1 /* $NetBSD: aucc.c,v 1.42 2012/10/27 17:17:27 chs Exp $ */ 2 3 /* 4 * Copyright (c) 1999 Bernardo Innocenti 5 * All rights reserved. 6 * 7 * Copyright (c) 1997 Stephan Thesing 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by Stephan Thesing. 21 * 4. The name of the author may not be used to endorse or promote products 22 * derived from this software without specific prior written permission 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 25 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 26 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 27 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 28 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 29 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 30 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 31 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 32 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 33 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 34 */ 35 36 /* TODO: 37 * 38 * - mu-law -> 14bit conversion 39 * - channel allocation is wrong for 14bit mono 40 * - convert the... err... conversion routines to 68k asm for best performance 41 * XXX: NO. aucc audio is limited by chipmem speed, anyway. You dont 42 * want to make life difficult for amigappc work. 43 * -is 44 * 45 * - rely on auconv.c routines for mu-law/A-law conversions 46 * - perhaps use a calibration table for better 14bit output 47 * - set 31 kHz AGA video mode to allow 44.1 kHz even if grfcc is missing 48 * in the kernel 49 * - 14bit output requires maximum volume 50 */ 51 52 #include "aucc.h" 53 #if NAUCC > 0 54 55 #include <sys/cdefs.h> 56 __KERNEL_RCSID(0, "$NetBSD: aucc.c,v 1.42 2012/10/27 17:17:27 chs Exp $"); 57 58 #include <sys/param.h> 59 #include <sys/systm.h> 60 #include <sys/errno.h> 61 #include <sys/ioctl.h> 62 #include <sys/device.h> 63 #include <sys/proc.h> 64 #include <machine/cpu.h> 65 66 #include <sys/audioio.h> 67 #include <dev/audio_if.h> 68 #include <amiga/amiga/cc.h> 69 #include <amiga/amiga/custom.h> 70 #include <amiga/amiga/device.h> 71 #include <amiga/dev/auccvar.h> 72 73 #include "opt_lev6_defer.h" 74 75 76 #ifdef LEV6_DEFER 77 #define AUCC_MAXINT 3 78 #define AUCC_ALLINTF (INTF_AUD0|INTF_AUD1|INTF_AUD2) 79 #else 80 #define AUCC_MAXINT 4 81 #define AUCC_ALLINTF (INTF_AUD0|INTF_AUD1|INTF_AUD2|INTF_AUD3) 82 #endif 83 /* this unconditionally; we may use AUD3 as slave channel with LEV6_DEFER */ 84 #define AUCC_ALLDMAF (DMAF_AUD0|DMAF_AUD1|DMAF_AUD2|DMAF_AUD3) 85 86 #ifdef AUDIO_DEBUG 87 /*extern printf(const char *,...);*/ 88 int auccdebug = 1; 89 #define DPRINTF(x) if (auccdebug) printf x 90 #else 91 #define DPRINTF(x) 92 #endif 93 94 /* clock frequency.. */ 95 extern int eclockfreq; 96 97 98 /* hw audio ch */ 99 extern struct audio_channel channel[4]; 100 101 102 /* 103 * Software state. 104 */ 105 struct aucc_softc { 106 int sc_open; /* single use device */ 107 aucc_data_t sc_channel[4]; /* per channel freq, ... */ 108 u_int sc_encoding; /* encoding AUDIO_ENCODING_.*/ 109 int sc_channels; /* # of channels used */ 110 int sc_precision; /* 8 or 16 bits */ 111 int sc_14bit; /* 14bit output enabled */ 112 113 int sc_intrcnt; /* interrupt count */ 114 int sc_channelmask; /* which channels are used ? */ 115 void (*sc_decodefunc)(u_char **, u_char *, int); 116 /* pointer to format conversion routine */ 117 118 kmutex_t sc_lock; 119 kmutex_t sc_intr_lock; 120 }; 121 122 /* interrupt interfaces */ 123 void aucc_inthdl(int); 124 125 /* forward declarations */ 126 static int init_aucc(struct aucc_softc *); 127 static u_int freqtoper(u_int); 128 static u_int pertofreq(u_int); 129 130 /* autoconfiguration driver */ 131 void auccattach(device_t, device_t, void *); 132 int auccmatch(device_t, cfdata_t, void *); 133 134 CFATTACH_DECL_NEW(aucc, sizeof(struct aucc_softc), 135 auccmatch, auccattach, NULL, NULL); 136 137 struct audio_device aucc_device = { 138 "Amiga-audio", 139 "2.0", 140 "aucc" 141 }; 142 143 144 struct aucc_softc *aucc = NULL; 145 146 147 unsigned char mulaw_to_lin[] = { 148 0x82, 0x86, 0x8a, 0x8e, 0x92, 