xref: /netbsd-src/sys/arch/acorn32/stand/boot32/boot32.c (revision cac8e449158efc7261bebc8657cbb0125a2cfdde)
1 /*	$NetBSD: boot32.c,v 1.34 2008/04/12 16:10:46 chris Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002 Reinoud Zandijk
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the author may not be used to endorse or promote products
16  *    derived from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  * Thanks a bunch for Ben's framework for the bootloader and its suporting
30  * libs. This file tries to actually boot NetBSD/acorn32 !
31  *
32  * XXX eventually to be partly merged back with boot26 ? XXX
33  */
34 
35 #include <lib/libsa/stand.h>
36 #include <lib/libsa/loadfile.h>
37 #include <lib/libkern/libkern.h>
38 #include <riscoscalls.h>
39 #include <srt0.h>
40 #include <sys/boot_flag.h>
41 #include <machine/vmparam.h>
42 #include <arm/arm32/pte.h>
43 #include <machine/bootconfig.h>
44 
45 extern char end[];
46 
47 /* debugging flags */
48 int debug = 1;
49 
50 
51 /* constants */
52 #define PODRAM_START   (512*1024*1024)		/* XXX Kinetic cards XXX */
53 
54 #define MAX_RELOCPAGES	4096
55 
56 #define DEFAULT_ROOT	"/dev/wd0a"
57 
58 
59 #define IO_BLOCKS	 16	/* move these to the bootloader structure? */
60 #define ROM_BLOCKS	 16
61 #define PODRAM_BLOCKS	 16
62 
63 
64 /* booter variables */
65 char	 scrap[80], twirl_cnt;		/* misc				*/
66 char	 booted_file[80];
67 
68 struct bootconfig *bconfig;		/* bootconfig passing		*/
69 u_long	 bconfig_new_phys;		/* physical address its bound	*/
70 
71 /* computer knowledge		*/
72 u_int	 monitor_type, monitor_sync, ioeb_flags, lcd_flags;
73 u_int	 superio_flags, superio_flags_basic, superio_flags_extra;
74 
75 /* sizes			*/
76 int	 nbpp, memory_table_size, memory_image_size;
77 /* relocate info		*/
78 u_long	 reloc_tablesize, *reloc_instruction_table;
79 u_long	*reloc_pos;			/* current empty entry		*/
80 int	 reloc_entries;			/* number of relocations	*/
81 int	 first_mapped_DRAM_page_index;	/* offset in RISC OS blob	*/
82 int	 first_mapped_PODRAM_page_index;/* offset in RISC OS blob	*/
83 
84 struct page_info *mem_pages_info;	/* {nr, virt, phys}*		*/
85 struct page_info *free_relocation_page;	/* points to the page_info chain*/
86 struct page_info *relocate_code_page;	/* points to the copied code	*/
87 struct page_info *bconfig_page;		/* page for passing on settings	*/
88 
89 unsigned char *memory_page_types;	/* packed array of 4 bit typeId	*/
90 
91 u_long	*initial_page_tables;		/* pagetables to be booted from	*/
92 
93 
94 /* XXX rename *_BLOCKS to MEM_BLOCKS */
95 /* DRAM/VRAM/ROM/IO info */
96 /* where the display is		*/
97 u_long	 videomem_start, videomem_pages, display_size;
98 
99 u_long	 pv_offset, top_physdram;	/* kernel_base - phys. diff	*/
100 u_long	 top_1Mb_dram;			/* the lower mapped top 1Mb	*/
101 u_long	 new_L1_pages_phys;		/* physical address of L1 pages	*/
102 
103 /* for bootconfig passing	*/
104 u_long	 total_podram_pages, total_dram_pages, total_vram_pages;
105 int	 dram_blocks, podram_blocks;	/* number of mem. objects/type  */
106 int	 vram_blocks, rom_blocks, io_blocks;
107 
108 u_long	 DRAM_addr[DRAM_BLOCKS],     DRAM_pages[DRAM_BLOCKS];
109 /* processor only RAM	*/
110 u_long	 PODRAM_addr[PODRAM_BLOCKS], PODRAM_pages[PODRAM_BLOCKS];
111 u_long	 VRAM_addr[VRAM_BLOCKS],     VRAM_pages[VRAM_BLOCKS];
112 u_long	 ROM_addr[ROM_BLOCKS],       ROM_pages[ROM_BLOCKS];
113 u_long	 IO_addr[IO_BLOCKS],         IO_pages[IO_BLOCKS];
114 
115 
116 /* RISC OS memory pages we claimed */
117 u_long	 firstpage, lastpage, totalpages; /* RISC OS pagecounters	*/
118 /* RISC OS memory		*/
119 char	*memory_image, *bottom_memory, *top_memory;
120 
121 /* kernel info */
