xref: /netbsd-src/sys/arch/amiga/dev/clock.c (revision d0fed6c87ddc40a8bffa6f99e7433ddfc864dd83)
1 /*	$NetBSD: clock.c,v 1.25 1997/01/02 20:59:42 is Exp $	*/
2 
3 /*
4  * Copyright (c) 1988 University of Utah.
5  * Copyright (c) 1982, 1990 The Regents of the University of California.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  * from: Utah $Hdr: clock.c 1.18 91/01/21$
41  *
42  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
43  */
44 
45 #include <sys/param.h>
46 #include <sys/kernel.h>
47 #include <sys/device.h>
48 #include <sys/systm.h>
49 #include <machine/psl.h>
50 #include <machine/cpu.h>
51 #include <amiga/amiga/device.h>
52 #include <amiga/amiga/custom.h>
53 #include <amiga/amiga/cia.h>
54 #ifdef DRACO
55 #include <amiga/amiga/drcustom.h>
56 #endif
57 #include <amiga/dev/rtc.h>
58 #include <amiga/dev/zbusvar.h>
59 
60 #if defined(PROF) && defined(PROFTIMER)
61 #include <sys/PROF.h>
62 #endif
63 
64 /* the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz.
65    We're using a 100 Hz clock. */
66 
67 #define CLK_INTERVAL amiga_clk_interval
68 int amiga_clk_interval;
69 int eclockfreq;
70 struct CIA *clockcia;
71 
72 /*
73  * Machine-dependent clock routines.
74  *
75  * Startrtclock restarts the real-time clock, which provides
76  * hardclock interrupts to kern_clock.c.
77  *
78  * Inittodr initializes the time of day hardware which provides
79  * date functions.
80  *
81  * Resettodr restores the time of day hardware after a time change.
82  *
83  * A note on the real-time clock:
84  * We actually load the clock with CLK_INTERVAL-1 instead of CLK_INTERVAL.
85  * This is because the counter decrements to zero after N+1 enabled clock
86  * periods where N is the value loaded into the counter.
87  */
88 
89 int clockmatch __P((struct device *, struct cfdata *, void *));
90 void clockattach __P((struct device *, struct device *, void *));
91 void cpu_initclocks __P((void));
92 void calibrate_delay __P((struct device *));
93 
94 struct cfattach clock_ca = {
95 	sizeof(struct device), clockmatch, clockattach
96 };
97 
98 struct cfdriver clock_cd = {
99 	NULL, "clock", DV_DULL, NULL, 0 };
100 
101 int
102 clockmatch(pdp, cfp, auxp)
103 	struct device *pdp;
104 	struct cfdata *cfp;
105 	void *auxp;
106 {
107 	if (matchname("clock", auxp))
108 		return(1);
109 	return(0);
110 }
111 
112 /*
113  * Start the real-time clock.
114  */
115 void
116 clockattach(pdp, dp, auxp)
117 	struct device *pdp, *dp;
118 	void *auxp;
119 {
120 	char *clockchip;
121 	unsigned short interval;
122 #ifdef DRACO
123 	u_char dracorev;
124 #endif
125 
126 	if (eclockfreq == 0)
127 		eclockfreq = 715909;	/* guess NTSC */
128 
129 	CLK_INTERVAL = (eclockfreq / 100);
130 
131 #ifdef DRACO
132 	dracorev = is_draco();
133 	if (dracorev >= 4) {
134 		CLK_INTERVAL = (eclockfreq / 700);
135 		clockchip = "QuickLogic";
136 	} else if (dracorev) {
137 		clockcia = (struct CIA *)CIAAbase;
138 		clockchip = "CIA A";
139 	} else
140 #endif
141 	{
142 		clockcia = (struct CIA *)CIABbase;
143 		clockchip = "CIA B";
144 	}
145 
146 	if (dp)
147 		printf(": %s system hz %d hardware hz %d\n", clockchip, hz,
148 #ifdef DRACO
149 		dracorev >= 4 ? eclockfreq / 7 : eclockfreq);
150 #else
151 		eclockfreq);
152 #endif
153 
154 #ifdef DRACO
155 	if (dracorev >= 4) {
156 		/*
157 		 * can't preload anything beforehand, timer is free_running;
158 		 * but need this for delay calibration.
