xref: /netbsd-src/sys/arch/acorn32/stand/boot32/boot32.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /*	$NetBSD: boot32.c,v 1.41 2014/03/21 16:43:00 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002 Reinoud Zandijk
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the author may not be used to endorse or promote products
16  *    derived from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  * Thanks a bunch for Ben's framework for the bootloader and its suporting
30  * libs. This file tries to actually boot NetBSD/acorn32 !
31  *
32  * XXX eventually to be partly merged back with boot26 ? XXX
33  */
34 
35 #include <lib/libsa/stand.h>
36 #include <lib/libsa/loadfile.h>
37 #include <lib/libkern/libkern.h>
38 #include <riscoscalls.h>
39 #include <srt0.h>
40 #include <sys/boot_flag.h>
41 #include <machine/vmparam.h>
42 #include <arm/arm32/pte.h>
43 #include <machine/bootconfig.h>
44 
45 extern char end[];
46 
47 /* debugging flags */
48 int debug = 1;
49 
50 
51 /* constants */
52 #define PODRAM_START   (512*1024*1024)		/* XXX Kinetic cards XXX */
53 
54 #define MAX_RELOCPAGES	4096
55 
56 #define DEFAULT_ROOT	"/dev/wd0a"
57 
58 
59 #define IO_BLOCKS	 16	/* move these to the bootloader structure? */
60 #define ROM_BLOCKS	 16
61 #define PODRAM_BLOCKS	 16
62 
63 
64 /* booter variables */
65 char	 scrap[80], twirl_cnt;		/* misc				*/
66 char	 booted_file[80];
67 
68 struct bootconfig *bconfig;		/* bootconfig passing		*/
69 u_long	 bconfig_new_phys;		/* physical address its bound	*/
70 
71 /* computer knowledge		*/
72 u_int	 monitor_type, monitor_sync, ioeb_flags, lcd_flags;
73 u_int	 superio_flags, superio_flags_basic, superio_flags_extra;
74 
75 /* sizes			*/
76 int	 nbpp, memory_table_size, memory_image_size;
77 /* relocate info		*/
78 u_long	 reloc_tablesize, *reloc_instruction_table;
79 u_long	*reloc_pos;			/* current empty entry		*/
80 int	 reloc_entries;			/* number of relocations	*/
81 int	 first_mapped_DRAM_page_index;	/* offset in RISC OS blob	*/
82 int	 first_mapped_PODRAM_page_index;/* offset in RISC OS blob	*/
83 
84 struct page_info *mem_pages_info;	/* {nr, virt, phys}*		*/
85 struct page_info *free_relocation_page;	/* points to the page_info chain*/
86 struct page_info *relocate_code_page;	/* points to the copied code	*/
87 struct page_info *bconfig_page;		/* page for passing on settings	*/
88 
89 unsigned char *memory_page_types;	/* packed array of 4 bit typeId	*/
90 
91 u_long	*initial_page_tables;		/* pagetables to be booted from	*/
92 
93 
94 /* XXX rename *_BLOCKS to MEM_BLOCKS */
95 /* DRAM/VRAM/ROM/IO info */
96 /* where the display is		*/
97 u_long	 videomem_start, videomem_pages, display_size;
98 
99 u_long	 pv_offset, top_physdram;	/* kernel_base - phys. diff	*/
100 u_long	 top_1Mb_dram;			/* the lower mapped top 1Mb	*/
101 u_long	 new_L1_pages_phys;		/* physical address of L1 pages	*/
102 
103 /* for bootconfig passing	*/
104 u_long	 total_podram_pages, total_dram_pages, total_vram_pages;
105 int	 dram_blocks, podram_blocks;	/* number of mem. objects/type  */
106 int	 vram_blocks, rom_blocks, io_blocks;
107 
108 u_long	 DRAM_addr[DRAM_BLOCKS],     DRAM_pages[DRAM_BLOCKS];
109 /* processor only RAM	*/
110 u_long	 PODRAM_addr[PODRAM_BLOCKS], PODRAM_pages[PODRAM_BLOCKS];
111 u_long	 VRAM_addr[VRAM_BLOCKS],     VRAM_pages[VRAM_BLOCKS];
112 u_long	 ROM_addr[ROM_BLOCKS],       ROM_pages[ROM_BLOCKS];
