xref: /netbsd-src/sys/arch/amiga/dev/clock.c (revision ae1bfcddc410612bc8c58b807e1830becb69a24c)
1 /*
2  * Copyright (c) 1988 University of Utah.
3  * Copyright (c) 1982, 1990 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * the Systems Programming Group of the University of Utah Computer
8  * Science Department.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * from: Utah $Hdr: clock.c 1.18 91/01/21$
39  *
40  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
41  *	$Id: clock.c,v 1.2 1994/05/09 06:38:37 chopps Exp $
42  */
43 
44 #include <sys/param.h>
45 #include <sys/kernel.h>
46 #include <sys/device.h>
47 #include <machine/psl.h>
48 #include <machine/cpu.h>
49 #include <amiga/amiga/device.h>
50 #include <amiga/amiga/custom.h>
51 #include <amiga/amiga/cia.h>
52 #include <amiga/dev/rtc.h>
53 #include <amiga/dev/ztwobusvar.h>
54 
55 #if defined(PROF) && defined(PROFTIMER)
56 #include <sys/PROF.h>
57 #endif
58 
59 /* the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz.
60    We're using a 100 Hz clock. */
61 
62 #define CLK_INTERVAL amiga_clk_interval
63 int amiga_clk_interval = (715909 / 100);	/* XXX NTSC */
64 /*
65  * Machine-dependent clock routines.
66  *
67  * Startrtclock restarts the real-time clock, which provides
68  * hardclock interrupts to kern_clock.c.
69  *
70  * Inittodr initializes the time of day hardware which provides
71  * date functions.
72  *
73  * Resettodr restores the time of day hardware after a time change.
74  *
75  * A note on the real-time clock:
76  * We actually load the clock with CLK_INTERVAL-1 instead of CLK_INTERVAL.
77  * This is because the counter decrements to zero after N+1 enabled clock
78  * periods where N is the value loaded into the counter.
79  */
80 
81 int clockmatch __P((struct device *, struct cfdata *, void *));
82 void clockattach __P((struct device *, struct device *, void *));
83 
84 struct cfdriver clockcd = {
85 	NULL, "clock", clockmatch, clockattach,
86 	DV_DULL, sizeof(struct device), NULL, 0 };
87 
88 int
89 clockmatch(pdp, cfp, auxp)
90 	struct device *pdp;
91 	struct cfdata *cfp;
92 	void *auxp;
93 {
94 	if (matchname("clock", auxp))
95 		return(1);
96 	return(0);
97 }
98 
99 /*
100  * Start the real-time clock.
101  */
102 void
103 clockattach(pdp, dp, auxp)
104 	struct device *pdp, *dp;
105 	void *auxp;
106 {
107 	unsigned short interval;
108 
109 	/* be more elaborate XXX, whats the speed */
110 	printf("\n");
111 	/*
112 	 * stop timer A
113 	 */
114 	ciab.cra = ciab.cra & 0xc0;
115 
116 	/*
117 	 * load interval into registers.
118          * the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz
119 	 * supprort for PAL WHEN?!?! XXX
120 	 */
121 	interval = CLK_INTERVAL - 1;
122 
123 	/*
124 	 * order of setting is important !
125 	 */
126 	ciab.talo = interval & 0xff;
127 	ciab.tahi = interval >> 8;
128 }
129 
130 void
131 cpu_initclocks()
132 {
133 	/*
134 	 * enable interrupts for timer A
135 	 */
136 	ciab.icr = (1<<7) | (1<<0);
137 
138 	/*
139 	 * start timer A in continuous shot mode
140 	 */
141 	ciab.cra = (ciab.cra & 0xc0) | 1;
142 
143 	/*
144 	 * and globally enable interrupts for ciab
145 	 */
146 	custom.intena = INTF_SETCLR | INTF_EXTER;
147 }
148 
149 setstatclockrate(hz)
150 	int hz;
151 {
152 }
153 
154 /*
155  * Returns number of usec since last recorded clock "tick"
156  * (i.e. clock interrupt).
157  */
158 clkread()
159 {
160 	u_char hi, hi2, lo;
161 	u_int interval;
162 
163 	hi  = ciab.tahi;
164 	lo  = ciab.talo;
165 	hi2 = ciab.tahi;
166 	if (hi != hi2) {
167 		lo = ciab.talo;
168 		hi = hi2;
169 	}
170 
171 	interval = (CLK_INTERVAL - 1) - ((hi<<8) | lo);
172 
173 	/*
174 	 * should read ICR and if there's an int pending, adjust interval.