159 		 */
160 
161 		draco_ioct->io_timerlo = CLK_INTERVAL & 0xff;
162 		draco_ioct->io_timerhi = CLK_INTERVAL >> 8;
163 
164 		calibrate_delay(dp);
165 
166 		return;
167 	}
168 #endif
169 	/*
170 	 * stop timer A
171 	 */
172 	clockcia->cra = clockcia->cra & 0xc0;
173 	clockcia->icr = 1 << 0;		/* disable timer A interrupt */
174 	interval = clockcia->icr;		/* and make sure it's clear */
175 
176 	/*
177 	 * load interval into registers.
178          * the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz
179 	 * supprort for PAL WHEN?!?! XXX
180 	 */
181 	interval = CLK_INTERVAL - 1;
182 
183 	/*
184 	 * order of setting is important !
185 	 */
186 	clockcia->talo = interval & 0xff;
187 	clockcia->tahi = interval >> 8;
188 	/*
189 	 * start timer A in continuous mode
190 	 */
191 	clockcia->cra = (clockcia->cra & 0xc0) | 1;
192 
193 	calibrate_delay(dp);
194 }
195 
196 /*
197  * Calibrate delay loop.
198  * We use two iterations because we don't have enough bits to do a factor of
199  * 8 with better than 1%.
200  *
201  * XXX Note that we MUST stay below 1 tick if using clkread(), even for
202  * underestimated values of delaydivisor.
203  *
204  * XXX the "ns" below is only correct for a shift of 10 bits, and even then
205  * off by 2.4%
206  */
207 
208 void calibrate_delay(dp)
209 	struct device *dp;
210 {
211 	unsigned long t1, t2;
212 	extern u_int32_t delaydivisor;
213 		/* XXX this should be defined elsewhere */
214 
215 	if (dp)
216 		printf("Calibrating delay loop... ");
217 
218 	do {
219 		t1 = clkread();
220 		delay(1024);
221 		t2 = clkread();
222 	} while (t2 <= t1);
223 	t2 -= t1;
224 	delaydivisor = (delaydivisor * t2 + 1023) >> 10;
225 #ifdef DIAGNOSTIC
226 	if (dp)
227 		printf("\ndiff %ld us, new divisor %u/1024 us\n", t2,
228 		    delaydivisor);
229 	do {
230 		t1 = clkread();
231 		delay(1024);
232 		t2 = clkread();
233 	} while (t2 <= t1);
234 	t2 -= t1;
235 	delaydivisor = (delaydivisor * t2 + 1023) >> 10;
236 	if (dp)
237 		printf("diff %ld us, new divisor %u/1024 us\n", t2,
238 		    delaydivisor);
239 #endif
240 	do {
241 		t1 = clkread();
242 		delay(1024);
243 		t2 = clkread();
244 	} while (t2 <= t1);
245 	t2 -= t1;
246 	delaydivisor = (delaydivisor * t2 + 1023) >> 10;
247 #ifdef DIAGNOSTIC
248 	if (dp)
249 		printf("diff %ld us, new divisor ", t2);
250 #endif
251 	if (dp)
252 		printf("%u/1024 us\n", delaydivisor);
253 }
254 
255 void
256 cpu_initclocks()
257 {
258 #ifdef DRACO
259 	unsigned char dracorev;
260 	dracorev = is_draco();
261 	if (dracorev >= 4) {
262 		draco_ioct->io_timerlo = CLK_INTERVAL & 0xFF;
263 		draco_ioct->io_timerhi = CLK_INTERVAL >> 8;
264 		draco_ioct->io_timerrst = 0;	/* any value resets */
265 		draco_ioct->io_status2 |= DRSTAT2_TMRINTENA;
266 
267 		return;
268 	}
269 #endif
270 	/*
271 	 * enable interrupts for timer A
272 	 */
273 	clockcia->icr = (1<<7) | (1<<0);
274 
275 	/*
276 	 * start timer A in continuous shot mode
277 	 */
278 	clockcia->cra = (clockcia->cra & 0xc0) | 1;
279 
280 	/*
281 	 * and globally enable interrupts for ciab
282 	 */
283 #ifdef DRACO
284 	if (dracorev)		/* we use cia a on DraCo */
285 		*draco_intena |= DRIRQ_INT2;
286 	else
287 #endif
288 		custom.intena = INTF_SETCLR | INTF_EXTER;
289 
290 }
291 
292 void
293 setstatclockrate(hz)
294 	int hz;
295 {
296 }
297 
298 /*
299  * Returns number of usec since last recorded clock "tick"
300  * (i.e. clock interrupt).