113 u_long	 IO_addr[IO_BLOCKS],         IO_pages[IO_BLOCKS];
114 
115 
116 /* RISC OS memory pages we claimed */
117 u_long	 firstpage, lastpage, totalpages; /* RISC OS pagecounters	*/
118 /* RISC OS memory		*/
119 char	*memory_image, *bottom_memory, *top_memory;
120 
121 /* kernel info */
122 u_long	 marks[MARK_MAX];		/* loader mark pointers 	*/
123 u_long	 kernel_physical_start;		/* where does it get relocated	*/
124 u_long	 kernel_physical_maxsize;	/* Max allowed size of kernel	*/
125 u_long	 kernel_free_vm_start;		/* where does the free VM start	*/
126 /* some free space to mess with	*/
127 u_long	 scratch_virtualbase, scratch_physicalbase;
128 
129 
130 /* bootprogram identifiers */
131 extern const char bootprog_rev[];
132 extern const char bootprog_name[];
133 
134 /* predefines / prototypes */
135 void	 init_datastructures(void);
136 void	 get_memory_configuration(void);
137 void	 get_memory_map(void);
138 void	 create_initial_page_tables(void);
139 void	 add_pagetables_at_top(void);
140 int	 page_info_cmp(const void *a, const void *);
141 void	 add_initvectors(void);
142 void	 create_configuration(int argc, char **argv, int start_args);
143 void	 prepare_and_check_relocation_system(void);
144 void	 compact_relocations(void);
145 void	 twirl(void);
146 int	 vdu_var(int);
147 void	 process_args(int argc, char **argv, int *howto, char *file,
148     int *start_args);
149 
150 char		 *sprint0(int width, char prefix, char base, int value);
151 struct page_info *get_relocated_page(u_long destination, int size);
152 
153 extern void start_kernel(
154 		int relocate_code_page,
155 		int relocation_pv_offset,
156 		int configuration_structure_in_flat_physical_space,
157 		int virtual_address_relocation_table,
158 		int physical_address_of_new_L1_pages,
159 		int kernel_entry_point
160 		);	/* asm */
161 
162 
163 /* the loader itself */
164 void
165 init_datastructures(void)
166 {
167 
168 	/* Get number of pages and the memorytablesize */
169 	osmemory_read_arrangement_table_size(&memory_table_size, &nbpp);
170 
171 	/* Allocate 99% - (small fixed amount) of the heap for memory_image */
172 	memory_image_size = (int)HIMEM - (int)end - 512 * 1024;
173 	memory_image_size /= 100;
174 	memory_image_size *= 99;
175 	if (memory_image_size <= 256*1024)
176 		panic("Insufficient memory");
177 
178 	memory_image = alloc(memory_image_size);
179 	if (!memory_image)
180 		panic("Can't alloc get my memory image ?");
181 
182 	bottom_memory = memory_image;
183 	top_memory    = memory_image + memory_image_size;
184 
185 	firstpage  = ((int)bottom_memory / nbpp) + 1;	/* safety */
186 	lastpage   = ((int)top_memory    / nbpp) - 1;
187 	totalpages = lastpage - firstpage;
188 
189 	printf("Allocated %ld memory pages, each of %d kilobytes.\n\n",
190 			totalpages, nbpp>>10 );
191 
192 	/*
193 	 * Setup the relocation table. Its a simple array of 3 * 32 bit
194 	 * entries. The first word in the array is the number of relocations
195 	 * to be done
196 	 */
197 	reloc_tablesize = (MAX_RELOCPAGES+1)*3*sizeof(u_long);
198 	reloc_instruction_table = alloc(reloc_tablesize);
199 	if (!reloc_instruction_table)
200 		panic("Can't alloc my relocate instructions pages");
201 
202 	reloc_entries = 0;
203 	reloc_pos     = reloc_instruction_table;
204 	*reloc_pos++  = 0;
205 
206 	/*
207 	 * Set up the memory translation info structure. We need to allocate
208 	 * one more for the end of list marker. See get_memory_map.