122 u_long	 marks[MARK_MAX];		/* loader mark pointers 	*/
123 u_long	 kernel_physical_start;		/* where does it get relocated	*/
124 u_long	 kernel_free_vm_start;		/* where does the free VM start	*/
125 /* some free space to mess with	*/
126 u_long	 scratch_virtualbase, scratch_physicalbase;
127 
128 
129 /* bootprogram identifiers */
130 extern const char bootprog_rev[];
131 extern const char bootprog_name[];
132 extern const char bootprog_date[];
133 extern const char bootprog_maker[];
134 
135 
136 /* predefines / prototypes */
137 void	 init_datastructures(void);
138 void	 get_memory_configuration(void);
139 void	 get_memory_map(void);
140 void	 create_initial_page_tables(void);
141 void	 add_pagetables_at_top(void);
142 int	 page_info_cmp(const void *a, const void *);
143 void	 add_initvectors(void);
144 void	 create_configuration(int argc, char **argv, int start_args);
145 void	 prepare_and_check_relocation_system(void);
146 void	 compact_relocations(void);
147 void	 twirl(void);
148 int	 vdu_var(int);
149 void	 process_args(int argc, char **argv, int *howto, char *file,
150     int *start_args);
151 
152 char		 *sprint0(int width, char prefix, char base, int value);
153 struct page_info *get_relocated_page(u_long destination, int size);
154 
155 extern void start_kernel(
156 		int relocate_code_page,
157 		int relocation_pv_offset,
158 		int configuration_structure_in_flat_physical_space,
159 		int virtual_address_relocation_table,
160 		int physical_address_of_new_L1_pages,
161 		int kernel_entry_point
162 		);	/* asm */
163 
164 
165 /* the loader itself */
166 void
167 init_datastructures(void)
168 {
169 
170 	/* Get number of pages and the memorytablesize */
171 	osmemory_read_arrangement_table_size(&memory_table_size, &nbpp);
172 
173 	/* Allocate 99% - (small fixed amount) of the heap for memory_image */
174 	memory_image_size = (int)HIMEM - (int)end - 512 * 1024;
175 	memory_image_size /= 100;
176 	memory_image_size *= 99;
177 	if (memory_image_size <= 256*1024)
178 		panic("Insufficient memory");
179 
180 	memory_image = alloc(memory_image_size);
181 	if (!memory_image)
182 		panic("Can't alloc get my memory image ?");
183 
184 	bottom_memory = memory_image;
185 	top_memory    = memory_image + memory_image_size;
186 
187 	firstpage  = ((int)bottom_memory / nbpp) + 1;	/* safety */
188 	lastpage   = ((int)top_memory    / nbpp) - 1;
189 	totalpages = lastpage - firstpage;
190 
191 	printf("Allocated %ld memory pages, each of %d kilobytes.\n\n",
192 			totalpages, nbpp>>10 );
193 
194 	/*
195 	 * Setup the relocation table. Its a simple array of 3 * 32 bit
196 	 * entries. The first word in the array is the number of relocations
197 	 * to be done
198 	 */
199 	reloc_tablesize = (MAX_RELOCPAGES+1)*3*sizeof(u_long);
200 	reloc_instruction_table = alloc(reloc_tablesize);
201 	if (!reloc_instruction_table)
202 		panic("Can't alloc my relocate instructions pages");
203 
204 	reloc_entries = 0;
205 	reloc_pos     = reloc_instruction_table;
206 	*reloc_pos++  = 0;
207 
208 	/*
209 	 * Set up the memory translation info structure. We need to allocate
210 	 * one more for the end of list marker. See get_memory_map.
211 	 */
212 	mem_pages_info = alloc((totalpages + 1)*sizeof(struct page_info));
213 	if (!mem_pages_info)
214 		panic("Can't alloc my phys->virt page info");
215 
216 	/*
217 	 * Allocate memory for the memory arrangement table. We use this
218 	 * structure to retrieve memory page properties to clasify them.
219 	 */
220 	memory_page_types = alloc(memory_table_size);
221 	if (!memory_page_types)
222 		panic("Can't alloc my memory page type block");
223 
224 	/*
225 	 * Initial page tables is 16 kb per definition since only sections are
226 	 * used.