175 	 * However, * since reading ICR clears the interrupt, we'd lose a
176 	 * hardclock int, and * this is not tolerable.
177 	 */
178 
179 	return((interval * tick) / CLK_INTERVAL);
180 }
181 
182 u_int micspertick;
183 
184 /*
185  * we set up as much of the CIAa as possible
186  * as all access to chip memory are very slow.
187  */
188 void
189 setmicspertick()
190 {
191 	micspertick = (1000000ULL << 20) / 715909;
192 
193 	/*
194 	 * disable interrupts (just in case.)
195 	 */
196 	ciaa.icr = 0x3;
197 
198 	/*
199 	 * stop both timers if not already
200 	 */
201 	ciaa.cra &= ~1;
202 	ciaa.crb &= ~1;
203 
204 	/*
205 	 * set timer B in "count timer A underflows" mode
206 	 * set tiemr A in one-shot mode
207 	 */
208 	ciaa.crb = (ciaa.crb & 0x80) | 0x48;
209 	ciaa.cra = (ciaa.cra & 0xc0) | 0x08;
210 }
211 
212 /*
213  * this function assumes that on any entry beyond the first
214  * the following condintions exist:
215  * Interrupts for Timers A and B are disabled.
216  * Timers A and B are stoped.
217  * Timers A and B are in one-shot mode with B counting timer A underflows
218  *
219  */
220 void
221 delay(mic)
222 	int mic;
223 {
224 	u_int temp;
225 	int s;
226 
227 	if (micspertick == 0)
228 		setmicspertick();
229 
230 	if (mic <= 1)
231 		return;
232 
233 	/*
234 	 * basically this is going to do an integer
235 	 * usec / (1000000 / 715909) with no loss of
236 	 * precision
237 	 */
238 	temp = mic >> 12;
239 	asm("divul %3,%1:%0" : "=d" (temp) : "d" (mic >> 12), "0" (mic << 20),
240 	    "d" (micspertick));
241 
242 	if ((temp & 0xffff0000) > 0x10000) {
243 		mic = (temp >> 16) - 1;
244 		temp &= 0xffff;
245 
246 		/*
247 		 * set timer A in continous mode
248 		 */
249 		ciaa.cra = (ciaa.cra & 0xc0) | 0x00;
250 
251 		/*
252 		 * latch/load/start "counts of timer A underflows" in B
253 		 */
254 		ciaa.tblo = mic & 0xff;
255 		ciaa.tbhi = mic >> 8;
256 
257 		/*
258 		 * timer A latches 0xffff
259 		 * and start it.
260 		 */
261 		ciaa.talo = 0xff;
262 		ciaa.tahi = 0xff;
263 		ciaa.cra |= 1;
264 
265 		while (ciaa.crb & 1)
266 			;
267 
268 		/*
269 		 * stop timer A
270 		 */
271 		ciaa.cra &= ~1;
272 
273 		/*
274 		 * set timer A in one shot mode
275 		 */
276 		ciaa.cra = (ciaa.cra & 0xc0) | 0x08;
277 	} else if ((temp & 0xffff0000) == 0x10000) {
278 		temp &= 0xffff;
279 
280 		/*
281 		 * timer A is in one shot latch/load/start 1 full turn
282 		 */
283 		ciaa.talo = 0xff;
284 		ciaa.tahi = 0xff;
285 		while (ciaa.cra & 1)
286 			;
287 	}
288 	if (temp < 1)
289 		return;
290 
291 	/*
292 	 * temp is now residual ammount, latch/load/start it.