209 	 */
210 	mem_pages_info = alloc((totalpages + 1)*sizeof(struct page_info));
211 	if (!mem_pages_info)
212 		panic("Can't alloc my phys->virt page info");
213 
214 	/*
215 	 * Allocate memory for the memory arrangement table. We use this
216 	 * structure to retrieve memory page properties to clasify them.
217 	 */
218 	memory_page_types = alloc(memory_table_size);
219 	if (!memory_page_types)
220 		panic("Can't alloc my memory page type block");
221 
222 	/*
223 	 * Initial page tables is 16 kb per definition since only sections are
224 	 * used.
225 	 */
226 	initial_page_tables = alloc(16*1024);
227 	if (!initial_page_tables)
228 		panic("Can't alloc my initial page tables");
229 }
230 
231 void
232 compact_relocations(void)
233 {
234 	u_long *reloc_entry, current_length, length;
235 	u_long  src, destination, current_src, current_destination;
236 	u_long *current_entry;
237 
238 	current_entry = reloc_entry = reloc_instruction_table + 1;
239 
240 	/* prime the loop */
241 	current_src		= reloc_entry[0];
242 	current_destination	= reloc_entry[1];
243 	current_length		= reloc_entry[2];
244 
245 	reloc_entry += 3;
246 	while (reloc_entry < reloc_pos) {
247 		src         = reloc_entry[0];
248 		destination = reloc_entry[1];
249 		length      = reloc_entry[2];
250 
251 		if (src == (current_src + current_length) &&
252 		    destination == (current_destination + current_length)) {
253 			/* can merge */
254 			current_length += length;
255 		} else {
256 			/* nothing else to do, so save the length */
257 			current_entry[2] = current_length;
258 			/* fill in next entry */
259 			current_entry += 3;
260 			current_src = current_entry[0] = src;
261 			current_destination = current_entry[1] = destination;
262 			current_length = length;
263 		}
264 		reloc_entry += 3;
265 	}
266 	/* save last length */
267 	current_entry[2] = current_length;
268 	current_entry += 3;
269 
270 	/* workout new count of entries */
271 	length = current_entry - (reloc_instruction_table + 1);
272 	printf("Compacted relocations from %d entries to %ld\n",
273 		       reloc_entries, length/3);
274 
275 	/* update table to reflect new size */
276 	reloc_entries = length/3;
277 	reloc_instruction_table[0] = length/3;
278 	reloc_pos = current_entry;
279 }
280 
281 void
282 get_memory_configuration(void)
283 {
284 	int loop, current_page_type, page_count, phys_page;
285 	int page, count, top_bank, video_bank;
286 	int mapped_screen_memory;
287 	int one_mb_pages;
288 	u_long top;
289 
290 	printf("Getting memory configuration ");
291 
292 	osmemory_read_arrangement_table(memory_page_types);
293 
294 	/* init counters */
295 	vram_blocks = dram_blocks = rom_blocks = io_blocks = podram_blocks = 0;
296 
297 	current_page_type = -1;
298 	phys_page = 0;			/* physical address in pages	*/
299 	page_count = 0;			/* page counter in this block	*/
300 	loop = 0;			/* loop variable over entries	*/
301 
302 	/* iterating over a packed array of 2 page types/byte i.e. 8 kb/byte */
303 	while (loop < 2*memory_table_size) {
304 		page = memory_page_types[loop / 2];	/* read	twice */
305 		if (loop & 1) page >>= 4;		/* take other nibble */
306 
307 		/*
308 		 * bits 0-2 give type, bit3 means the bit page is
309 		 * allocatable
310 		 */
311 		page &= 0x7;			/* only take bottom 3 bits */
312 		if (page != current_page_type) {
313 			/* passed a boundary ... note this block	   */
314 			/*
315 			 * splitting in different vars is for
316 			 * compatability reasons
317 			 */
318 			switch (current_page_type) {
319 			case -1:
320 			case  0:
321 				break;