301  */
302 u_long
303 clkread()
304 {
305 	u_int interval;
306 	u_char hi, hi2, lo;
307 
308 #ifdef DRACO
309 	if (is_draco() >= 4) {
310 		hi2 = draco_ioct->io_chiprev;	/* latch timer */
311 		hi = draco_ioct->io_timerhi;
312 		lo = draco_ioct->io_timerlo;
313 		interval = ((hi<<8) | lo);
314 		if (interval > CLK_INTERVAL)	/* timer underflow */
315 			interval = 65536 + CLK_INTERVAL - interval;
316 		else
317 			interval = CLK_INTERVAL - interval;
318 
319 	} else
320 #endif
321 	{
322 		hi  = clockcia->tahi;
323 		lo  = clockcia->talo;
324 		hi2 = clockcia->tahi;
325 		if (hi != hi2) {
326 			lo = clockcia->talo;
327 			hi = hi2;
328 		}
329 
330 		interval = (CLK_INTERVAL - 1) - ((hi<<8) | lo);
331 
332 		/*
333 		 * should read ICR and if there's an int pending, adjust
334 		 * interval. However, since reading ICR clears the interrupt,
335 		 * we'd lose a hardclock int, and this is not tolerable.
336 		 */
337 	}
338 
339 	return((interval * tick) / CLK_INTERVAL);
340 }
341 
342 #if notyet
343 
344 /* implement this later. I'd suggest using both timers in CIA-A, they're
345    not yet used. */
346 
347 #include "clock.h"
348 #if NCLOCK > 0
349 /*
350  * /dev/clock: mappable high resolution timer.
351  *
352  * This code implements a 32-bit recycling counter (with a 4 usec period)
353  * using timers 2 & 3 on the 6840 clock chip.  The counter can be mapped
354  * RO into a user's address space to achieve low overhead (no system calls),
355  * high-precision timing.
356  *
357  * Note that timer 3 is also used for the high precision profiling timer
358  * (PROFTIMER code above).  Care should be taken when both uses are
359  * configured as only a token effort is made to avoid conflicting use.
360  */
361 #include <sys/proc.h>
362 #include <sys/resourcevar.h>
363 #include <sys/ioctl.h>
364 #include <sys/malloc.h>
365 #include <vm/vm.h>
366 #include <amiga/amiga/clockioctl.h>
367 #include <sys/specdev.h>
368 #include <sys/vnode.h>
369 #include <sys/mman.h>
370 
371 int clockon = 0;		/* non-zero if high-res timer enabled */
372 #ifdef PROFTIMER
373 int  profprocs = 0;		/* # of procs using profiling timer */
374 #endif
375 #ifdef DEBUG
376 int clockdebug = 0;
377 #endif
378 
379 /*ARGSUSED*/
380 clockopen(dev, flags)
381 	dev_t dev;
382 {
383 #ifdef PROFTIMER
384 #ifdef PROF
385 	/*
386 	 * Kernel profiling enabled, give up.
387 	 */
388 	if (profiling)
389 		return(EBUSY);
390 #endif
391 	/*
392 	 * If any user processes are profiling, give up.