227 	 */
228 	initial_page_tables = alloc(16*1024);
229 	if (!initial_page_tables)
230 		panic("Can't alloc my initial page tables");
231 }
232 
233 void
234 compact_relocations(void)
235 {
236 	u_long *reloc_entry, current_length, length;
237 	u_long  src, destination, current_src, current_destination;
238 	u_long *current_entry;
239 
240 	current_entry = reloc_entry = reloc_instruction_table + 1;
241 
242 	/* prime the loop */
243 	current_src		= reloc_entry[0];
244 	current_destination	= reloc_entry[1];
245 	current_length		= reloc_entry[2];
246 
247 	reloc_entry += 3;
248 	while (reloc_entry < reloc_pos) {
249 		src         = reloc_entry[0];
250 		destination = reloc_entry[1];
251 		length      = reloc_entry[2];
252 
253 		if (src == (current_src + current_length) &&
254 		    destination == (current_destination + current_length)) {
255 			/* can merge */
256 			current_length += length;
257 		} else {
258 			/* nothing else to do, so save the length */
259 			current_entry[2] = current_length;
260 			/* fill in next entry */
261 			current_entry += 3;
262 			current_src = current_entry[0] = src;
263 			current_destination = current_entry[1] = destination;
264 			current_length = length;
265 		}
266 		reloc_entry += 3;
267 	}
268 	/* save last length */
269 	current_entry[2] = current_length;
270 	current_entry += 3;
271 
272 	/* workout new count of entries */
273 	length = current_entry - (reloc_instruction_table + 1);
274 	printf("Compacted relocations from %d entries to %ld\n",
275 		       reloc_entries, length/3);
276 
277 	/* update table to reflect new size */
278 	reloc_entries = length/3;
279 	reloc_instruction_table[0] = length/3;
280 	reloc_pos = current_entry;
281 }
282 
283 void
284 get_memory_configuration(void)
285 {
286 	int loop, current_page_type, page_count, phys_page;
287 	int page, count, bank, top_bank, video_bank;
288 	int mapped_screen_memory;
289 	int one_mb_pages;
290 	u_long top;
291 
292 	printf("Getting memory configuration ");
293 
294 	osmemory_read_arrangement_table(memory_page_types);
295 
296 	/* init counters */
297 	bank = vram_blocks = dram_blocks = rom_blocks = io_blocks =
298 	    podram_blocks = 0;
299 
300 	current_page_type = -1;
301 	phys_page = 0;			/* physical address in pages	*/
302 	page_count = 0;			/* page counter in this block	*/
303 	loop = 0;			/* loop variable over entries	*/
304 
305 	/* iterating over a packed array of 2 page types/byte i.e. 8 kb/byte */
306 	while (loop < 2*memory_table_size) {
307 		page = memory_page_types[loop / 2];	/* read	twice */
308 		if (loop & 1) page >>= 4;		/* take other nibble */
309 
310 		/*
311 		 * bits 0-2 give type, bit3 means the bit page is
312 		 * allocatable
313 		 */
314 		page &= 0x7;			/* only take bottom 3 bits */
315 		if (page != current_page_type) {
316 			/* passed a boundary ... note this block	   */
317 			/*
318 			 * splitting in different vars is for
319 			 * compatability reasons
320 			 */
321 			switch (current_page_type) {
322 			case -1:
323 			case  0:
324 				break;
325 			case osmemory_TYPE_DRAM:
326 				if ((phys_page * nbpp)< PODRAM_START) {
327 					DRAM_addr[dram_blocks]  =
328 					    phys_page * nbpp;
329 					DRAM_pages[dram_blocks] =
330 					    page_count;
331 					dram_blocks++;
332 				} else {
333 					PODRAM_addr[podram_blocks]  =
334 					    phys_page * nbpp;
335 					PODRAM_pages[podram_blocks] =
336 					    page_count;
337 					podram_blocks++;
338 				}
339 				break;
340 			case osmemory_TYPE_VRAM:
341 				VRAM_addr[vram_blocks]  = phys_page * nbpp;
342 				VRAM_pages[vram_blocks] = page_count;
343 				vram_blocks++;
344 				break;
345 			case osmemory_TYPE_ROM:
346 				ROM_addr[rom_blocks]  = phys_page * nbpp;
347 				ROM_pages[rom_blocks] = page_count;
348 				rom_blocks++;
349 				break;
350 			case osmemory_TYPE_IO:
351 				IO_addr[io_blocks]  = phys_page * nbpp;
352 				IO_pages[io_blocks] = page_count;
353 				io_blocks++;
354 				break;
355 			default:
356 				printf("WARNING : found unknown "
357 				    "memory object %d ", current_page_type);
358 				printf(" at 0x%s",
359 				    sprint0(8,'0','x', phys_page * nbpp));
360 				printf(" for %s k\n",
361 				    sprint0(5,' ','d', (page_count*nbpp)>>10));
362 				break;
363 			}
364 			current_page_type = page;
365 			phys_page = loop;
366 			page_count = 0;
367 		}
368 		/*
369 		 * smallest unit we recognise is one page ... silly
370 		 * could be upto 64 pages i.e. 256 kb
371 		 */
372 		page_count += 1;
373 		loop       += 1;
374 		if ((loop & 31) == 0) twirl();
375 	}
376 
377 	printf(" \n\n");
378 
379 	if (VRAM_pages[0] == 0) {
380 		/* map DRAM as video memory */
381 		display_size	 =
382 		    vdu_var(os_VDUVAR_TOTAL_SCREEN_SIZE) & ~(nbpp-1);
383 #if 0
384 		mapped_screen_memory = 1024 * 1024; /* max allowed on RiscPC */
385 		videomem_pages   = (mapped_screen_memory / nbpp);
386 		videomem_start   = DRAM_addr[0];
387 		DRAM_addr[0]	+= videomem_pages * nbpp;
388 		DRAM_pages[0]	-= videomem_pages;
389 #else
390 		mapped_screen_memory = display_size;
391 		videomem_pages   = mapped_screen_memory / nbpp;
392 		one_mb_pages	 = (1024*1024)/nbpp;
393 
394 		/*
395 		 * OK... we need one Mb at the top for compliance with current
396 		 * kernel structure. This ought to be abolished one day IMHO.
397 		 * Also we have to take care that the kernel needs to be in
398 		 * DRAM0a and even has to start there.