293 	 */
294 	ciaa.talo = temp & 0xff;
295 	ciaa.tahi = temp >> 8;
296 	while (ciaa.cra & 1)
297 		;
298 }
299 
300 /*
301  * Needs to be calibrated for use, its way off most of the time
302  */
303 void
304 DELAY(mic)
305 	int mic;
306 {
307 	u_long n;
308 	short hpos;
309 
310 	/*
311 	 * this function uses HSync pulses as base units. The custom chips
312 	 * display only deals with 31.6kHz/2 refresh, this gives us a
313 	 * resolution of 1/15800 s, which is ~63us (add some fuzz so we really
314 	 * wait awhile, even if using small timeouts)
315 	 */
316 	n = mic/63 + 2;
317 	do {
318 		hpos = custom.vhposr & 0xff00;
319 		while (hpos == (custom.vhposr & 0xff00))
320 			;
321 	} while (n--);
322 }
323 
324 #if notyet
325 
326 /* implement this later. I'd suggest using both timers in CIA-A, they're
327    not yet used. */
328 
329 #include "clock.h"
330 #if NCLOCK > 0
331 /*
332  * /dev/clock: mappable high resolution timer.
333  *
334  * This code implements a 32-bit recycling counter (with a 4 usec period)
335  * using timers 2 & 3 on the 6840 clock chip.  The counter can be mapped
336  * RO into a user's address space to achieve low overhead (no system calls),
337  * high-precision timing.
338  *
339  * Note that timer 3 is also used for the high precision profiling timer
340  * (PROFTIMER code above).  Care should be taken when both uses are
341  * configured as only a token effort is made to avoid conflicting use.
342  */
343 #include <sys/proc.h>
344 #include <sys/resourcevar.h>
345 #include <sys/ioctl.h>
346 #include <sys/malloc.h>
347 #include <vm/vm.h>
348 #include <amiga/amiga/clockioctl.h>
349 #include <sys/specdev.h>
350 #include <sys/vnode.h>
351 #include <sys/mman.h>
352 
353 int clockon = 0;		/* non-zero if high-res timer enabled */
354 #ifdef PROFTIMER
355 int  profprocs = 0;		/* # of procs using profiling timer */
356 #endif
357 #ifdef DEBUG
358 int clockdebug = 0;
359 #endif
360 
361 /*ARGSUSED*/
362 clockopen(dev, flags)
363 	dev_t dev;
364 {
365 #ifdef PROFTIMER
366 #ifdef PROF
367 	/*
368 	 * Kernel profiling enabled, give up.
369 	 */
370 	if (profiling)
371 		return(EBUSY);
372 #endif
373 	/*
374 	 * If any user processes are profiling, give up.
375 	 */
376 	if (profprocs)
377 		return(EBUSY);
378 #endif
379 	if (!clockon) {
380 		startclock();
381 		clockon++;
382 	}
383 	return(0);
384 }
385 
386 /*ARGSUSED*/
387 clockclose(dev, flags)
388 	dev_t dev;
389 {
390 	(void) clockunmmap(dev, (caddr_t)0, curproc);	/* XXX */
391 	stopclock();
392 	clockon = 0;
393 	return(0);
394 }
395 
396 /*ARGSUSED*/
397 clockioctl(dev, cmd, data, flag, p)
398 	dev_t dev;
399 	caddr_t data;
400 	struct proc *p;
401 {
402 	int error = 0;
403 
404 	switch (cmd) {
405 
406 	case CLOCKMAP:
407 		error = clockmmap(dev, (caddr_t *)data, p);
408 		break;
409 
410 	case CLOCKUNMAP:
411 		error = clockunmmap(dev, *(caddr_t *)data, p);
412 		break;
413 
414 	case CLOCKGETRES:
415 		*(int *)data = CLK_RESOLUTION;
416 		break;
417 
418 	default:
419 		error = EINVAL;
420 		break;
421 	}
422 	return(error);
423 }
424 
425 /*ARGSUSED*/
426 clockmap(dev, off, prot)
427 	dev_t dev;
428 {
429 	return((off + (INTIOBASE+CLKBASE+CLKSR-1)) >> PGSHIFT);
430 }
431 
432 clockmmap(dev, addrp, p)
433 	dev_t dev;
434 	caddr_t *addrp;
435 	struct proc *p;
436 {
437 	int error;
438 	struct vnode vn;
439 	struct specinfo si;
440 	int flags;
441 
442 	flags = MAP_FILE|MAP_SHARED;
443 	if (*addrp)
444 		flags |= MAP_FIXED;
445 	else
446 		*addrp = (caddr_t)0x1000000;	/* XXX */
447 	vn.v_type = VCHR;			/* XXX */
448 	vn.v_specinfo = &si;			/* XXX */
449 	vn.v_rdev = dev;			/* XXX */