322 			case osmemory_TYPE_DRAM:
323 				if ((phys_page * nbpp)< PODRAM_START) {
324 					DRAM_addr[dram_blocks]  =
325 					    phys_page * nbpp;
326 					DRAM_pages[dram_blocks] =
327 					    page_count;
328 					dram_blocks++;
329 				} else {
330 					PODRAM_addr[podram_blocks]  =
331 					    phys_page * nbpp;
332 					PODRAM_pages[podram_blocks] =
333 					    page_count;
334 					podram_blocks++;
335 				}
336 				break;
337 			case osmemory_TYPE_VRAM:
338 				VRAM_addr[vram_blocks]  = phys_page * nbpp;
339 				VRAM_pages[vram_blocks] = page_count;
340 				vram_blocks++;
341 				break;
342 			case osmemory_TYPE_ROM:
343 				ROM_addr[rom_blocks]  = phys_page * nbpp;
344 				ROM_pages[rom_blocks] = page_count;
345 				rom_blocks++;
346 				break;
347 			case osmemory_TYPE_IO:
348 				IO_addr[io_blocks]  = phys_page * nbpp;
349 				IO_pages[io_blocks] = page_count;
350 				io_blocks++;
351 				break;
352 			default:
353 				printf("WARNING : found unknown "
354 				    "memory object %d ", current_page_type);
355 				printf(" at 0x%s",
356 				    sprint0(8,'0','x', phys_page * nbpp));
357 				printf(" for %s k\n",
358 				    sprint0(5,' ','d', (page_count*nbpp)>>10));
359 				break;
360 			}
361 			current_page_type = page;
362 			phys_page = loop;
363 			page_count = 0;
364 		}
365 		/*
366 		 * smallest unit we recognise is one page ... silly
367 		 * could be upto 64 pages i.e. 256 kb
368 		 */
369 		page_count += 1;
370 		loop       += 1;
371 		if ((loop & 31) == 0) twirl();
372 	}
373 
374 	printf(" \n\n");
375 
376 	if (VRAM_pages[0] == 0) {
377 		/* map DRAM as video memory */
378 		display_size	 =
379 		    vdu_var(os_VDUVAR_TOTAL_SCREEN_SIZE) & ~(nbpp-1);
380 #if 0
381 		mapped_screen_memory = 1024 * 1024; /* max allowed on RiscPC */
382 		videomem_pages   = (mapped_screen_memory / nbpp);
383 		videomem_start   = DRAM_addr[0];
384 		DRAM_addr[0]	+= videomem_pages * nbpp;
385 		DRAM_pages[0]	-= videomem_pages;
386 #else
387 		mapped_screen_memory = display_size;
388 		videomem_pages   = mapped_screen_memory / nbpp;
389 		one_mb_pages	 = (1024*1024)/nbpp;
390 
391 		/*
392 		 * OK... we need one Mb at the top for compliance with current
393 		 * kernel structure. This ought to be abolished one day IMHO.
394 		 * Also we have to take care that the kernel needs to be in
395 		 * DRAM0a and even has to start there.
396 		 * XXX one Mb simms are the smallest supported XXX
397 		 */
398 		top_bank = dram_blocks-1;
399 		video_bank = top_bank;
400 		if (DRAM_pages[top_bank] == one_mb_pages) video_bank--;
401 
402 		if (DRAM_pages[video_bank] < videomem_pages)
403 			panic("Weird memory configuration found; please "
404 			    "contact acorn32 portmaster.");
405 
406 		/* split off the top 1Mb */
407 		DRAM_addr [top_bank+1]  = DRAM_addr[top_bank] +
408 		    (DRAM_pages[top_bank] - one_mb_pages)*nbpp;
409 		DRAM_pages[top_bank+1]  = one_mb_pages;
410 		DRAM_pages[top_bank  ] -= one_mb_pages;
411 		dram_blocks++;
412 
413 		/* Map video memory at the end of the choosen DIMM */
414 		videomem_start          = DRAM_addr[video_bank] +
415 		    (DRAM_pages[video_bank] - videomem_pages)*nbpp;
416 		DRAM_pages[video_bank] -= videomem_pages;
417 
418 		/* sanity */
419 		if (DRAM_pages[top_bank] == 0) {
420 			DRAM_addr [top_bank] = DRAM_addr [top_bank+1];
421 			DRAM_pages[top_bank] = DRAM_pages[top_bank+1];
422 			dram_blocks--;
423 		}
424 #endif
425 	} else {
426 		/* use VRAM */
427 		mapped_screen_memory = 0;
428 		videomem_start	 = VRAM_addr[0];
429 		videomem_pages	 = VRAM_pages[0];
430 		display_size	 = videomem_pages * nbpp;