399 		 * XXX one Mb simms are the smallest supported XXX
400 		 */
401 		top_bank = dram_blocks-1;
402 		video_bank = top_bank;
403 		if (DRAM_pages[top_bank] == one_mb_pages) video_bank--;
404 
405 		if (DRAM_pages[video_bank] < videomem_pages)
406 			panic("Weird memory configuration found; please "
407 			    "contact acorn32 portmaster.");
408 
409 		/* split off the top 1Mb */
410 		DRAM_addr [top_bank+1]  = DRAM_addr[top_bank] +
411 		    (DRAM_pages[top_bank] - one_mb_pages)*nbpp;
412 		DRAM_pages[top_bank+1]  = one_mb_pages;
413 		DRAM_pages[top_bank  ] -= one_mb_pages;
414 		dram_blocks++;
415 
416 		/* Map video memory at the end of the choosen DIMM */
417 		videomem_start          = DRAM_addr[video_bank] +
418 		    (DRAM_pages[video_bank] - videomem_pages)*nbpp;
419 		DRAM_pages[video_bank] -= videomem_pages;
420 
421 		/* sanity */
422 		if (DRAM_pages[top_bank] == 0) {
423 			DRAM_addr [top_bank] = DRAM_addr [top_bank+1];
424 			DRAM_pages[top_bank] = DRAM_pages[top_bank+1];
425 			dram_blocks--;
426 		}
427 #endif
428 	} else {
429 		/* use VRAM */
430 		mapped_screen_memory = 0;
431 		videomem_start	 = VRAM_addr[0];
432 		videomem_pages	 = VRAM_pages[0];
433 		display_size	 = videomem_pages * nbpp;
434 	}
435 
436 	if (mapped_screen_memory) {
437 		printf("Used %d kb DRAM ", mapped_screen_memory / 1024);
438 		printf("at 0x%s for video memory\n",
439 		    sprint0(8,'0','x', videomem_start));
440 	}
441 
442 	/* find top of (PO)DRAM pages */
443 	top_physdram = 0;
444 	for (loop = 0; loop < podram_blocks; loop++) {
445 		top = PODRAM_addr[loop] + PODRAM_pages[loop]*nbpp;
446 		if (top > top_physdram) top_physdram = top;
447 	}
448 	for (loop = 0; loop < dram_blocks; loop++) {
449 		top = DRAM_addr[loop] + DRAM_pages[loop]*nbpp;
450 		if (top > top_physdram) top_physdram = top;
451 	}
452 	if (top_physdram == 0)
453 		panic("reality check: No DRAM in this machine?");
454 	if (((top_physdram >> 20) << 20) != top_physdram)
455 		panic("Top is not not aligned on a Mb; "
456 		    "remove very small DIMMS?");
457 
458 	/* pretty print the individual page types */
459 	for (count = 0; count < rom_blocks; count++) {
460 		printf("Found ROM  (%d)", count);
461 		printf(" at 0x%s", sprint0(8,'0','x', ROM_addr[count]));
462 		printf(" for %s k\n",
463 		    sprint0(5,' ','d', (ROM_pages[count]*nbpp)>>10));
464 	}
465 
466 	for (count = 0; count < io_blocks; count++) {
467 		printf("Found I/O  (%d)", count);
468 		printf(" at 0x%s", sprint0(8,'0','x', IO_addr[count]));
469 		printf(" for %s k\n",
470 		    sprint0(5,' ','d', (IO_pages[count]*nbpp)>>10));
471 	}
472 
473 	/* for DRAM/VRAM also count the number of pages */
474 	total_dram_pages = 0;
475 	for (count = 0; count < dram_blocks; count++) {
476 		total_dram_pages += DRAM_pages[count];
477 		printf("Found DRAM (%d)", count);
478 		printf(" at 0x%s", sprint0(8,'0','x', DRAM_addr[count]));
479 		printf(" for %s k\n",
480 		    sprint0(5,' ','d', (DRAM_pages[count]*nbpp)>>10));
481 	}
482 
483 	total_vram_pages = 0;
484 	for (count = 0; count < vram_blocks; count++) {
485 		total_vram_pages += VRAM_pages[count];
486 		printf("Found VRAM (%d)", count);
487 		printf(" at 0x%s", sprint0(8,'0','x', VRAM_addr[count]));
488 		printf(" for %s k\n",
489 		    sprint0(5,' ','d', (VRAM_pages[count]*nbpp)>>10));
490 	}
491 
492 	total_podram_pages = 0;
493 	for (count = 0; count < podram_blocks; count++) {
494 		total_podram_pages += PODRAM_pages[count];
495 		printf("Found Processor only (S)DRAM (%d)", count);
496 		printf(" at 0x%s", sprint0(8,'0','x', PODRAM_addr[count]));
497 		printf(" for %s k\n",
498 		    sprint0(5,' ','d', (PODRAM_pages[count]*nbpp)>>10));
499 	}
500 }
501 
502 
503 void
504 get_memory_map(void)
505 {
506 	struct page_info *page_info;
507 	int	page, inout;
508 	int	phys_addr;
509 
510 	printf("\nGetting actual memorymapping");
511 	for (page = 0, page_info = mem_pages_info;
512 	     page < totalpages;
513 	     page++, page_info++) {
514 		page_info->pagenumber = 0;	/* not used */
515 		page_info->logical    = (firstpage + page) * nbpp;
516 		page_info->physical   = 0;	/* result comes here */
517 		/* to avoid triggering a `bug' in RISC OS 4, page it in */