450 	error = vm_mmap(&p->p_vmspace->vm_map, (vm_offset_t *)addrp,
451 			PAGE_SIZE, VM_PROT_ALL, flags, (caddr_t)&vn, 0);
452 	return(error);
453 }
454 
455 clockunmmap(dev, addr, p)
456 	dev_t dev;
457 	caddr_t addr;
458 	struct proc *p;
459 {
460 	int rv;
461 
462 	if (addr == 0)
463 		return(EINVAL);		/* XXX: how do we deal with this? */
464 	rv = vm_deallocate(p->p_vmspace->vm_map, (vm_offset_t)addr, PAGE_SIZE);
465 	return(rv == KERN_SUCCESS ? 0 : EINVAL);
466 }
467 
468 startclock()
469 {
470 	register struct clkreg *clk = (struct clkreg *)clkstd[0];
471 
472 	clk->clk_msb2 = -1; clk->clk_lsb2 = -1;
473 	clk->clk_msb3 = -1; clk->clk_lsb3 = -1;
474 
475 	clk->clk_cr2 = CLK_CR3;
476 	clk->clk_cr3 = CLK_OENAB|CLK_8BIT;
477 	clk->clk_cr2 = CLK_CR1;
478 	clk->clk_cr1 = CLK_IENAB;
479 }
480 
481 stopclock()
482 {
483 	register struct clkreg *clk = (struct clkreg *)clkstd[0];
484 
485 	clk->clk_cr2 = CLK_CR3;
486 	clk->clk_cr3 = 0;
487 	clk->clk_cr2 = CLK_CR1;
488 	clk->clk_cr1 = CLK_IENAB;
489 }
490 #endif
491 
492 #endif
493 
494 
495 #ifdef PROFTIMER
496 /*
497  * This code allows the amiga kernel to use one of the extra timers on
498  * the clock chip for profiling, instead of the regular system timer.
499  * The advantage of this is that the profiling timer can be turned up to
500  * a higher interrupt rate, giving finer resolution timing. The profclock
501  * routine is called from the lev6intr in locore, and is a specialized
502  * routine that calls addupc. The overhead then is far less than if
503  * hardclock/softclock was called. Further, the context switch code in
504  * locore has been changed to turn the profile clock on/off when switching
505  * into/out of a process that is profiling (startprofclock/stopprofclock).
506  * This reduces the impact of the profiling clock on other users, and might
507  * possibly increase the accuracy of the profiling.
508  */
509 int  profint   = PRF_INTERVAL;	/* Clock ticks between interrupts */
510 int  profscale = 0;		/* Scale factor from sys clock to prof clock */
511 char profon    = 0;		/* Is profiling clock on? */
512 
513 /* profon values - do not change, locore.s assumes these values */
514 #define PRF_NONE	0x00
515 #define	PRF_USER	0x01
516 #define	PRF_KERNEL	0x80
517 
518 initprofclock()
519 {
520 #if NCLOCK > 0
521 	struct proc *p = curproc;		/* XXX */
522 
523 	/*
524 	 * If the high-res timer is running, force profiling off.
525 	 * Unfortunately, this gets reflected back to the user not as
526 	 * an error but as a lack of results.
527 	 */
528 	if (clockon) {
529 		p->p_stats->p_prof.pr_scale = 0;
530 		return;
531 	}
532 	/*
533 	 * Keep track of the number of user processes that are profiling
534 	 * by checking the scale value.
535 	 *
536 	 * XXX: this all assumes that the profiling code is well behaved;
537 	 * i.e. profil() is called once per process with pcscale non-zero
538 	 * to turn it on, and once with pcscale zero to turn it off.
539 	 * Also assumes you don't do any forks or execs.  Oh well, there
540 	 * is always adb...
541 	 */
542 	if (p->p_stats->p_prof.pr_scale)
543 		profprocs++;
544 	else
545 		profprocs--;
546 #endif
547 	/*
548 	 * The profile interrupt interval must be an even divisor
549 	 * of the CLK_INTERVAL so that scaling from a system clock
550 	 * tick to a profile clock tick is possible using integer math.
551 	 */
552 	if (profint > CLK_INTERVAL || (CLK_INTERVAL % profint) != 0)
553 		profint = CLK_INTERVAL;
554 	profscale = CLK_INTERVAL / profint;
555 }
556 
557 startprofclock()
558 {
559   unsigned short interval;
560 
561   /* stop timer B */
562   ciab.crb = ciab.crb & 0xc0;
563 
564   /* load interval into registers.