0x96, 0x9a, 0x9e, 149 0xa2, 0xa6, 0xaa, 0xae, 0xb2, 0xb6, 0xba, 0xbe, 150 0xc1, 0xc3, 0xc5, 0xc7, 0xc9, 0xcb, 0xcd, 0xcf, 151 0xd1, 0xd3, 0xd5, 0xd7, 0xd9, 0xdb, 0xdd, 0xdf, 152 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 153 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef, 0xf0, 154 0xf0, 0xf1, 0xf1, 0xf2, 0xf2, 0xf3, 0xf3, 0xf4, 155 0xf4, 0xf5, 0xf5, 0xf6, 0xf6, 0xf7, 0xf7, 0xf8, 156 0xf8, 0xf8, 0xf9, 0xf9, 0xf9, 0xf9, 0xfa, 0xfa, 157 0xfa, 0xfa, 0xfb, 0xfb, 0xfb, 0xfb, 0xfc, 0xfc, 158 0xfc, 0xfc, 0xfc, 0xfc, 0xfd, 0xfd, 0xfd, 0xfd, 159 0xfd, 0xfd, 0xfd, 0xfd, 0xfe, 0xfe, 0xfe, 0xfe, 160 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 161 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 162 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 163 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 164 0x7d, 0x79, 0x75, 0x71, 0x6d, 0x69, 0x65, 0x61, 165 0x5d, 0x59, 0x55, 0x51, 0x4d, 0x49, 0x45, 0x41, 166 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 167 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20, 168 0x1e, 0x1d, 0x1c, 0x1b, 0x1a, 0x19, 0x18, 0x17, 169 0x16, 0x15, 0x14, 0x13, 0x12, 0x11, 0x10, 0x0f, 170 0x0f, 0x0e, 0x0e, 0x0d, 0x0d, 0x0c, 0x0c, 0x0b, 171 0x0b, 0x0a, 0x0a, 0x09, 0x09, 0x08, 0x08, 0x07, 172 0x07, 0x07, 0x06, 0x06, 0x06, 0x06, 0x05, 0x05, 173 0x05, 0x05, 0x04, 0x04, 0x04, 0x04, 0x03, 0x03, 174 0x03, 0x03, 0x03, 0x03, 0x02, 0x02, 0x02, 0x02, 175 0x02, 0x02, 0x02, 0x02, 0x01, 0x01, 0x01, 0x01, 176 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 177 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 178 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 179 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 180 }; 181 182 /* 183 * Define our interface to the higher level audio driver. 184 */ 185 int aucc_open(void *, int); 186 void aucc_close(void *); 187 int aucc_set_out_sr(void *, u_int); 188 int aucc_query_encoding(void *, struct audio_encoding *); 189 int aucc_round_blocksize(void *, int, int, const audio_params_t *); 190 int aucc_commit_settings(void *); 191 int aucc_start_output(void *, void *, int, void (*)(void *), void *); 192 int aucc_start_input(void *, void *, int, void (*)(void *), void *); 193 int aucc_halt_output(void *); 194 int aucc_halt_input(void *); 195 int aucc_getdev(void *, struct audio_device *); 196 int aucc_set_port(void *, mixer_ctrl_t *); 197 int aucc_get_port(void *, mixer_ctrl_t *); 198 int aucc_query_devinfo(void *, mixer_devinfo_t *); 199 void aucc_encode(int, int, int, int, u_char *, u_short **); 200 int aucc_set_params(void *, int, int, audio_params_t *, audio_params_t *, 201 stream_filter_list_t *, stream_filter_list_t *); 202 int aucc_get_props(void *); 203 void aucc_get_locks(void *, kmutex_t **, kmutex_t **); 204 205 206 static void aucc_decode_slinear8_1ch(u_char **, u_char *, int); 207 static void aucc_decode_slinear8_2ch(u_char **, u_char *, int); 208 static void aucc_decode_slinear8_3ch(u_char **, u_char *, int); 209 static void aucc_decode_slinear8_4ch(u_char **, u_char *, int); 210 211 static void aucc_decode_ulinear8_1ch(u_char **, u_char *, int); 212 static void aucc_decode_ulinear8_2ch(u_char **, u_char *, int); 213 static void aucc_decode_ulinear8_3ch(u_char **, u_char *, int); 214 static void aucc_decode_ulinear8_4ch(u_char **, u_char *, int); 215 216 static void aucc_decode_mulaw_1ch(u_char **, u_char *, int); 217 static void aucc_decode_mulaw_2ch(u_char **, u_char *, int); 218 static void aucc_decode_mulaw_3ch(u_char **, u_char *, int); 219 static void aucc_decode_mulaw_4ch(u_char **, u_char *, int); 220 221 static void aucc_decode_slinear16_1ch(u_char **, u_char *, int); 222 static void aucc_decode_slinear16_2ch(u_char **, u_char *, int); 223 static void aucc_decode_slinear16_3ch(u_char **, u_char *, int); 224 static void aucc_decode_slinear16_4ch(u_char **, u_char *, int); 225 226 static void aucc_decode_slinear16sw_1ch(u_char **, u_char *, int); 227 static void aucc_decode_slinear16sw_2ch(u_char **, u_char *, int); 228 static void aucc_decode_slinear16sw_3ch(u_char **, u_char *, int); 229 static void aucc_decode_slinear16sw_4ch(u_char **, u_char *, int); 230 231 232 233 const struct audio_hw_if sa_hw_if = { 234 aucc_open, 235 aucc_close, 236 NULL, 237 aucc_query_encoding, 238 aucc_set_params, 239 aucc_round_blocksize, 240 aucc_commit_settings, 241 NULL, 242 NULL, 243 aucc_start_output, 244 aucc_start_input, 245 aucc_halt_output, 246 aucc_halt_input, 247 NULL, 248 aucc_getdev, 249 NULL, 250 aucc_set_port, 251 aucc_get_port, 252 aucc_query_devinfo, 253 NULL, 254 NULL, 255 NULL, 256 NULL, 257 aucc_get_props, 258 NULL, 259 NULL, 260 NULL, 261 aucc_get_locks, 262 }; 263 264 /* autoconfig routines */ 265 266 int 267 auccmatch(device_t parent, cfdata_t cf, void *aux) 268 { 269 static int aucc_matched = 0; 270 271 if (!matchname((char *)aux, "aucc") || 272 #ifdef DRACO 273 is_draco() || 274 #endif 275 aucc_matched) 276 return 0; 277 278 aucc_matched = 1; 279 return 1; 280 } 281 282 /* 283 * Audio chip found. 284 */ 285 void 286 auccattach(device_t parent, device_t self, void *args) 287 { 288 struct aucc_softc *sc; 289 int i; 290 291 sc = device_private(self); 292 printf("\n"); 293 294 if ((i=init_aucc(sc))) { 295 printf("audio: no chipmem\n"); 296 return; 297 } 298 299 audio_attach_mi(&sa_hw_if, sc, self); 300 } 301 302 303 static int 304 init_aucc(struct aucc_softc *sc) 305 { 306 int i, err; 307 308 err = 0; 309 /* init values per channel */ 310 for (i = 0; i < 4; i++) { 311 sc->sc_channel[i].nd_freq = 8000; 312 sc->sc_channel[i].nd_per = freqtoper(8000); 313 sc->sc_channel[i].nd_busy = 0; 314 sc->sc_channel[i].nd_dma = alloc_chipmem(AUDIO_BUF_SIZE*2); 315 if (sc->sc_channel[i].nd_dma == NULL) 316 err = 1; 317 sc->sc_channel[i].nd_dmalength = 0; 318 sc->sc_channel[i].nd_volume = 64; 319 sc->sc_channel[i].nd_intr = NULL; 320 sc->sc_channel[i].nd_intrdata = NULL; 321 sc->sc_channel[i].nd_doublebuf = 0; 322 DPRINTF(("DMA buffer for channel %d is %p\n", i, 323 sc->sc_channel[i].nd_dma)); 324 } 325 326 if (err) { 327 for (i = 0; i < 4; i++) 328 if (sc->sc_channel[i].nd_dma) 329 free_chipmem(sc->sc_channel[i].nd_dma); 330 } 331 332 sc->sc_channels = 1; 333 sc->sc_channelmask = 0xf; 334 sc->sc_precision = 8; 335 sc->sc_14bit = 0; 336 sc->sc_encoding = AUDIO_ENCODING_ULAW; 337 sc->sc_decodefunc = aucc_decode_mulaw_1ch; 338 339 /* clear interrupts and DMA: */ 340 custom.intena = AUCC_ALLINTF; 341 custom.dmacon = AUCC_ALLDMAF; 342 343 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE); 344 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_SCHED); 345 346 return err; 347 } 348 349 int 350 aucc_open(void *addr, int flags) 351 { 352 struct aucc_softc *sc; 353 int i; 354 355 sc = addr; 356 DPRINTF(("sa_open: unit %p\n",sc)); 357 358 if (sc->sc_open) 359 return EBUSY; 360 sc->sc_open = 1; 361 for (i = 0; i < AUCC_MAXINT; i++) { 362 sc->sc_channel[i].nd_intr = NULL; 363 sc->sc_channel[i].nd_intrdata = NULL; 364 } 365 aucc = sc; 366 sc->sc_channelmask = 0xf; 367 368 DPRINTF(("saopen: ok -> sc=%p\n",sc)); 369 370 return 0; 371 } 372 373 void 374 aucc_close(void *addr) 375 { 376 struct aucc_softc *sc; 377 378 sc = addr; 379 DPRINTF(("sa_close: sc=%p\n", sc)); 380 /* 381 * halt i/o, clear open flag, and done. 382 */ 383 aucc_halt_output(sc); 384 sc->sc_open = 0; 385 386 DPRINTF(("sa_close: closed.\n")); 387 } 388 389 int 390 aucc_set_out_sr(void *addr, u_int sr) 391 { 392 struct aucc_softc *sc; 393 u_long per; 394 int i; 395 396 sc = addr; 397 per = freqtoper(sr); 398 if (per > 0xffff) 399 return EINVAL; 400 sr = pertofreq(per); 401 402 for (i = 0; i < 4; i++) { 403 sc->sc_channel[i].nd_freq = sr; 404 sc->sc_channel[i].nd_per = per; 405 } 406 407 return 0; 408 } 409 410 int 411 aucc_query_encoding(void *addr, struct audio_encoding *fp) 412 { 413 414 switch (fp->index) { 415 case 0: 416 strcpy(fp->name, AudioEslinear); 417 fp->encoding = AUDIO_ENCODING_SLINEAR; 418 fp->precision = 8; 419 fp->flags = 0; 420 break; 421 case 1: 422 strcpy(fp->name, AudioEmulaw); 423 fp->encoding = AUDIO_ENCODING_ULAW; 424 fp->precision = 8; 425 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 426 