518 		*((int *)page_info->logical) = 0;
519 	}
520 	/* close list */
521 	page_info->pagenumber = -1;
522 
523 	inout = osmemory_GIVEN_LOG_ADDR | osmemory_RETURN_PAGE_NO |
524 	    osmemory_RETURN_PHYS_ADDR;
525 	osmemory_page_op(inout, mem_pages_info, totalpages);
526 
527 	printf(" ; sorting ");
528 	qsort(mem_pages_info, totalpages, sizeof(struct page_info),
529 	    &page_info_cmp);
530 	printf(".\n");
531 
532 	/*
533 	 * get the first DRAM index and show the physical memory
534 	 * fragments we got
535 	 */
536 	printf("\nFound physical memory blocks :\n");
537 	first_mapped_DRAM_page_index = -1;
538 	first_mapped_PODRAM_page_index = -1;
539 	for (page=0; page < totalpages; page++) {
540 		phys_addr = mem_pages_info[page].physical;
541 		printf("[0x%x", phys_addr);
542 		while (mem_pages_info[page+1].physical - phys_addr == nbpp) {
543 			if (first_mapped_DRAM_page_index < 0 &&
544 			    phys_addr >= DRAM_addr[0])
545 				first_mapped_DRAM_page_index = page;
546 			if (first_mapped_PODRAM_page_index < 0 &&
547 			    phys_addr >= PODRAM_addr[0])
548 				first_mapped_PODRAM_page_index = page;
549 			page++;
550 			phys_addr = mem_pages_info[page].physical;
551 		}
552 		printf("-0x%x]  ", phys_addr + nbpp -1);
553 	}
554 	printf("\n\n");
555 
556 	if (first_mapped_PODRAM_page_index < 0 && PODRAM_addr[0])
557 		panic("Found no (S)DRAM mapped in the bootloader");
558 	if (first_mapped_DRAM_page_index < 0)
559 		panic("No DRAM mapped in the bootloader");
560 }
561 
562 
563 void
564 create_initial_page_tables(void)
565 {
566 	u_long page, section, addr, kpage;
567 
568 	/* mark a section by the following bits and domain 0, AP=01, CB=0 */
569 	/*         A         P         C        B        section
570 	           domain		*/
571 	section = (0<<11) | (1<<10) | (0<<3) | (0<<2) | (1<<4) | (1<<1) |
572 	    (0) | (0 << 5);
573 
574 	/* first of all a full 1:1 mapping */
575 	for (page = 0; page < 4*1024; page++)
576 		initial_page_tables[page] = (page<<20) | section;
577 
578 	/*
579 	 * video memory is mapped 1:1 in the DRAM section or in VRAM
580 	 * section
581 	 *
582 	 * map 1Mb from top of DRAM memory to bottom 1Mb of virtual memmap
583 	 */
584 	top_1Mb_dram = (((top_physdram - 1024*1024) >> 20) << 20);
585 
586 	initial_page_tables[0] = top_1Mb_dram | section;
587 
588 	/*
589 	 * map 16 Mb of kernel space to KERNEL_BASE
590 	 * i.e. marks[KERNEL_START]
591 	 */
592 	for (page = 0; page < 16; page++) {
593 		addr  = (kernel_physical_start >> 20) + page;
594 		kpage = (marks[MARK_START]     >> 20) + page;
595 		initial_page_tables[kpage] = (addr << 20) | section;
596 	}
597 }
598 
599 
600 void
601 add_pagetables_at_top(void)
602 {
603 	int page;
604 	u_long src, dst, fragaddr;
605 
606 	/* Special : destination must be on a 16 Kb boundary */
607 	/* get 4 pages on the top of the physical memory and copy PT's in it */
608 	new_L1_pages_phys = top_physdram - 4 * nbpp;
609 
610 	/*
611 	 * If the L1 page tables are not 16 kb aligned, adjust base
612 	 * until it is
613 	 */
614 	while (new_L1_pages_phys & (16*1024-1))
615 		new_L1_pages_phys -= nbpp;
616 	if (new_L1_pages_phys & (16*1024-1))
617 		panic("Paranoia : L1 pages not on 16Kb boundary");
618 
619 	dst = new_L1_pages_phys;
620 	src = (u_long)initial_page_tables;
621 
622 	for (page = 0; page < 4; page++) {
623 		/* get a page for a fragment */
624 		fragaddr = get_relocated_page(dst, nbpp)->logical;
625 		memcpy((void *)fragaddr, (void *)src, nbpp);
626 
627 		src += nbpp;
628 		dst += nbpp;
629 	}
630 }
631 
632 
633 void
634 add_initvectors(void)
635 {
636 	u_long *pos;
637 	u_long  vectoraddr, count;
638 
639 	/* the top 1Mb of the physical DRAM pages is mapped at address 0 */
640 	vectoraddr = get_relocated_page(top_1Mb_dram, nbpp)->logical;
641 
642 	/* fill the vectors with `movs pc, lr' opcodes */
643 	pos = (u_long *)vectoraddr; memset(pos, 0, nbpp);
644 	for (count = 0; count < 128; count++) *pos++ = 0xE1B0F00E;
645 }
646 
647 /*
648  * Work out the display's vertical sync rate.  One might hope that there
649  * would be a simpler way than by counting vsync interrupts for a second,
650  * but if there is, I can't find it.