393 	 */
394 	if (profprocs)
395 		return(EBUSY);
396 #endif
397 	if (!clockon) {
398 		startclock();
399 		clockon++;
400 	}
401 	return(0);
402 }
403 
404 /*ARGSUSED*/
405 clockclose(dev, flags)
406 	dev_t dev;
407 {
408 	(void) clockunmmap(dev, (caddr_t)0, curproc);	/* XXX */
409 	stopclock();
410 	clockon = 0;
411 	return(0);
412 }
413 
414 /*ARGSUSED*/
415 clockioctl(dev, cmd, data, flag, p)
416 	dev_t dev;
417 	u_long cmd;
418 	caddr_t data;
419 	struct proc *p;
420 {
421 	int error = 0;
422 
423 	switch (cmd) {
424 
425 	case CLOCKMAP:
426 		error = clockmmap(dev, (caddr_t *)data, p);
427 		break;
428 
429 	case CLOCKUNMAP:
430 		error = clockunmmap(dev, *(caddr_t *)data, p);
431 		break;
432 
433 	case CLOCKGETRES:
434 		*(int *)data = CLK_RESOLUTION;
435 		break;
436 
437 	default:
438 		error = EINVAL;
439 		break;
440 	}
441 	return(error);
442 }
443 
444 /*ARGSUSED*/
445 clockmap(dev, off, prot)
446 	dev_t dev;
447 {
448 	return((off + (INTIOBASE+CLKBASE+CLKSR-1)) >> PGSHIFT);
449 }
450 
451 clockmmap(dev, addrp, p)
452 	dev_t dev;
453 	caddr_t *addrp;
454 	struct proc *p;
455 {
456 	int error;
457 	struct vnode vn;
458 	struct specinfo si;
459 	int flags;
460 
461 	flags = MAP_FILE|MAP_SHARED;
462 	if (*addrp)
463 		flags |= MAP_FIXED;
464 	else
465 		*addrp = (caddr_t)0x1000000;	/* XXX */
466 	vn.v_type = VCHR;			/* XXX */
467 	vn.v_specinfo = &si;			/* XXX */
468 	vn.v_rdev = dev;			/* XXX */
469 	error = vm_mmap(&p->p_vmspace->vm_map, (vm_offset_t *)addrp,
470 			PAGE_SIZE, VM_PROT_ALL, flags, (caddr_t)&vn, 0);
471 	return(error);
472 }
473 
474 clockunmmap(dev, addr, p)
475 	dev_t dev;
476 	caddr_t addr;
477 	struct proc *p;
478 {
479 	int rv;
480 
481 	if (addr == 0)
482 		return(EINVAL);		/* XXX: how do we deal with this? */
483 	rv = vm_deallocate(p->p_vmspace->vm_map, (vm_offset_t)addr, PAGE_SIZE);
484 	return(rv == KERN_SUCCESS ? 0 : EINVAL);
485 }
486 
487 startclock()
488 {
489 	register struct clkreg *clk = (struct clkreg *)clkstd[0];
490 
491 	clk->clk_msb2 = -1; clk->clk_lsb2 = -1;
492 	clk->clk_msb3 = -1; clk->clk_lsb3 = -1;
493 
494 	clk->clk_cr2 = CLK_CR3;
495 	clk->clk_cr3 = CLK_OENAB|CLK_8BIT;
496 	clk->clk_cr2 = CLK_CR1;
497 	clk->clk_cr1 = CLK_IENAB;
498 }
499 
500 stopclock()
501 {
502 	register struct clkreg *clk = (struct clkreg *)clkstd[0];
503 
504 	clk->clk_cr2 = CLK_CR3;
505 	clk->clk_cr3 = 0;
506 	clk->clk_cr2 = CLK_CR1;
507 	clk->clk_cr1 = CLK_IENAB;
508 }
509 #endif
510 
511 #endif
512 
513 
514 #ifdef PROFTIMER
515 /*
516  * This code allows the amiga kernel to use one of the extra timers on
517  * the clock chip for profiling, instead of the regular system timer.