break; 427 428 case 2: 429 strcpy(fp->name, AudioEulinear); 430 fp->encoding = AUDIO_ENCODING_ULINEAR; 431 fp->precision = 8; 432 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 433 break; 434 435 case 3: 436 strcpy(fp->name, AudioEslinear); 437 fp->encoding = AUDIO_ENCODING_SLINEAR; 438 fp->precision = 16; 439 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 440 break; 441 442 case 4: 443 strcpy(fp->name, AudioEslinear_be); 444 fp->encoding = AUDIO_ENCODING_SLINEAR_BE; 445 fp->precision = 16; 446 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 447 break; 448 449 case 5: 450 strcpy(fp->name, AudioEslinear_le); 451 fp->encoding = AUDIO_ENCODING_SLINEAR_LE; 452 fp->precision = 16; 453 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 454 break; 455 456 default: 457 return EINVAL; 458 /*NOTREACHED*/ 459 } 460 return 0; 461 } 462 463 int 464 aucc_set_params(void *addr, int setmode, int usemode, 465 audio_params_t *p, audio_params_t *r, 466 stream_filter_list_t *pfil, stream_filter_list_t *rfil) 467 { 468 struct aucc_softc *sc; 469 470 sc = addr; 471 /* if (setmode & AUMODE_RECORD) 472 return 0 ENXIO*/; 473 474 #ifdef AUCCDEBUG 475 printf("aucc_set_params(setmode 0x%x, usemode 0x%x, " 476 "enc %u, bits %u, chn %u, sr %u)\n", setmode, usemode, 477 p->encoding, p->precision, p->channels, p->sample_rate); 478 #endif 479 480 switch (p->precision) { 481 case 8: 482 switch (p->encoding) { 483 case AUDIO_ENCODING_ULAW: 484 switch (p->channels) { 485 case 1: 486 sc->sc_decodefunc = aucc_decode_mulaw_1ch; 487 break; 488 case 2: 489 sc->sc_decodefunc = aucc_decode_mulaw_2ch; 490 break; 491 case 3: 492 sc->sc_decodefunc = aucc_decode_mulaw_3ch; 493 break; 494 case 4: 495 sc->sc_decodefunc = aucc_decode_mulaw_4ch; 496 break; 497 default: 498 return EINVAL; 499 } 500 break; 501 502 case AUDIO_ENCODING_SLINEAR: 503 case AUDIO_ENCODING_SLINEAR_BE: 504 case AUDIO_ENCODING_SLINEAR_LE: 505 switch (p->channels) { 506 case 1: 507 sc->sc_decodefunc = aucc_decode_slinear8_1ch; 508 break; 509 case 2: 510 sc->sc_decodefunc = aucc_decode_slinear8_2ch; 511 break; 512 case 3: 513 sc->sc_decodefunc = aucc_decode_slinear8_3ch; 514 break; 515 case 4: 516 sc->sc_decodefunc = aucc_decode_slinear8_4ch; 517 break; 518 default: 519 return EINVAL; 520 } 521 break; 522 523 case AUDIO_ENCODING_ULINEAR: 524 case AUDIO_ENCODING_ULINEAR_BE: 525 case AUDIO_ENCODING_ULINEAR_LE: 526 switch (p->channels) { 527 case 1: 528 sc->sc_decodefunc = aucc_decode_ulinear8_1ch; 529 break; 530 case 2: 531 sc->sc_decodefunc = aucc_decode_ulinear8_2ch; 532 break; 533 case 3: 534 sc->sc_decodefunc = aucc_decode_ulinear8_3ch; 535 break; 536 case 4: 537 sc->sc_decodefunc = aucc_decode_ulinear8_4ch; 538 break; 539 default: 540 return EINVAL; 541 } 542 break; 543 544 default: 545 return EINVAL; 546 } 547 break; 548 549 case 16: 550 switch (p->encoding) { 551 #if BYTE_ORDER == BIG_ENDIAN 552 case AUDIO_ENCODING_SLINEAR: 553 #endif 554 case AUDIO_ENCODING_SLINEAR_BE: 555 switch (p->channels) { 556 case 1: 557 sc->sc_decodefunc = aucc_decode_slinear16_1ch; 558 break; 559 560 case 2: 561 sc->sc_decodefunc = aucc_decode_slinear16_2ch; 562 break; 563 case 3: 564 sc->sc_decodefunc = aucc_decode_slinear16_3ch; 565 break; 566 case 4: 567 sc->sc_decodefunc = aucc_decode_slinear16_4ch; 568 break; 569 default: 570 return EINVAL; 571 } 572 break; 573 574 #if BYTE_ORDER == LITTLE_ENDIAN 575 case AUDIO_ENCODING_SLINEAR: 576 #endif 577 case AUDIO_ENCODING_SLINEAR_LE: 578 switch (p->channels) { 579 case 1: 580 sc->sc_decodefunc = aucc_decode_slinear16sw_1ch; 581 break; 582 case 2: 583 sc->sc_decodefunc = aucc_decode_slinear16sw_2ch; 584 break; 585 case 3: 586 sc->sc_decodefunc = aucc_decode_slinear16sw_3ch; 587 break; 588 case 4: 589 sc->sc_decodefunc = aucc_decode_slinear16sw_4ch; 590 break; 591 default: 592 return EINVAL; 593 } 594 break; 595 596 default: 597 return EINVAL; 598 } 599 break; 600 601 default: 602 return EINVAL; 603 } 604 605 sc->sc_encoding = p->encoding; 606 sc->sc_precision = p->precision; 607 sc->sc_14bit = ((p->precision == 16) && (p->channels <= 2)); 608 sc->sc_channels = sc->sc_14bit ? (p->channels * 2) : p->channels; 609 610 return aucc_set_out_sr(addr, p->sample_rate); 611 } 612 613 int 614 aucc_round_blocksize(void *addr, int blk, 615 int mode, const audio_params_t *param) 616 { 617 618 /* round up to even size */ 619 return blk > AUDIO_BUF_SIZE ? AUDIO_BUF_SIZE : blk; 620 } 621 622 int 623 aucc_commit_settings(void *addr) 624 { 625 struct aucc_softc *sc; 626 int i; 627 628 DPRINTF(("sa_commit.