651  */
652 static int
653 vsync_rate(void)
654 {
655 	uint8_t count0;
656 	unsigned int time0;
657 
658 	count0 = osbyte_read(osbyte_VAR_VSYNC_TIMER);
659 	time0 = os_read_monotonic_time();
660 	while (os_read_monotonic_time() - time0 < 100)
661 		continue;
662 	return (u_int8_t)(count0 - osbyte_read(osbyte_VAR_VSYNC_TIMER));
663 }
664 
665 void
666 create_configuration(int argc, char **argv, int start_args)
667 {
668 	int   i, root_specified, id_low, id_high;
669 	char *pos;
670 
671 	bconfig_new_phys = kernel_free_vm_start - pv_offset;
672 	bconfig_page = get_relocated_page(bconfig_new_phys, nbpp);
673 	bconfig = (struct bootconfig *)(bconfig_page->logical);
674 	kernel_free_vm_start += nbpp;
675 
676 	/* get some miscelanious info for the bootblock */
677 	os_readsysinfo_monitor_info(NULL, (int *)&monitor_type, (int *)&monitor_sync);
678 	os_readsysinfo_chip_presence((int *)&ioeb_flags, (int *)&superio_flags, (int *)&lcd_flags);
679 	os_readsysinfo_superio_features((int *)&superio_flags_basic,
680 	    (int *)&superio_flags_extra);
681 	os_readsysinfo_unique_id(&id_low, &id_high);
682 
683 	/* fill in the bootconfig *bconfig structure : generic version II */
684 	memset(bconfig, 0, sizeof(*bconfig));
685 	bconfig->magic		= BOOTCONFIG_MAGIC;
686 	bconfig->version	= BOOTCONFIG_VERSION;
687 	strcpy(bconfig->kernelname, booted_file);
688 
689 	/*
690 	 * get the kernel base name and update the RiscOS name to a
691 	 * Unix name
692 	 */
693 	i = strlen(booted_file);
694 	while (i >= 0 && booted_file[i] != '.') i--;
695 	if (i) {
696 		strcpy(bconfig->kernelname, "/");
697 		strcat(bconfig->kernelname, booted_file+i+1);
698 	}
699 
700 	pos = bconfig->kernelname+1;
701 	while (*pos) {
702 		if (*pos == '/') *pos = '.';
703 		pos++;
704 	}
705 
706 	/* set the machine_id */
707 	memcpy(&(bconfig->machine_id), &id_low, 4);
708 
709 	/* check if the `root' is specified */
710 	root_specified = 0;
711 	strcpy(bconfig->args, "");
712 	for (i = start_args; i < argc; i++) {
713 		if (strncmp(argv[i], "root=",5) ==0) root_specified = 1;
714 		strcat(bconfig->args, argv[i]);
715 	}
716 	if (!root_specified) {
717 		strcat(bconfig->args, "root=");
718 		strcat(bconfig->args, DEFAULT_ROOT);
719 	}
720 
721 	/* mark kernel pointers */
722 	bconfig->kernvirtualbase	= marks[MARK_START];
723 	bconfig->kernphysicalbase	= kernel_physical_start;
724 	bconfig->kernsize		= kernel_free_vm_start -
725 					    marks[MARK_START];
726 	bconfig->ksym_start		= marks[MARK_SYM];
727 	bconfig->ksym_end		= marks[MARK_SYM] + marks[MARK_NSYM];
728 
729 	/* setup display info */
730 	bconfig->display_phys		= videomem_start;
731 	bconfig->display_start		= videomem_start;
732 	bconfig->display_size		= display_size;
733 	bconfig->width			= vdu_var(os_MODEVAR_XWIND_LIMIT);
734 	bconfig->height			= vdu_var(os_MODEVAR_YWIND_LIMIT);
735 	bconfig->log2_bpp		= vdu_var(os_MODEVAR_LOG2_BPP);
736 	bconfig->framerate		= vsync_rate();
737 
738 	/* fill in memory info */
739 	bconfig->pagesize		= nbpp;
740 	bconfig->drampages		= total_dram_pages +
741 					    total_podram_pages;	/* XXX */
742 	bconfig->vrampages		= total_vram_pages;
743 	bconfig->dramblocks		= dram_blocks + podram_blocks; /*XXX*/
744 	bconfig->vramblocks		= vram_blocks;
745 
746 	for (i = 0; i < dram_blocks; i++) {
747 		bconfig->dram[i].address = DRAM_addr[i];
748 		bconfig->dram[i].pages   = DRAM_pages[i];
749 		bconfig->dram[i].flags   = PHYSMEM_TYPE_GENERIC;
750 	}
751 	for (; i < dram_blocks + podram_blocks; i++) {
752 		bconfig->dram[i].address = PODRAM_addr[i-dram_blocks];
753 		bconfig->dram[i].pages   = PODRAM_pages[i-dram_blocks];
754 		bconfig->dram[i].flags   = PHYSMEM_TYPE_PROCESSOR_ONLY;
755 	}
756 	for (i = 0; i < vram_blocks; i++) {
757 		bconfig->vram[i].address = VRAM_addr[i];
758 		bconfig->vram[i].pages   = VRAM_pages[i];
759 		bconfig->vram[i].flags   = PHYSMEM_TYPE_GENERIC;
760 	}
761 }
762 
763 
764 int
765 main(int argc, char **argv)
766 {