518  * The advantage of this is that the profiling timer can be turned up to
519  * a higher interrupt rate, giving finer resolution timing. The profclock
520  * routine is called from the lev6intr in locore, and is a specialized
521  * routine that calls addupc. The overhead then is far less than if
522  * hardclock/softclock was called. Further, the context switch code in
523  * locore has been changed to turn the profile clock on/off when switching
524  * into/out of a process that is profiling (startprofclock/stopprofclock).
525  * This reduces the impact of the profiling clock on other users, and might
526  * possibly increase the accuracy of the profiling.
527  */
528 int  profint   = PRF_INTERVAL;	/* Clock ticks between interrupts */
529 int  profscale = 0;		/* Scale factor from sys clock to prof clock */
530 char profon    = 0;		/* Is profiling clock on? */
531 
532 /* profon values - do not change, locore.s assumes these values */
533 #define PRF_NONE	0x00
534 #define	PRF_USER	0x01
535 #define	PRF_KERNEL	0x80
536 
537 initprofclock()
538 {
539 #if NCLOCK > 0
540 	struct proc *p = curproc;		/* XXX */
541 
542 	/*
543 	 * If the high-res timer is running, force profiling off.
544 	 * Unfortunately, this gets reflected back to the user not as
545 	 * an error but as a lack of results.
546 	 */
547 	if (clockon) {
548 		p->p_stats->p_prof.pr_scale = 0;
549 		return;
550 	}
551 	/*
552 	 * Keep track of the number of user processes that are profiling
553 	 * by checking the scale value.
554 	 *
555 	 * XXX: this all assumes that the profiling code is well behaved;
556 	 * i.e. profil() is called once per process with pcscale non-zero
557 	 * to turn it on, and once with pcscale zero to turn it off.
558 	 * Also assumes you don't do any forks or execs.  Oh well, there
559 	 * is always adb...
560 	 */
561 	if (p->p_stats->p_prof.pr_scale)
562 		profprocs++;
563 	else
564 		profprocs--;
565 #endif
566 	/*
567 	 * The profile interrupt interval must be an even divisor
568 	 * of the CLK_INTERVAL so that scaling from a system clock
569 	 * tick to a profile clock tick is possible using integer math.
570 	 */
571 	if (profint > CLK_INTERVAL || (CLK_INTERVAL % profint) != 0)
572 		profint = CLK_INTERVAL;
573 	profscale = CLK_INTERVAL / profint;
574 }
575 
576 startprofclock()
577 {
578   unsigned short interval;
579 
580   /* stop timer B */
581   clockcia->crb = clockcia->crb & 0xc0;
582 
583   /* load interval into registers.
584      the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz */
585 
586   interval = profint - 1;
587 
588   /* order of setting is important ! */
589   clockcia->tblo = interval & 0xff;
590   clockcia->tbhi = interval >> 8;
591 
592   /* enable interrupts for timer B */
593   clockcia->icr = (1<<7) | (1<<1);
594 
595   /* start timer B in continuous shot mode */
596   clockcia->crb = (clockcia->crb & 0xc0) | 1;
597 }
598 
599 stopprofclock()
600 {
601   /* stop timer B */
602   clockcia->crb = clockcia->crb & 0xc0;
603 }
604 
605 #ifdef PROF
606 /*
607  * profclock() is expanded in line in lev6intr() unless profiling kernel.
608  * Assumes it is called with clock interrupts blocked.
609  */
610 profclock(pc, ps)
611 	caddr_t pc;
612 	int ps;
613 {
614 	/*
615 	 * Came from user mode.
616 	 * If this process is being profiled record the tick.
617 	 */
618 	if (USERMODE(ps)) {
619 		if (p->p_stats.p_prof.pr_scale)
620 			addupc(pc, &curproc->p_stats.p_prof, 1);
621 	}
622 	/*
623 	 * Came from kernel (supervisor) mode.