\n")); 629 630 sc = addr; 631 for (i = 0; i < 4; i++) { 632 custom.aud[i].vol = sc->sc_channel[i].nd_volume; 633 custom.aud[i].per = sc->sc_channel[i].nd_per; 634 } 635 636 DPRINTF(("commit done\n")); 637 638 return 0; 639 } 640 641 static int masks[4] = {1,3,7,15}; /* masks for n first channels */ 642 static int masks2[4] = {1,2,4,8}; 643 644 int 645 aucc_start_output(void *addr, void *p, int cc, void (*intr)(void *), void *arg) 646 { 647 struct aucc_softc *sc; 648 int mask; 649 int i, j, k, len; 650 u_char *dmap[4]; 651 652 653 sc = addr; 654 mask = sc->sc_channelmask; 655 656 dmap[0] = dmap[1] = dmap[2] = dmap[3] = NULL; 657 658 DPRINTF(("sa_start_output: cc=%d %p (%p)\n", cc, intr, arg)); 659 660 if (sc->sc_channels > 1) 661 mask &= masks[sc->sc_channels - 1]; 662 /* we use first sc_channels channels */ 663 if (mask == 0) /* active and used channels are disjoint */ 664 return EINVAL; 665 666 for (i = 0; i < 4; i++) { 667 /* channels available ? */ 668 if ((masks2[i] & mask) && (sc->sc_channel[i].nd_busy)) 669 return EBUSY; /* channel is busy */ 670 if (channel[i].isaudio == -1) 671 return EBUSY; /* system uses them */ 672 } 673 674 /* enable interrupt on 1st channel */ 675 for (i = j = 0; i < AUCC_MAXINT; i++) { 676 if (masks2[i] & mask) { 677 DPRINTF(("first channel is %d\n",i)); 678 j = i; 679 sc->sc_channel[i].nd_intr = intr; 680 sc->sc_channel[i].nd_intrdata = arg; 681 break; 682 } 683 } 684 685 DPRINTF(("dmap is %p %p %p %p, mask=0x%x\n", dmap[0], dmap[1], 686 dmap[2], dmap[3], mask)); 687 688 /* disable ints, DMA for channels, until all parameters set */ 689 /* XXX dont disable DMA! custom.dmacon=mask;*/ 690 custom.intreq = mask << INTB_AUD0; 691 custom.intena = mask << INTB_AUD0; 692 693 /* copy data to DMA buffer */ 694 695 if (sc->sc_channels == 1) { 696 dmap[0] = 697 dmap[1] = 698 dmap[2] = 699 dmap[3] = (u_char *)sc->sc_channel[j].nd_dma; 700 } else { 701 for (k = 0; k < 4; k++) { 702 if (masks2[k+j] & mask) 703 dmap[k] = (u_char *)sc->sc_channel[k+j].nd_dma; 704 } 705 } 706 707 sc->sc_channel[j].nd_doublebuf ^= 1; 708 if (sc->sc_channel[j].nd_doublebuf) { 709 dmap[0] += AUDIO_BUF_SIZE; 710 dmap[1] += AUDIO_BUF_SIZE; 711 dmap[2] += AUDIO_BUF_SIZE; 712 dmap[3] += AUDIO_BUF_SIZE; 713 } 714 715 /* 716 * compute output length in bytes per channel. 717 * divide by two only for 16bit->8bit conversion. 718 */ 719 len = cc / sc->sc_channels; 720 if (!sc->sc_14bit && (sc->sc_precision == 16)) 721 len /= 2; 722 723 /* call audio decoding routine */ 724 sc->sc_decodefunc (dmap, (u_char *)p, len); 725 726 /* DMA buffers: we use same buffer 4 all channels 727 * write DMA location and length 728 */ 729 for (i = k = 0; i < 4; i++) { 730 if (masks2[i] & mask) { 731 DPRINTF(("turning channel %d on\n",i)); 732 /* sc->sc_channel[i].nd_busy=1; */ 733 channel[i].isaudio = 1; 734 channel[i].play_count = 1; 735 channel[i].handler = NULL; 736 custom.aud[i].per = sc->sc_channel[i].nd_per; 737 if (sc->sc_14bit && (i > 1)) 738 custom.aud[i].vol = 1; 739 else 740 custom.aud[i].vol = sc->sc_channel[i].nd_volume; 741 custom.aud[i].lc = PREP_DMA_MEM(dmap[k++]); 742 custom.aud[i].len = len / 2; 743 sc->sc_channel[i].nd_mask = mask; 744 DPRINTF(("per is %d, vol is %d, len is %d\n",\ 745 sc->sc_channel[i].nd_per, 746 sc->sc_channel[i].nd_volume, len)); 747 } 748 } 749 750 channel[j].handler = aucc_inthdl; 751 752 /* enable ints */ 753 custom.intena = INTF_SETCLR | INTF_INTEN | (masks2[j] << INTB_AUD0); 754 755 DPRINTF(("enabled ints: 0x%x\n", (masks2[j] << INTB_AUD0))); 756 757 /* enable DMA */ 758 custom.dmacon = DMAF_SETCLR | DMAF_MASTER | mask; 759 760 