767 	int howto, start_args, ret;
768 
769 	printf("\n\n");
770 	printf(">> %s, Revision %s\n", bootprog_name, bootprog_rev);
771 	printf(">> (%s, %s)\n", bootprog_maker, bootprog_date);
772 	printf(">> Booting NetBSD/acorn32 on a RiscPC/A7000/NC\n");
773 	printf("\n");
774 
775 	process_args(argc, argv, &howto, booted_file, &start_args);
776 
777 	printf("Booting %s (howto = 0x%x)\n", booted_file, howto);
778 
779 	init_datastructures();
780 	get_memory_configuration();
781 	get_memory_map();
782 
783 	/*
784 	 * point to the first free DRAM page guaranteed to be in
785 	 * strict order up
786 	 */
787 	if (podram_blocks != 0) {
788 		free_relocation_page =
789 		    mem_pages_info + first_mapped_PODRAM_page_index;
790 		kernel_physical_start = PODRAM_addr[0];
791 	} else {
792 		free_relocation_page =
793 		    mem_pages_info + first_mapped_DRAM_page_index;
794 		kernel_physical_start = DRAM_addr[0];
795 	}
796 
797 	printf("\nLoading %s ", booted_file);
798 
799 	/* first count the kernel to get the markers */
800 	ret = loadfile(booted_file, marks, COUNT_KERNEL);
801 	if (ret == -1) panic("Kernel load failed"); /* lie to the user ... */
802 	close(ret);
803 
804 	/*
805 	 * calculate how much the difference is between physical and
806 	 * virtual space for the kernel
807 	 */
808 	pv_offset = ((u_long)marks[MARK_START] - kernel_physical_start);
809 	/* round on a page	*/
810 	kernel_free_vm_start = (marks[MARK_END] + nbpp-1) & ~(nbpp-1);
811 
812 	/* we seem to be forced to clear the marks[] ? */
813 	bzero(marks, sizeof(marks));
814 
815 	/* really load it ! */
816 	ret = loadfile(booted_file, marks, LOAD_KERNEL);
817 	if (ret == -1) panic("Kernel load failed");
818 	close(ret);
819 
820 	/* finish off the relocation information */
821 	create_initial_page_tables();
822 	add_initvectors();
823 	add_pagetables_at_top();
824 	create_configuration(argc, argv, start_args);
825 
826 	/*
827 	 * done relocating and creating information, now update and
828 	 * check the relocation mechanism
829 	 */
830 	compact_relocations();
831 
832 	/*
833 	 * grab a page to copy the bootstrap code into
834 	 */
835 	relocate_code_page = free_relocation_page++;
836 
837 	printf("\nStarting at 0x%lx, p@0x%lx\n", marks[MARK_ENTRY], kernel_physical_start);
838 	printf("%ld entries, first one is 0x%lx->0x%lx for %lx bytes\n",
839 			reloc_instruction_table[0],
840 			reloc_instruction_table[1],
841 			reloc_instruction_table[2],
842 			reloc_instruction_table[3]);
843 
844 	printf("Will boot in a few secs due to relocation....\n"
845 	    "bye bye from RISC OS!");
846 
847 	/* dismount all filesystems */
848 	xosfscontrol_shutdown();
849 
850 	/* reset devices, well they try to anyway */
851 	service_pre_reset();
852 
853 	start_kernel(
854 		/* r0 relocation code page (V)	*/ relocate_code_page->logical,
855 		/* r1 relocation pv offset	*/
856 		relocate_code_page->physical-relocate_code_page->logical,
857 		/* r2 configuration structure	*/ bconfig_new_phys,
858 		/* r3 relocation table (l)	*/
859 		(int)reloc_instruction_table,	/* one piece! */
860 		/* r4 L1 page descriptor (P)	*/ new_L1_pages_phys,
861 		/* r5 kernel entry point	*/ marks[MARK_ENTRY]
862 	);
863 	return 0;
864 }
865 
866 
867 ssize_t
868 boot32_read(int f, void *addr, size_t size)
869 {
870 	void *fragaddr;
871 	size_t fragsize;
872 	ssize_t bytes_read, total;
873 
874 	/* printf("read at %p for %ld bytes\n", addr, size); */
875 	total = 0;
876 	while (size > 0) {
877 		fragsize = nbpp;		/* select one page	*/
878 		if (size < nbpp) fragsize = size;/* clip to size left	*/
879 
880 		/* get a page for a fragment */
881 		fragaddr = (void *)get_relocated_page((u_long) addr -
882 		    pv_offset, fragsize)->logical;
883 
884 		bytes_read = read(f, fragaddr, fragsize);
885 		if (bytes_read < 0) return bytes_read;	/* error!	*/
886 		total += bytes_read;		/* account read bytes	*/
887 
888 		if (bytes_read < fragsize)
889 			return total;		/* does this happen?	*/
890 