624 	 * If we are profiling the kernel, record the tick.
625 	 */
626 	else if (profiling < 2) {
627 		register int s = pc - s_lowpc;
628 
629 		if (s < s_textsize)
630 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
631 	}
632 	/*
633 	 * Kernel profiling was on but has been disabled.
634 	 * Mark as no longer profiling kernel and if all profiling done,
635 	 * disable the clock.
636 	 */
637 	if (profiling && (profon & PRF_KERNEL)) {
638 		profon &= ~PRF_KERNEL;
639 		if (profon == PRF_NONE)
640 			stopprofclock();
641 	}
642 }
643 #endif
644 #endif
645 
646 /* this is a hook set by a clock driver for the configured realtime clock,
647    returning plain current unix-time */
648 long (*gettod) __P((void));
649 int (*settod) __P((long));
650 void *clockaddr;
651 
652 long a3gettod __P((void));
653 long a2gettod __P((void));
654 int a3settod __P((long));
655 int a2settod __P((long));
656 int rtcinit __P((void));
657 
658 /*
659  * Initialize the time of day register, based on the time base which is, e.g.
660  * from a filesystem.
661  */
662 void
663 inittodr(base)
664 	time_t base;
665 {
666 	u_long timbuf = base;	/* assume no battery clock exists */
667 
668 	if (gettod == NULL && rtcinit() == 0)
669 		printf("WARNING: no battery clock\n");
670 	else
671 		timbuf = gettod();
672 
673 	if (timbuf < base) {
674 		printf("WARNING: bad date in battery clock\n");
675 		timbuf = base;
676 	}
677 
678 	/* Battery clock does not store usec's, so forget about it. */
679 	time.tv_sec = timbuf;
680 }
681 
682 void
683 resettodr()
684 {
685 	if (settod && settod(time.tv_sec) == 0)
686 		printf("Cannot set battery backed clock\n");
687 }
688 
689 int
690 rtcinit()
691 {
692 	clockaddr = (void *)ztwomap(0xdc0000);
693 #ifdef DRACO
694 	if (is_draco()) {
695 		/* XXX to be done */
696 		gettod = (void *)0;
697 		settod = (void *)0;
698 		return 0;
699 	} else
700 #endif
701 	if (is_a3000() || is_a4000()) {
702 		if (a3gettod() == 0)
703 			return(0);
704 		gettod = a3gettod;
705 		settod = a3settod;
706 	} else {
707 		if (a2gettod() == 0)
708 			return(0);
709 		gettod = a2gettod;
710 		settod = a2settod;
711 	}
712 	return(1);
713 }
714 
715 static int month_days[12] = {
716 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
717 };
718 
719 long
720 a3gettod()
721 {
722 	struct rtclock3000 *rt;
723 	int i, year, month, day, wday, hour, min, sec;
724 	u_long tmp;
725 
726 	rt = clockaddr;
727 
728 	/* hold clock */
729 	rt->control1 = A3CONTROL1_HOLD_CLOCK;
730 
731 	/* read it */
732 	sec   = rt->second1 * 10 + rt->second2;
733 	min   = rt->minute1 * 10 + rt->minute2;
734 	hour  = rt->hour1   * 10 + rt->hour2;
735 	wday  = rt->weekday;
736 	day   = rt->day1    * 10 + rt->day2;
737 	month = rt->month1  * 10 + rt->month2;
738 	year  = rt->year1   * 10 + rt->year2   + 1900;
739 
740 	/* let it run again.. */
741 	rt->control1 = A3CONTROL1_FREE_CLOCK;
742 
743 	if (range_test(hour, 0, 23))
744 		return(0);
745 	if (range_test(wday, 0, 6))
746 		return(0);
747 	if (range_test(day, 1, 31))
748 		return(0);
749 	if (range_test(month, 1, 12))
750 		return(0);
751 	if (range_test(year, STARTOFTIME, 2000))
752 		return(0);
753 
754 	tmp = 0;
755 
756 	for (i = STARTOFTIME; i < year; i++)
757 		tmp += days_in_year(i);
758 	if (leapyear(year) && month > FEBRUARY)
759 		tmp++;
760 
761 	for (i = 1; i < month; i++)
762 		tmp += days_in_month(i);
763 
764 	tmp += (day - 1);
765 	tmp = ((tmp * 24 + hour) * 60 + min) * 60 + sec;
766 
767 	return(tmp);
768 }
769 
770 int
771 a3settod(tim)
772 	long tim;
773 {
774 	register int i;
775 	register long hms, day;
776 	u_char sec1, sec2;
777 	u_char min1, min2;
778 	u_char hour1, hour2;
779 /*	u_char wday; */
780 	u_char day1, day2;
781 	u_char mon1, mon2;
782 	u_char year1, year2;
783 	struct rtclock3000 *rt;
784 
785 	rt = clockaddr;
786 	/*
787 	 * there seem to be problems with the bitfield addressing
788 	 * currently used..