DPRINTF(("enabled DMA, mask=0x%x\n",mask)); 761 762 return 0; 763 } 764 765 /* ARGSUSED */ 766 int 767 aucc_start_input(void *addr, void *p, int cc, void (*intr)(void *), void *arg) 768 { 769 770 return ENXIO; /* no input */ 771 } 772 773 int 774 aucc_halt_output(void *addr) 775 { 776 struct aucc_softc *sc; 777 int i; 778 779 /* XXX only halt, if input is also halted ?? */ 780 sc = addr; 781 /* stop DMA, etc */ 782 custom.intena = AUCC_ALLINTF; 783 custom.dmacon = AUCC_ALLDMAF; 784 /* mark every busy unit idle */ 785 for (i = 0; i < 4; i++) { 786 sc->sc_channel[i].nd_busy = sc->sc_channel[i].nd_mask = 0; 787 channel[i].isaudio = 0; 788 channel[i].play_count = 0; 789 } 790 791 return 0; 792 } 793 794 int 795 aucc_halt_input(void *addr) 796 { 797 798 /* no input */ 799 return ENXIO; 800 } 801 802 int 803 aucc_getdev(void *addr, struct audio_device *retp) 804 { 805 806 *retp = aucc_device; 807 return 0; 808 } 809 810 int 811 aucc_set_port(void *addr, mixer_ctrl_t *cp) 812 { 813 struct aucc_softc *sc; 814 int i,j; 815 816 DPRINTF(("aucc_set_port: port=%d", cp->dev)); 817 sc = addr; 818 switch (cp->type) { 819 case AUDIO_MIXER_SET: 820 if (cp->dev != AUCC_CHANNELS) 821 return EINVAL; 822 i = cp->un.mask; 823 if ((i < 1) || (i > 15)) 824 return EINVAL; 825 826 sc->sc_channelmask = i; 827 break; 828 829 case AUDIO_MIXER_VALUE: 830 i = cp->un.value.num_channels; 831 if ((i < 1) || (i > 4)) 832 return EINVAL; 833 834 #ifdef __XXXwhatsthat 835 if (cp->dev != AUCC_VOLUME) 836 return EINVAL; 837 #endif 838 839 /* set volume for channel 0..i-1 */ 840 841 /* evil workaround for xanim bug, IMO */ 842 if ((sc->sc_channels == 1) && (i == 2)) { 843 sc->sc_channel[0].nd_volume = 844 sc->sc_channel[3].nd_volume = 845 cp->un.value.level[0] >> 2; 846 sc->sc_channel[1].nd_volume = 847 sc->sc_channel[2].nd_volume = 848 cp->un.value.level[1] >> 2; 849 } else if (i > 1) { 850 for (j = 0; j < i; j++) 851 sc->sc_channel[j].nd_volume = 852 cp->un.value.level[j] >> 2; 853 } else if (sc->sc_channels > 1) 854 for (j = 0; j < sc->sc_channels; j++) 855 sc->sc_channel[j].nd_volume = 856 cp->un.value.level[0] >> 2; 857 else 858 for (j = 0; j < 4; j++) 859 sc->sc_channel[j].nd_volume = 860 cp->un.value.level[0] >> 2; 861 break; 862 863 default: 864 return EINVAL; 865 break; 866 } 867 return 0; 868 } 869 870 871 int 872 aucc_get_port(void *addr, mixer_ctrl_t *cp) 873 { 874 struct aucc_softc *sc; 875 int i,j; 876 877 DPRINTF(("aucc_get_port: port=%d", cp->dev)); 878 sc = addr; 879 switch (cp->type) { 880 case AUDIO_MIXER_SET: 881 if (cp->dev != AUCC_CHANNELS) 882 return EINVAL; 883 cp->un.mask = sc->sc_channelmask; 884 break; 885 886 case AUDIO_MIXER_VALUE: 887 i = cp->un.value.num_channels; 888 if ((i < 1) || (i > 4)) 889 return EINVAL; 890 891 for (j = 0; j < i; j++) 892 cp->un.value.level[j] = 893 (sc->sc_channel[j].nd_volume << 2) + 894 (sc->sc_channel[j].nd_volume >> 4); 895 break; 896 897 default: 898 return EINVAL; 899 } 900 return 0; 901 } 902 903 904 int 905 aucc_get_props(void *addr) 906 { 907 return 0; 908 } 909 910 911 void 912 aucc_get_locks(void *opaque, kmutex_t **intr, kmutex_t **thread) 913 { 914 struct aucc_softc *sc = opaque; 915 916 *intr = &sc->sc_intr_lock; 917 *thread = &sc->sc_lock; 918 } 919 920 int 921 aucc_query_devinfo(void *addr, register mixer_devinfo_t *dip) 922 { 923 int i; 924 925 switch(dip->index) { 926 case AUCC_CHANNELS: 927 dip->type = AUDIO_MIXER_SET; 928 dip->mixer_class = AUCC_OUTPUT_CLASS; 929 dip->prev = dip->next = AUDIO_MIXER_LAST; 930 strcpy(dip->label.name, AudioNspeaker); 931 for (i = 0; i < 16; i++) { 932 sprintf(dip->un.s.member[i].label.name, 933 "channelmask%d", i); 934 dip->un.s.member[i].mask = i; 935 } 936 dip->un.s.num_mem = 16; 937 break; 938 939 case AUCC_VOLUME: 940 dip->type = AUDIO_MIXER_VALUE; 941 dip->mixer_class = AUCC_OUTPUT_CLASS; 942 dip->prev = dip->next = AUDIO_MIXER_LAST; 943 strcpy(dip->label.name, AudioNmaster); 944 dip->un.v.num_channels = 4; 945 strcpy(dip->un.v.units.name, AudioNvolume); 946 break; 947 948 case AUCC_OUTPUT_CLASS: 949 dip->type = AUDIO_MIXER_CLASS; 950 