431 	}
432 
433 	if (mapped_screen_memory) {
434 		printf("Used %d kb DRAM ", mapped_screen_memory / 1024);
435 		printf("at 0x%s for video memory\n",
436 		    sprint0(8,'0','x', videomem_start));
437 	}
438 
439 	/* find top of (PO)DRAM pages */
440 	top_physdram = 0;
441 	for (loop = 0; loop < podram_blocks; loop++) {
442 		top = PODRAM_addr[loop] + PODRAM_pages[loop]*nbpp;
443 		if (top > top_physdram) top_physdram = top;
444 	}
445 	for (loop = 0; loop < dram_blocks; loop++) {
446 		top = DRAM_addr[loop] + DRAM_pages[loop]*nbpp;
447 		if (top > top_physdram) top_physdram = top;
448 	}
449 	if (top_physdram == 0)
450 		panic("reality check: No DRAM in this machine?");
451 	if (((top_physdram >> 20) << 20) != top_physdram)
452 		panic("Top is not not aligned on a Mb; "
453 		    "remove very small DIMMS?");
454 
455 	/* pretty print the individual page types */
456 	for (count = 0; count < rom_blocks; count++) {
457 		printf("Found ROM  (%d)", count);
458 		printf(" at 0x%s", sprint0(8,'0','x', ROM_addr[count]));
459 		printf(" for %s k\n",
460 		    sprint0(5,' ','d', (ROM_pages[count]*nbpp)>>10));
461 	}
462 
463 	for (count = 0; count < io_blocks; count++) {
464 		printf("Found I/O  (%d)", count);
465 		printf(" at 0x%s", sprint0(8,'0','x', IO_addr[count]));
466 		printf(" for %s k\n",
467 		    sprint0(5,' ','d', (IO_pages[count]*nbpp)>>10));
468 	}
469 
470 	/* for DRAM/VRAM also count the number of pages */
471 	total_dram_pages = 0;
472 	for (count = 0; count < dram_blocks; count++) {
473 		total_dram_pages += DRAM_pages[count];
474 		printf("Found DRAM (%d)", count);
475 		printf(" at 0x%s", sprint0(8,'0','x', DRAM_addr[count]));
476 		printf(" for %s k\n",
477 		    sprint0(5,' ','d', (DRAM_pages[count]*nbpp)>>10));
478 	}
479 
480 	total_vram_pages = 0;
481 	for (count = 0; count < vram_blocks; count++) {
482 		total_vram_pages += VRAM_pages[count];
483 		printf("Found VRAM (%d)", count);
484 		printf(" at 0x%s", sprint0(8,'0','x', VRAM_addr[count]));
485 		printf(" for %s k\n",
486 		    sprint0(5,' ','d', (VRAM_pages[count]*nbpp)>>10));
487 	}
488 
489 	total_podram_pages = 0;
490 	for (count = 0; count < podram_blocks; count++) {
491 		total_podram_pages += PODRAM_pages[count];
492 		printf("Found Processor only (S)DRAM (%d)", count);
493 		printf(" at 0x%s", sprint0(8,'0','x', PODRAM_addr[count]));
494 		printf(" for %s k\n",
495 		    sprint0(5,' ','d', (PODRAM_pages[count]*nbpp)>>10));
496 	}
497 }
498 
499 
500 void
501 get_memory_map(void)
502 {
503 	struct page_info *page_info;
504 	int	page, inout;
505 	int	phys_addr;
506 
507 	printf("\nGetting actual memorymapping");
508 	for (page = 0, page_info = mem_pages_info;
509 	     page < totalpages;
510 	     page++, page_info++) {
511 		page_info->pagenumber = 0;	/* not used */
512 		page_info->logical    = (firstpage + page) * nbpp;
513 		page_info->physical   = 0;	/* result comes here */
514 		/* to avoid triggering a `bug' in RISC OS 4, page it in */
515 		*((int *)page_info->logical) = 0;
516 	}
517 	/* close list */
518 	page_info->pagenumber = -1;
519 
520 	inout = osmemory_GIVEN_LOG_ADDR | osmemory_RETURN_PAGE_NO |
521 	    osmemory_RETURN_PHYS_ADDR;
522 	osmemory_page_op(inout, mem_pages_info, totalpages);
523 
524 	printf(" ; sorting ");
525 	qsort(mem_pages_info, totalpages, sizeof(struct page_info),
526 	    &page_info_cmp);
527 	printf(".\n");
528 
529 	/*
530 	 * get the first DRAM index and show the physical memory
531 	 * fragments we got
532 	 */
533 	printf("\nFound physical memory blocks :\n");