789 	 */
790 
791 	if (! rt)
792 		return 0;
793 
794 	/* prepare values to be written to clock */
795 	day = tim / SECDAY;
796 	hms = tim % SECDAY;
797 
798 	hour2 = hms / 3600;
799 	hour1 = hour2 / 10;
800 	hour2 %= 10;
801 
802 	min2 = (hms % 3600) / 60;
803 	min1 = min2 / 10;
804 	min2 %= 10;
805 
806 
807 	sec2 = (hms % 3600) % 60;
808 	sec1 = sec2 / 10;
809 	sec2 %= 10;
810 
811 	/* Number of years in days */
812 	for (i = STARTOFTIME - 1900; day >= days_in_year(i); i++)
813 		day -= days_in_year(i);
814 	year1 = i / 10;
815 	year2 = i % 10;
816 
817 	/* Number of months in days left */
818 	if (leapyear(i))
819 		days_in_month(FEBRUARY) = 29;
820 	for (i = 1; day >= days_in_month(i); i++)
821 		day -= days_in_month(i);
822 	days_in_month(FEBRUARY) = 28;
823 
824 	mon1 = i / 10;
825 	mon2 = i % 10;
826 
827 	/* Days are what is left over (+1) from all that. */
828 	day ++;
829 	day1 = day / 10;
830 	day2 = day % 10;
831 
832 	rt->control1 = A3CONTROL1_HOLD_CLOCK;
833 	rt->second1 = sec1;
834 	rt->second2 = sec2;
835 	rt->minute1 = min1;
836 	rt->minute2 = min2;
837 	rt->hour1   = hour1;
838 	rt->hour2   = hour2;
839 /*	rt->weekday = wday; */
840 	rt->day1    = day1;
841 	rt->day2    = day2;
842 	rt->month1  = mon1;
843 	rt->month2  = mon2;
844 	rt->year1   = year1;
845 	rt->year2   = year2;
846 	rt->control1 = A3CONTROL1_FREE_CLOCK;
847 
848 	return 1;
849 }
850 
851 long
852 a2gettod()
853 {
854 	struct rtclock2000 *rt;
855 	int i, year, month, day, hour, min, sec;
856 	u_long tmp;
857 
858 	rt = clockaddr;
859 
860 	/*
861 	 * hold clock
862 	 */
863 	rt->control1 |= A2CONTROL1_HOLD;
864 	i = 0x1000;
865 	while (rt->control1 & A2CONTROL1_BUSY && i--)
866 		;
867 	if (rt->control1 & A2CONTROL1_BUSY)
868 		return (0);	/* Give up and say it's not there */
869 
870 	/*
871 	 * read it
872 	 */
873 	sec = rt->second1 * 10 + rt->second2;
874 	min = rt->minute1 * 10 + rt->minute2;
875 	hour = (rt->hour1 & 3)  * 10 + rt->hour2;
876 	day = rt->day1 * 10 + rt->day2;
877 	month = rt->month1 * 10 + rt->month2;
878 	year = rt->year1 * 10 + rt->year2   + 1900;
879 
880 	if ((rt->control3 & A2CONTROL3_24HMODE) == 0) {
881 		if ((rt->hour1 & A2HOUR1_PM) == 0 && hour == 12)
882 			hour = 0;
883 		else if ((rt->hour1 & A2HOUR1_PM) && hour != 12)
884 			hour += 12;
885 	}
886 
887 	/*
888 	 * release the clock
889 	 */
890 	rt->control1 &= ~A2CONTROL1_HOLD;
891 
892 	if (range_test(hour, 0, 23))
893 		return(0);