565      the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz */
566 
567   interval = profint - 1;
568 
569   /* order of setting is important ! */
570   ciab.tblo = interval & 0xff;
571   ciab.tbhi = interval >> 8;
572 
573   /* enable interrupts for timer B */
574   ciab.icr = (1<<7) | (1<<1);
575 
576   /* start timer B in continuous shot mode */
577   ciab.crb = (ciab.crb & 0xc0) | 1;
578 }
579 
580 stopprofclock()
581 {
582   /* stop timer B */
583   ciab.crb = ciab.crb & 0xc0;
584 }
585 
586 #ifdef PROF
587 /*
588  * profclock() is expanded in line in lev6intr() unless profiling kernel.
589  * Assumes it is called with clock interrupts blocked.
590  */
591 profclock(pc, ps)
592 	caddr_t pc;
593 	int ps;
594 {
595 	/*
596 	 * Came from user mode.
597 	 * If this process is being profiled record the tick.
598 	 */
599 	if (USERMODE(ps)) {
600 		if (p->p_stats.p_prof.pr_scale)
601 			addupc(pc, &curproc->p_stats.p_prof, 1);
602 	}
603 	/*
604 	 * Came from kernel (supervisor) mode.
605 	 * If we are profiling the kernel, record the tick.
606 	 */
607 	else if (profiling < 2) {
608 		register int s = pc - s_lowpc;
609 
610 		if (s < s_textsize)
611 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
612 	}
613 	/*
614 	 * Kernel profiling was on but has been disabled.
615 	 * Mark as no longer profiling kernel and if all profiling done,
616 	 * disable the clock.
617 	 */
618 	if (profiling && (profon & PRF_KERNEL)) {
619 		profon &= ~PRF_KERNEL;
620 		if (profon == PRF_NONE)
621 			stopprofclock();
622 	}
623 }
624 #endif
625 #endif
626 
627 /* this is a hook set by a clock driver for the configured realtime clock,
628    returning plain current unix-time */
629 long (*gettod) __P((void));
630 int (*settod) __P((long));
631 void *clockaddr;
632 
633 long a3gettod __P((void));
634 long a2gettod __P((void));
635 int a3settod __P((long));
636 int a2settod __P((long));
637 int rtcinit __P((void));
638 
639 /*
640  * Initialize the time of day register, based on the time base which is, e.g.
641  * from a filesystem.
642  */
643 inittodr(base)
644 	time_t base;
645 {
646 	u_long timbuf = base;	/* assume no battery clock exists */
647 
648 	if (gettod == NULL && rtcinit() == 0)
649 		printf("WARNING: no battery clock\n");
650 	else
651 		timbuf = gettod();
652 
653 	if (timbuf < base) {
654 		printf("WARNING: bad date in battery clock\n");
655 		timbuf = base;
656 	}
657 
658 	/* Battery clock does not store usec's, so forget about it. */
659 	time.tv_sec = timbuf;
660 }
661 
662 resettodr()
663 {
664 	if (settod && settod(time.tv_sec) == 1)
665 		return;
666 	printf("Cannot set battery backed clock\n");
667 }
668 
669 int
670 rtcinit()
671 {
672 	clockaddr = (void *)ztwomap(0xdc0000);
673 	if (is_a3000() || is_a4000()) {
674 		if (a3gettod() == 0)
675 			return(0);
676 		gettod = a3gettod;
677 		settod = a3settod;
678 	} else {
679 		if (a2gettod() == 0)
680 			return(0);
681 		gettod = a2gettod;
682 		settod = a2settod;
683 	}
684 	return(1);
685 }
686 
687 static int month_days[12] = {
688 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
689 };
690 
691 long
692 a3gettod()
693 {