534 	first_mapped_DRAM_page_index = -1;
535 	first_mapped_PODRAM_page_index = -1;
536 	for (page=0; page < totalpages; page++) {
537 		phys_addr = mem_pages_info[page].physical;
538 		printf("[0x%x", phys_addr);
539 		while (mem_pages_info[page+1].physical - phys_addr == nbpp) {
540 			if (first_mapped_DRAM_page_index < 0 &&
541 			    phys_addr >= DRAM_addr[0])
542 				first_mapped_DRAM_page_index = page;
543 			if (first_mapped_PODRAM_page_index < 0 &&
544 			    phys_addr >= PODRAM_addr[0])
545 				first_mapped_PODRAM_page_index = page;
546 			page++;
547 			phys_addr = mem_pages_info[page].physical;
548 		}
549 		printf("-0x%x]  ", phys_addr + nbpp -1);
550 	}
551 	printf("\n\n");
552 
553 	if (first_mapped_PODRAM_page_index < 0 && PODRAM_addr[0])
554 		panic("Found no (S)DRAM mapped in the bootloader");
555 	if (first_mapped_DRAM_page_index < 0)
556 		panic("No DRAM mapped in the bootloader");
557 }
558 
559 
560 void
561 create_initial_page_tables(void)
562 {
563 	u_long page, section, addr, kpage;
564 
565 	/* mark a section by the following bits and domain 0, AP=01, CB=0 */
566 	/*         A         P         C        B        section
567 	           domain		*/
568 	section = (0<<11) | (1<<10) | (0<<3) | (0<<2) | (1<<4) | (1<<1) |
569 	    (0) | (0 << 5);
570 
571 	/* first of all a full 1:1 mapping */
572 	for (page = 0; page < 4*1024; page++)
573 		initial_page_tables[page] = (page<<20) | section;
574 
575 	/*
576 	 * video memory is mapped 1:1 in the DRAM section or in VRAM
577 	 * section
578 	 *
579 	 * map 1Mb from top of DRAM memory to bottom 1Mb of virtual memmap
580 	 */
581 	top_1Mb_dram = (((top_physdram - 1024*1024) >> 20) << 20);
582 
583 	initial_page_tables[0] = top_1Mb_dram | section;
584 
585 	/*
586 	 * map 16 Mb of kernel space to KERNEL_BASE
587 	 * i.e. marks[KERNEL_START]
588 	 */
589 	for (page = 0; page < 16; page++) {
590 		addr  = (kernel_physical_start >> 20) + page;
591 		kpage = (marks[MARK_START]     >> 20) + page;
592 		initial_page_tables[kpage] = (addr << 20) | section;
593 	}
594 }
595 
596 
597 void
598 add_pagetables_at_top(void)
599 {
600 	int page;
601 	u_long src, dst, fragaddr;
602 
603 	/* Special : destination must be on a 16 Kb boundary */
604 	/* get 4 pages on the top of the physical memory and copy PT's in it */
605 	new_L1_pages_phys = top_physdram - 4 * nbpp;
606 
607 	/*
608 	 * If the L1 page tables are not 16 kb aligned, adjust base
609 	 * until it is
610 	 */
611 	while (new_L1_pages_phys & (16*1024-1))
612 		new_L1_pages_phys -= nbpp;
613 	if (new_L1_pages_phys & (16*1024-1))
614 		panic("Paranoia : L1 pages not on 16Kb boundary");
615 
616 	dst = new_L1_pages_phys;
617 	src = (u_long)initial_page_tables;
618 
619 	for (page = 0; page < 4; page++) {
620 		/* get a page for a fragment */
621 		fragaddr = get_relocated_page(dst, nbpp)->logical;
622 		memcpy((void *)fragaddr, (void *)src, nbpp);
623 
624 		src += nbpp;
625 		dst += nbpp;
626 	}
627 }
628 
629 
630 void
631 add_initvectors(void)
632 {
633 	u_long *pos;
634 	u_long  vectoraddr, count;
635 
636 	/* the top 1Mb of the physical DRAM pages is mapped at address 0 */
637 	vectoraddr = get_relocated_page(top_1Mb_dram, nbpp)->logical;
638 
639 	/* fill the vectors with `movs pc, lr' opcodes */
640 	pos = (u_long *)vectoraddr; memset(pos, 0, nbpp);
641 	for (count = 0; count < 128; count++) *pos++ = 0xE1B0F00E;
642 }
643 
644 /*
645  * Work out the display's vertical sync rate.  One might hope that there
646  * would be a simpler way than by counting vsync interrupts for a second,
647  * but if there is, I can't find it.