dip->mixer_class = AUCC_OUTPUT_CLASS; 951 dip->next = dip->prev = AUDIO_MIXER_LAST; 952 strcpy(dip->label.name, AudioCoutputs); 953 break; 954 955 default: 956 return ENXIO; 957 } 958 959 DPRINTF(("AUDIO_MIXER_DEVINFO: name=%s\n", dip->label.name)); 960 961 return 0; 962 } 963 964 /* audio int handler */ 965 void 966 aucc_inthdl(int ch) 967 { 968 int i; 969 int mask; 970 971 mutex_spin_enter(&aucc->sc_intr_lock); 972 mask = aucc->sc_channel[ch].nd_mask; 973 /* 974 * for all channels in this maskgroup: 975 * disable DMA, int 976 * mark idle 977 */ 978 DPRINTF(("inthandler called, channel %d, mask 0x%x\n", ch, mask)); 979 980 custom.intreq = mask << INTB_AUD0; /* clear request */ 981 /* 982 * XXX: maybe we can leave ints and/or DMA on, 983 * if another sample has to be played? 984 */ 985 custom.intena = mask << INTB_AUD0; 986 /* 987 * XXX custom.dmacon=mask; NO!!! 988 */ 989 for (i = 0; i < 4; i++) { 990 if (masks2[i] && mask) { 991 DPRINTF(("marking channel %d idle\n",i)); 992 aucc->sc_channel[i].nd_busy = 0; 993 aucc->sc_channel[i].nd_mask = 0; 994 channel[i].isaudio = channel[i].play_count = 0; 995 } 996 } 997 998 /* call handler */ 999 if (aucc->sc_channel[ch].nd_intr) { 1000 DPRINTF(("calling %p\n",aucc->sc_channel[ch].nd_intr)); 1001 (*(aucc->sc_channel[ch].nd_intr)) 1002 (aucc->sc_channel[ch].nd_intrdata); 1003 } else 1004 DPRINTF(("zero int handler\n")); 1005 mutex_spin_exit(&aucc->sc_intr_lock); 1006 DPRINTF(("ints done\n")); 1007 } 1008 1009 /* transform frequency to period, adjust bounds */ 1010 static u_int 1011 freqtoper(u_int freq) 1012 { 1013 u_int per; 1014 1015 per = eclockfreq * 5 / freq; 1016 if (per < 124) 1017 per = 124; /* must have at least 124 ticks between samples */ 1018 1019 return per; 1020 } 1021 1022 /* transform period to frequency */ 1023 static u_int 1024 pertofreq(u_int per) 1025 { 1026 1027 return eclockfreq * 5 / per; 1028 } 1029 1030 static void 1031 aucc_decode_slinear8_1ch(u_char **dmap, u_char *p, int i) 1032 { 1033 memcpy(dmap[0], p, i); 1034 } 1035 1036 static void 1037 aucc_decode_slinear8_2ch(u_char **dmap, u_char *p, int i) 1038 { 1039 u_char *ch0; 1040 u_char *ch1; 1041 1042 ch0 = dmap[0]; 1043 ch1 = dmap[1]; 1044 while (i--) { 1045 *ch0++ = *p++; 1046 *ch1++ = *p++; 1047 } 1048 } 1049 1050 static void 1051 aucc_decode_slinear8_3ch(u_char **dmap, u_char *p, int i) 1052 { 1053 u_char *ch0; 1054 u_char *ch1; 1055 u_char *ch2; 1056 1057 ch0 = dmap[0]; 1058 ch1 = dmap[1]; 1059 ch2 = dmap[2]; 1060 while (i--) { 1061 *ch0++ = *p++; 1062 *ch1++ = *p++; 1063 *ch2++ = *p++; 1064 } 1065 } 1066 1067 static void 1068 aucc_decode_slinear8_4ch(u_char **dmap, u_char *p, int i) 1069 { 1070 u_char *ch0; 1071 u_char *ch1; 1072 u_char *ch2; 1073 u_char *ch3; 1074 1075 ch0 = dmap[0]; 1076 ch1 = dmap[1]; 1077 ch2 = dmap[2]; 1078 ch3 = dmap[3]; 1079 while (i--) { 1080 *ch0++ = *p++; 1081 *ch1++ = *p++; 1082 *ch2++ = *p++; 1083 *ch3++ = *p++; 1084 } 1085 } 1086 1087 static void 1088 aucc_decode_ulinear8_1ch(u_char **dmap, u_char *p, int i) 1089 { 1090 u_char *ch0; 1091 1092 ch0 = dmap[0]; 1093 while (i--) 1094 *ch0++ = *p++ - 128; 1095 } 1096 1097 static void 1098 aucc_decode_ulinear8_2ch(u_char **dmap, u_char *p, int i) 1099 { 1100 u_char *ch0; 1101 u_char *ch1; 1102 1103 ch0 = dmap[0]; 1104 ch1 = dmap[1]; 1105 while (i--) { 1106 *ch0++ = *p++ - 128; 1107 *ch1++ = *p++ - 128; 1108 } 1109 } 1110 1111 static void 1112 aucc_decode_ulinear8_3ch(u_char **dmap, u_char *p, int i) 1113 { 1114 u_char *ch0; 1115 u_char *ch1; 1116 u_char *ch2; 1117 1118 ch0 = dmap[0]; 1119 ch1 = dmap[1]; 1120 ch2 = dmap[2]; 1121 while (i--) { 1122 *ch0++ = *p++ - 128; 1123 *ch1++ = *p++ - 128; 1124 *ch2++ = *p++ - 128; 1125 } 1126 } 1127 1128 static void 1129 aucc_decode_ulinear8_4ch(u_char **dmap, u_char *p, int i) 1130 { 1131 u_char *ch0; 1132 u_char *ch1; 1133 u_char *ch2; 1134 u_char *ch3; 1135 1136 ch0 = dmap[0]; 1137 ch1 = dmap[1]; 1138 ch2 = dmap[2]; 1139 ch3 = dmap[3]; 1140 while (i--) { 1141 *ch0++ = *p++ - 128; 1142 *ch1++ = *p++ - 128; 1143 *ch2++ = *p++ - 128; 1144 *ch3++ = *p++ - 128; 1145 } 