891 		size -= fragsize;		/* advance		*/
892 		addr += fragsize;
893 	}
894 	return total;
895 }
896 
897 
898 void *
899 boot32_memcpy(void *dst, const void *src, size_t size)
900 {
901 	void *fragaddr;
902 	size_t fragsize;
903 
904 	/* printf("memcpy to %p from %p for %ld bytes\n", dst, src, size); */
905 	while (size > 0) {
906 		fragsize = nbpp;		/* select one page	*/
907 		if (size < nbpp) fragsize = size;/* clip to size left	*/
908 
909 		/* get a page for a fragment */
910 		fragaddr = (void *)get_relocated_page((u_long) dst -
911 		    pv_offset, fragsize)->logical;
912 		memcpy(fragaddr, src, size);
913 
914 		src += fragsize;		/* account copy		*/
915 		dst += fragsize;
916 		size-= fragsize;
917 	}
918 	return dst;
919 }
920 
921 
922 void *
923 boot32_memset(void *dst, int c, size_t size)
924 {
925 	void *fragaddr;
926 	size_t fragsize;
927 
928 	/* printf("memset %p for %ld bytes with %d\n", dst, size, c); */
929 	while (size > 0) {
930 		fragsize = nbpp;		/* select one page	*/
931 		if (size < nbpp) fragsize = size;/* clip to size left	*/
932 
933 		/* get a page for a fragment */
934 		fragaddr = (void *)get_relocated_page((u_long)dst - pv_offset,
935 		    fragsize)->logical;
936 		memset(fragaddr, c, fragsize);
937 
938 		dst += fragsize;		/* account memsetting	*/
939 		size-= fragsize;
940 
941 	}
942 	return dst;
943 }
944 
945 
946 /* We can rely on the fact that two entries never have identical ->physical */
947 int
948 page_info_cmp(const void *a, const void *b)
949 {
950 
951 	return (((struct page_info *)a)->physical <
952 	    ((struct page_info *)b)->physical) ? -1 : 1;
953 }
954 
955 struct page_info *
956 get_relocated_page(u_long destination, int size)
957 {
958 	struct page_info *page;
959 
960 	/* get a page for a fragment */
961 	page = free_relocation_page;
962 	if (free_relocation_page->pagenumber < 0) panic("\n\nOut of pages");
963 	reloc_entries++;
964 	if (reloc_entries >= MAX_RELOCPAGES)
965 		panic("\n\nToo many relocations! What are you loading ??");
966 
967 	/* record the relocation */
968 	if (free_relocation_page->physical & 0x3)
969 		panic("\n\nphysical address is not aligned!");
970 
971 	if (destination & 0x3)
972 		panic("\n\ndestination address is not aligned!");
973 
974 	*reloc_pos++ = free_relocation_page->physical;
975 	*reloc_pos++ = destination;
976 	*reloc_pos++ = size;
977 	free_relocation_page++;			/* advance 		*/
978 
979 	return page;
980 }
981 
982 
983 int
984 vdu_var(int var)
985 {
986 	int varlist[2], vallist[2];
987 
988 	varlist[0] = var;
989 	varlist[1] = -1;
990 	os_read_vdu_variables(varlist, vallist);
991 	return vallist[0];
992 }
993 
994 
995 void
996 twirl(void)
997 {
998 
999 	printf("%c%c", "|/-\\"[(int) twirl_cnt], 8);
1000 	twirl_cnt++;
1001 	twirl_cnt &= 3;
1002 }
1003 
1004 
1005 void
1006 process_args(int argc, char **argv, int *howto, char *file, int *start_args)
1007 {
1008 	int i, j;
1009 	static char filename[80];
1010 
1011 	*howto = 0;
1012 	*file = NULL; *start_args = 1;
1013 	for (i = 1; i < argc; i++) {
1014 		if (argv[i][0] == '-')
1015 			for (j = 1; argv[i][j]; j++)
1016 				BOOT_FLAG(argv[i][j], *howto);
1017 		else {
1018 			if (*file)
1019 				*start_args = i;
1020 			else {
1021 				strcpy(file, argv[i]);
1022 				*start_args = i+1;
1023 			}
1024 			break;
1025 		}
1026 	}
1027 	if (*file == NULL) {
1028 		if (*howto & RB_ASKNAME) {
1029 			printf("boot: ");
1030 			gets(filename);
1031 			strcpy(file, filename);
1032 		} else
1033 			strcpy(file, "netbsd");
1034 	}
1035 }
1036 
1037 
1038 char *
1039 sprint0(int width, char prefix, char base, int value)
1040 {
1041 	static char format[50], scrap[50];
1042 	char *pos;
1043 	int length;
1044 
1045 	for (pos = format, length = 0; length<width; length++) *pos++ = prefix;
1046 	*pos++ = '%';
1047 	*pos++ = base;
1048 	*pos++ = (char) 0;
1049 
1050 	sprintf(scrap, format, value);
1051 	length = strlen(scrap);
1052 
1053 	return scrap+length-width;
1054 }
1055 
1056