694 	struct rtclock3000 *rt;
695 	int i, year, month, day, hour, min, sec;
696 	u_long tmp;
697 
698 	rt = clockaddr;
699 
700 	/* hold clock */
701 	rt->control1 = A3CONTROL1_HOLD_CLOCK;
702 
703 	/* read it */
704 	sec   = rt->second1 * 10 + rt->second2;
705 	min   = rt->minute1 * 10 + rt->minute2;
706 	hour  = rt->hour1   * 10 + rt->hour2;
707 	day   = rt->day1    * 10 + rt->day2;
708 	month = rt->month1  * 10 + rt->month2;
709 	year  = rt->year1   * 10 + rt->year2   + 1900;
710 
711 	/* let it run again.. */
712 	rt->control1 = A3CONTROL1_FREE_CLOCK;
713 
714 	if (range_test(hour, 0, 23))
715 		return(0);
716 	if (range_test(day, 1, 31))
717 		return(0);
718 	if (range_test(month, 1, 12))
719 		return(0);
720 	if (range_test(year, STARTOFTIME, 2000))
721 		return(0);
722 
723 	tmp = 0;
724 
725 	for (i = STARTOFTIME; i < year; i++)
726 		tmp += days_in_year(i);
727 	if (leapyear(year) && month > FEBRUARY)
728 		tmp++;
729 
730 	for (i = 1; i < month; i++)
731 		tmp += days_in_month(i);
732 
733 	tmp += (day - 1);
734 	tmp = ((tmp * 24 + hour) * 60 + min) * 60 + sec;
735 
736 	return(tmp);
737 }
738 
739 int
740 a3settod(tim)
741 	long tim;
742 {
743 	register int i;
744 	register long hms, day;
745 	u_char sec1, sec2;
746 	u_char min1, min2;
747 	u_char hour1, hour2;
748 	u_char day1, day2;
749 	u_char mon1, mon2;
750 	u_char year1, year2;
751 	struct rtclock3000 *rt;
752 
753 	rt = clockaddr;
754 	/*
755 	 * there seem to be problems with the bitfield addressing
756 	 * currently used..
757 	 */
758 return(0);
759 #if not_yet
760 	if (rt)
761 		return 0;
762 
763 	/* prepare values to be written to clock */
764 	day = tim / SECDAY;
765 	hms = tim % SECDAY;
766 
767 	hour2 = hms / 3600;
768 	hour1 = hour2 / 10;
769 	hour2 %= 10;
770 
771 	min2 = (hms % 3600) / 60;
772 	min1 = min2 / 10;
773 	min2 %= 10;
774 
775 
776 	sec2 = (hms % 3600) % 60;
777 	sec1 = sec2 / 10;
778 	sec2 %= 10;
779 
780 	/* Number of years in days */
781 	for (i = STARTOFTIME - 1900; day >= days_in_year(i); i++)
782 		day -= days_in_year(i);
783 	year1 = i / 10;
784 	year2 = i % 10;
785 
786 	/* Number of months in days left */
787 	if (leapyear(i))
788 		days_in_month(FEBRUARY) = 29;
789 	for (i = 1; day >= days_in_month(i); i++)
790 		day -= days_in_month(i);
791 	days_in_month(FEBRUARY) = 28;
792 
793 	mon1 = i / 10;
794 	mon2 = i % 10;
795 
796 	/* Days are what is left over (+1) from all that. */
797 	day ++;
798 	day1 = day / 10;
799 	day2 = day % 10;
800 
801 	rt->control1 = CONTROL1_HOLD_CLOCK;
802 	rt->second1 = sec1;
803 	rt->second2 = sec2;
804 	rt->minute1 = min1;
805 	rt->minute2 = min2;
806 	rt->hour1   = hour1;
807 	rt->hour2   = hour2;
808 	rt->day1    = day1;
809 	rt->day2    = day2;
810 	rt->month1  = mon1;
811 	rt->month2  = mon2;
812 	rt->year1   = year1;
813 	rt->year2   = year2;
814 	rt->control2 = CONTROL1_FREE_CLOCK;
815 
816 	return 1;
817 #endif
818 }
819 
820 long
821 a2gettod()
822 {
823 	struct rtclock2000 *rt;
824 	int i, year, month, day, hour, min, sec;
825 	u_long tmp;
826 
827 	rt = clockaddr;
828 
829 	/*
830 	 * hold clock
831 	 */
832 	rt->control1 |= A2CONTROL1_HOLD;
833 	while (rt->control1 & A2CONTROL1_BUSY)