1146 } 1147 1148 1149 static void 1150 aucc_decode_mulaw_1ch(u_char **dmap, u_char *p, int i) 1151 { 1152 u_char *ch0; 1153 1154 ch0 = dmap[0]; 1155 while (i--) 1156 *ch0++ = mulaw_to_lin[*p++]; 1157 } 1158 1159 static void 1160 aucc_decode_mulaw_2ch(u_char **dmap, u_char *p, int i) 1161 { 1162 u_char *ch0; 1163 u_char *ch1; 1164 1165 ch0 = dmap[0]; 1166 ch1 = dmap[1]; 1167 while (i--) { 1168 *ch0++ = mulaw_to_lin[*p++]; 1169 *ch1++ = mulaw_to_lin[*p++]; 1170 } 1171 } 1172 1173 static void 1174 aucc_decode_mulaw_3ch(u_char **dmap, u_char *p, int i) 1175 { 1176 u_char *ch0; 1177 u_char *ch1; 1178 u_char *ch2; 1179 1180 ch0 = dmap[0]; 1181 ch1 = dmap[1]; 1182 ch2 = dmap[2]; 1183 while (i--) { 1184 *ch0++ = mulaw_to_lin[*p++]; 1185 *ch1++ = mulaw_to_lin[*p++]; 1186 *ch2++ = mulaw_to_lin[*p++]; 1187 } 1188 } 1189 1190 static void 1191 aucc_decode_mulaw_4ch(u_char **dmap, u_char *p, int i) 1192 { 1193 u_char *ch0; 1194 u_char *ch1; 1195 u_char *ch2; 1196 u_char *ch3; 1197 1198 ch0 = dmap[0]; 1199 ch1 = dmap[1]; 1200 ch2 = dmap[2]; 1201 ch3 = dmap[3]; 1202 while (i--) { 1203 *ch0++ = mulaw_to_lin[*p++]; 1204 *ch1++ = mulaw_to_lin[*p++]; 1205 *ch2++ = mulaw_to_lin[*p++]; 1206 *ch3++ = mulaw_to_lin[*p++]; 1207 } 1208 } 1209 1210 1211 /* 14bit output */ 1212 static void 1213 aucc_decode_slinear16_1ch(u_char **dmap, u_char *p, int i) 1214 { 1215 u_char *ch0; 1216 u_char *ch3; 1217 1218 ch0 = dmap[0]; 1219 ch3 = dmap[1]; /* XXX should be 3 */ 1220 while (i--) { 1221 *ch0++ = *p++; 1222 *ch3++ = *p++ >> 2; 1223 } 1224 } 1225 1226 /* 14bit stereo output */ 1227 static void 1228 aucc_decode_slinear16_2ch(u_char **dmap, u_char *p, int i) 1229 { 1230 u_char *ch0; 1231 u_char *ch1; 1232 u_char *ch2; 1233 u_char *ch3; 1234 1235 ch0 = dmap[0]; 1236 ch1 = dmap[1]; 1237 ch2 = dmap[2]; 1238 ch3 = dmap[3]; 1239 while (i--) { 1240 *ch0++ = *p++; 1241 *ch3++ = *p++ >> 2; 1242 *ch1++ = *p++; 1243 *ch2++ = *p++ >> 2; 1244 } 1245 } 1246 1247 static void 1248 aucc_decode_slinear16_3ch(u_char **dmap, u_char *p, int i) 1249 { 1250 u_char *ch0; 1251 u_char *ch1; 1252 u_char *ch2; 1253 1254 ch0 = dmap[0]; 1255 ch1 = dmap[1]; 1256 ch2 = dmap[2]; 1257 while (i--) { 1258 *ch0++ = *p++; p++; 1259 *ch1++ = *p++; p++; 1260 *ch2++ = *p++; p++; 1261 } 1262 } 1263 1264 static void 1265 aucc_decode_slinear16_4ch(u_char **dmap, u_char *p, int i) 1266 { 1267 u_char *ch0; 1268 u_char *ch1; 1269 u_char *ch2; 1270 u_char *ch3; 1271 1272 ch0 = dmap[0]; 1273 ch1 = dmap[1]; 1274 ch2 = dmap[2]; 1275 ch3 = dmap[3]; 1276 while (i--) { 1277 *ch0++ = *p++; p++; 1278 *ch1++ = *p++; p++; 1279 *ch2++ = *p++; p++; 1280 *ch3++ = *p++; p++; 1281 } 1282 } 1283 1284 /* 14bit output, swap bytes */ 1285 static void 1286 aucc_decode_slinear16sw_1ch(u_char **dmap, u_char *p, int i) 1287 { 1288 u_char *ch0; 1289 u_char *ch3; 1290 1291 ch0 = dmap[0]; 1292 ch3 = dmap[1]; /* XXX should be 3 */ 1293 while (i--) { 1294 *ch3++ = *p++ >> 2; 1295 *ch0++ = *p++; 1296 } 1297 } 1298 1299 static void 1300 aucc_decode_slinear16sw_2ch(u_char **dmap, u_char *p, int i) 1301 { 1302 u_char *ch0; 1303 u_char *ch1; 1304 u_char *ch2; 1305 u_char *ch3; 1306 1307 ch0 = dmap[0]; 1308 ch1 = dmap[1]; 1309 ch2 = dmap[2]; 1310 ch3 = dmap[3]; 1311 while (i--) { 1312 *ch3++ = *p++ >> 2; 1313 *ch0++ = *p++; 1314 *ch2++ = *p++ >> 2; 1315 *ch1++ = *p++; 1316 } 1317 } 1318 1319 static void 1320 aucc_decode_slinear16sw_3ch(u_char **dmap, u_char *p, int i) 1321 { 1322 u_char *ch0; 1323 u_char *ch1; 1324 u_char *ch2; 1325 1326 ch0 = dmap[0]; 1327 ch1 = dmap[1]; 1328 ch2 = dmap[2]; 1329 while (i--) { 1330 p++; *ch0++ = *p++; 1331 p++; *ch1++ = *p++; 1332 p++; *ch2++ = *p++; 1333 } 1334 } 1335 1336 static void 1337 aucc_decode_slinear16sw_4ch(u_char **dmap, u_char *p, int i) 1338 { 1339 u_char *ch0; 1340 u_char *ch1; 1341 u_char *ch2; 1342 u_char *ch3; 1343 1344 ch0 = dmap[0]; 1345 ch1 = dmap[1]; 1346 ch2 = dmap[2]; 1347 ch3 = dmap[3]; 1348 while (i--) { 1349 p++; *ch0++ = *p++; 1350 p++; *ch1++ = *p++; 1351 p++; *ch2++ = *p++; 1352 p++; *ch3++ = *p++; 1353 } 1354 } 1355 1356 1357 #endif /* NAUCC > 0 */ 1358