894 	if (range_test(day, 1, 31))
895 		return(0);
896 	if (range_test(month, 1, 12))
897 		return(0);
898 	if (range_test(year, STARTOFTIME, 2000))
899 		return(0);
900 
901 	tmp = 0;
902 
903 	for (i = STARTOFTIME; i < year; i++)
904 		tmp += days_in_year(i);
905 	if (leapyear(year) && month > FEBRUARY)
906 		tmp++;
907 
908 	for (i = 1; i < month; i++)
909 		tmp += days_in_month(i);
910 
911 	tmp += (day - 1);
912 	tmp = ((tmp * 24 + hour) * 60 + min) * 60 + sec;
913 
914 	return(tmp);
915 }
916 
917 /*
918  * there is some question as to whether this works
919  * I guess
920  */
921 int
922 a2settod(tim)
923 	long tim;
924 {
925 
926 	int i;
927 	long hms, day;
928 	u_char sec1, sec2;
929 	u_char min1, min2;
930 	u_char hour1, hour2;
931 	u_char day1, day2;
932 	u_char mon1, mon2;
933 	u_char year1, year2;
934 	struct rtclock2000 *rt;
935 
936 	rt = clockaddr;
937 	/*
938 	 * there seem to be problems with the bitfield addressing
939 	 * currently used..
940 	 *
941 	 * XXX Check out the above where we (hour1 & 3)
942 	 */
943 	if (! rt)
944 		return 0;
945 
946 	/* prepare values to be written to clock */
947 	day = tim / SECDAY;
948 	hms = tim % SECDAY;
949 
950 	hour2 = hms / 3600;
951 	hour1 = hour2 / 10;
952 	hour2 %= 10;
953 
954 	min2 = (hms % 3600) / 60;
955 	min1 = min2 / 10;
956 	min2 %= 10;
957 
958 
959 	sec2 = (hms % 3600) % 60;
960 	sec1 = sec2 / 10;
961 	sec2 %= 10;
962 
963 	/* Number of years in days */
964 	for (i = STARTOFTIME - 1900; day >= days_in_year(i); i++)
965 		day -= days_in_year(i);
966 	year1 = i / 10;
967 	year2 = i % 10;
968 
969 	/* Number of months in days left */
970 	if (leapyear(i))
971 		days_in_month(FEBRUARY) = 29;
972 	for (i = 1; day >= days_in_month(i); i++)
973 		day -= days_in_month(i);
974 	days_in_month(FEBRUARY) = 28;
975 
976 	mon1 = i / 10;
977 	mon2 = i % 10;
978 
979 	/* Days are what is left over (+1) from all that. */
980 	day ++;
981 	day1 = day / 10;
982 	day2 = day % 10;
983 
984 	/*
985 	 * XXXX spin wait as with reading???
986 	 */
987 	rt->control1 |= A2CONTROL1_HOLD;
988 	rt->second1 = sec1;
989 	rt->second2 = sec2;
990 	rt->minute1 = min1;
991 	rt->minute2 = min2;
992 	rt->hour1   = hour1;
993 	rt->hour2   = hour2;
994 	rt->day1    = day1;
995 	rt->day2    = day2;
996 	rt->month1  = mon1;
997 	rt->month2  = mon2;
998 	rt->year1   = year1;
999 	rt->year2   = year2;
1000 	rt->control2 &= ~A2CONTROL1_HOLD;
1001 
1002 	return 1;
1003 }
1004