char day1, day2;
907 	u_char mon1, mon2;
908 	u_char year1, year2;
909 	struct rtclock2000 *rt;
910 
911 	rt = clockaddr;
912 	/*
913 	 * there seem to be problems with the bitfield addressing
914 	 * currently used..
915 	 *
916 	 * XXX Check out the above where we (hour1 & 3)
917 	 */
918 return(0);
919 #if not_yet
920 	if (! rt)
921 		return 0;
922 
923 	/* prepare values to be written to clock */
924 	day = tim / SECDAY;
925 	hms = tim % SECDAY;
926 
927 	hour2 = hms / 3600;
928 	hour1 = hour2 / 10;
929 	hour2 %= 10;
930 
931 	min2 = (hms % 3600) / 60;
932 	min1 = min2 / 10;
933 	min2 %= 10;
934 
935 
936 	sec2 = (hms % 3600) % 60;
937 	sec1 = sec2 / 10;
938 	sec2 %= 10;
939 
940 	/* Number of years in days */
941 	for (i = STARTOFTIME - 1900; day >= days_in_year(i); i++)
942 		day -= days_in_year(i);
943 	year1 = i / 10;
944 	year2 = i % 10;
945 
946 	/* Number of months in days left */
947 	if (leapyear(i))
948 		days_in_month(FEBRUARY) = 29;
949 	for (i = 1; day >= days_in_month(i); i++)
950 		day -= days_in_month(i);
951 	days_in_month(FEBRUARY) = 28;
952 
953 	mon1 = i / 10;
954 	mon2 = i % 10;
955 
956 	/* Days are what is left over (+1) from all that. */
957 	day ++;
958 	day1 = day / 10;
959 	day2 = day % 10;
960 
961 	/*
962 	 * XXXX spin wait as with reading???
963 	 */
964 	rt->control1 = A2CONTROL1_HOLD_CLOCK;
965 	rt->second1 = sec1;
966 	rt->second2 = sec2;
967 	rt->minute1 = min1;
968 	rt->minute2 = min2;
969 	rt->hour1   = hour1;
970 	rt->hour2   = hour2;
971 	rt->day1    = day1;
972 	rt->day2    = day2;
973 	rt->month1  = mon1;
974 	rt->month2  = mon2;
975 	rt->year1   = year1;
976 	rt->year2   = year2;
977 	rt->control2 = CONTROL1_FREE_CLOCK;
978 
979   return 1;
980 #endif
981 }
982