834 		;
835 
836 	/*
837 	 * read it
838 	 */
839 	sec = rt->second1 * 10 + rt->second2;
840 	min = rt->minute1 * 10 + rt->minute2;
841 	hour = (rt->hour1 & 3)  * 10 + rt->hour2;
842 	day = rt->day1 * 10 + rt->day2;
843 	month = rt->month1 * 10 + rt->month2;
844 	year = rt->year1 * 10 + rt->year2   + 1900;
845 
846 	if ((rt->control3 & A2CONTROL3_24HMODE) == 0) {
847 		if ((rt->hour1 & A2HOUR1_PM) == 0 && hour == 12)
848 			hour = 0;
849 		else if ((rt->hour1 & A2HOUR1_PM) && hour != 12)
850 			hour += 12;
851 	}
852 
853 	/*
854 	 * release the clock
855 	 */
856 	rt->control1 &= ~A2CONTROL1_HOLD;
857 
858 	if (range_test(hour, 0, 23))
859 		return(0);
860 	if (range_test(day, 1, 31))
861 		return(0);
862 	if (range_test(month, 1, 12))
863 		return(0);
864 	if (range_test(year, STARTOFTIME, 2000))
865 		return(0);
866 
867 	tmp = 0;
868 
869 	for (i = STARTOFTIME; i < year; i++)
870 		tmp += days_in_year(i);
871 	if (leapyear(year) && month > FEBRUARY)
872 		tmp++;
873 
874 	for (i = 1; i < month; i++)
875 		tmp += days_in_month(i);
876 
877 	tmp += (day - 1);
878 	tmp = ((tmp * 24 + hour) * 60 + min) * 60 + sec;
879 
880 	return(tmp);
881 }
882 
883 /*
884  * there is some question as to whether this works
885  * I guess
886  */
887 int
888 a2settod(tim)
889 	long tim;
890 {
891 
892 	int i;
893 	long hms, day;
894 	u_char sec1, sec2;
895 	u_char min1, min2;
896 	u_char hour1, hour2;
897 	u_char day1, day2;
898 	u_char mon1, mon2;
899 	u_char year1, year2;
900 	struct rtclock2000 *rt;
901 
902 	rt = clockaddr;
903 	/*
904 	 * there seem to be problems with the bitfield addressing
905 	 * currently used..
906 	 *
907 	 * XXX Check out the above where we (hour1 & 3)
908 	 */
909 return(0);
910 #if not_yet
911 	if (! rt)
912 		return 0;
913 
914 	/* prepare values to be written to clock */
915 	day = tim / SECDAY;
916 	hms = tim % SECDAY;
917 
918 	hour2 = hms / 3600;
919 	hour1 = hour2 / 10;
920 	hour2 %= 10;
921 
922 	min2 = (hms % 3600) / 60;
923 	min1 = min2 / 10;
924 	min2 %= 10;
925 
926 
927 	sec2 = (hms % 3600) % 60;
928 	sec1 = sec2 / 10;
929 	sec2 %= 10;
930 
931 	/* Number of years in days */
932 	for (i = STARTOFTIME - 1900; day >= days_in_year(i); i++)
933 		day -= days_in_year(i);
934 	year1 = i / 10;
935 	year2 = i % 10;
936 
937 	/* Number of months in days left */
938 	if (leapyear(i))
939 		days_in_month(FEBRUARY) = 29;
940 	for (i = 1; day >= days_in_month(i); i++)
941 		day -= days_in_month(i);
942 	days_in_month(FEBRUARY) = 28;
943 
944 	mon1 = i / 10;
945 	mon2 = i % 10;
946 
947 	/* Days are what is left over (+1) from all that. */
948 	day ++;
949 	day1 = day / 10;
950 	day2 = day % 10;
951 
952 	/*
953 	 * XXXX spin wait as with reading???
954 	 */
955 	rt->control1 = A2CONTROL1_HOLD_CLOCK;
956 	rt->second1 = sec1;
957 	rt->second2 = sec2;
958 	rt->minute1 = min1;
959 	rt->minute2 = min2;
960 	rt->hour1   = hour1;
961 	rt->hour2   = hour2;
962 	rt->day1    = day1;
963 	rt->day2    = day2;
964 	rt->month1  = mon1;
965 	rt->month2  = mon2;
966 	rt->year1   = year1;
967 	rt->year2   = year2;
968 	rt->control2 = CONTROL1_FREE_CLOCK;
969 
970   return 1;
971 #endif
972 }
973