648  */
649 static int
650 vsync_rate(void)
651 {
652 	uint8_t count0;
653 	unsigned int time0;
654 
655 	count0 = osbyte_read(osbyte_VAR_VSYNC_TIMER);
656 	time0 = os_read_monotonic_time();
657 	while (os_read_monotonic_time() - time0 < 100)
658 		continue;
659 	return (uint8_t)(count0 - osbyte_read(osbyte_VAR_VSYNC_TIMER));
660 }
661 
662 void
663 create_configuration(int argc, char **argv, int start_args)
664 {
665 	int   i, root_specified, id_low, id_high;
666 	char *pos;
667 
668 	bconfig_new_phys = kernel_free_vm_start - pv_offset;
669 	bconfig_page = get_relocated_page(bconfig_new_phys, nbpp);
670 	bconfig = (struct bootconfig *)(bconfig_page->logical);
671 	kernel_free_vm_start += nbpp;
672 
673 	/* get some miscelanious info for the bootblock */
674 	os_readsysinfo_monitor_info(NULL, (int *)&monitor_type, (int *)&monitor_sync);
675 	os_readsysinfo_chip_presence((int *)&ioeb_flags, (int *)&superio_flags, (int *)&lcd_flags);
676 	os_readsysinfo_superio_features((int *)&superio_flags_basic,
677 	    (int *)&superio_flags_extra);
678 	os_readsysinfo_unique_id(&id_low, &id_high);
679 
680 	/* fill in the bootconfig *bconfig structure : generic version II */
681 	memset(bconfig, 0, sizeof(*bconfig));
682 	bconfig->magic		= BOOTCONFIG_MAGIC;
683 	bconfig->version	= BOOTCONFIG_VERSION;
684 	strcpy(bconfig->kernelname, booted_file);
685 
686 	/*
687 	 * get the kernel base name and update the RiscOS name to a
688 	 * Unix name
689 	 */
690 	i = strlen(booted_file);
691 	while (i >= 0 && booted_file[i] != '.') i--;
692 	if (i) {
693 		strcpy(bconfig->kernelname, "/");
694 		strcat(bconfig->kernelname, booted_file+i+1);
695 	}
696 
697 	pos = bconfig->kernelname+1;
698 	while (*pos) {
699 		if (*pos == '/') *pos = '.';
700 		pos++;
701 	}
702 
703 	/* set the machine_id */
704 	memcpy(&(bconfig->machine_id), &id_low, 4);
705 
706 	/* check if the `root' is specified */
707 	root_specified = 0;
708 	strcpy(bconfig->args, "");
709 	for (i = start_args; i < argc; i++) {
710 		if (strncmp(argv[i], "root=",5) ==0) root_specified = 1;
711 		if (i > start_args)
712 			strcat(bconfig->args, " ");
713 		strcat(bconfig->args, argv[i]);
714 	}
715 	if (!root_specified) {
716 		if (start_args < argc)
717 			strcat(bconfig->args, " ");
718 		strcat(bconfig->args, "root=");
719 		strcat(bconfig->args, DEFAULT_ROOT);
720 	}
721 
722 	/* mark kernel pointers */
723 	bconfig->kernvirtualbase	= marks[MARK_START];
724 	bconfig->kernphysicalbase	= kernel_physical_start;
725 	bconfig->kernsize		= kernel_free_vm_start -
726 					    marks[MARK_START];
727 	bconfig->ksym_start		= marks[MARK_SYM];
728 	bconfig->ksym_end		= marks[MARK_SYM] + marks[MARK_NSYM];
729 
730 	/* setup display info */
731 	bconfig->display_phys		= videomem_start;
732 	bconfig->display_start		= videomem_start;
733 	bconfig->display_size		= display_size;
734 	bconfig->width			= vdu_var(os_MODEVAR_XWIND_LIMIT);
735 	bconfig->height			= vdu_var(os_MODEVAR_YWIND_LIMIT);
736 	bconfig->log2_bpp		= vdu_var(os_MODEVAR_LOG2_BPP);
737 	bconfig->framerate		= vsync_rate();
738 
739 	/* fill in memory info */
740 	bconfig->pagesize		= nbpp;
741 	bconfig->drampages		= total_dram_pages +
742 					    total_podram_pages;	/* XXX */
743 	bconfig->vrampages		= total_vram_pages;
744 	bconfig->dramblocks		= dram_blocks + podram_blocks; /*XXX*/
745 	bconfig->vramblocks		= vram_blocks;
746 
747 	for (i = 0; i < dram_blocks; i++) {
748 		bconfig->dram[i].address = DRAM_addr[i];
749 		bconfig->dram[i].pages   = DRAM_pages[i];
750 		bconfig->dram[i].flags   = PHYSMEM_TYPE_GENERIC;
751 	}
752 	for (; i < dram_blocks + podram_blocks; i++) {
753 		bconfig->dram[i].address = PODRAM_addr[i-dram_blocks];
754 		bconfig->dram[i].pages   = PODRAM_pages[i-dram_blocks];
755 		bconfig->dram[i].flags   = PHYSMEM_TYPE_PROCESSOR_ONLY;
756 	}
757 	for (i = 0; i < vram_blocks; i++) {
758 		bconfig->vram[i].address = VRAM_addr[i];
759 		bconfig->vram[i].pages   = VRAM_pages[i];
760 		bconfig->vram[i].flags   = PHYSMEM_TYPE_GENERIC;
761 	}
762 }
763 
764 
765 int
766 main(int argc, char **argv)
767 {
768 	int howto, start_args, ret;
769 	int class;
770 
771 	printf("\n\n");
772 	printf(">> %s, Revision %s\n", bootprog_name, bootprog_rev);
773 	printf(">> Booting NetBSD/acorn32 on a RiscPC/A7000/NC\n");
774 	printf("\n");
775 
776 	process_args(argc, argv, &howto, booted_file, &start_args);
777 
778 	printf("Booting %s (howto = 0x%x)\n", booted_file, howto);
779 
780 	init_datastructures();
781 	get_memory_configuration();
782 	get_memory_map();
783 
784 	/*
785 	 * point to the first free DRAM page guaranteed to be in
786 	 * strict order up
787 	 */
788 	if (podram_blocks != 0) {
789 		free_relocation_page =
790 		    mem_pages_info + first_mapped_PODRAM_page_index;
791 		kernel_physical_start = PODRAM_addr[0];
792 		kernel_physical_maxsize = PODRAM_pages[0] * nbpp;
793 	} else {
794 		free_relocation_page =
795 		    mem_pages_info + first_mapped_DRAM_page_index;
796 		kernel_physical_start = DRAM_addr[0];
797 		kernel_physical_maxsize = DRAM_pages[0] * nbpp;
798 	}
799 
800 	printf("\nLoading %s ", booted_file);
801 
802 	/* first count the kernel to get the markers */
803 	ret = loadfile(booted_file, marks, COUNT_KERNEL);
804 	if (ret == -1) panic("Kernel load failed"); /* lie to the user ... */
805 	close(ret);
806 
807 	if (marks[MARK_END] - marks[MARK_START] > kernel_physical_maxsize)
808 	{
809 		panic("\nKernel is bigger than the first DRAM module, unable to boot\n");
810 	}
811 
812 	/*
813 	 * calculate how much the difference is between physical and
814 	 * virtual space for the kernel
815 	 */
816 	pv_offset = ((u_long)marks[MARK_START] - kernel_physical_start);
817 	/* round on a page	*/
818 	kernel_free_vm_start = (marks[MARK_END] + nbpp-1) & ~(nbpp-1);
819 
820 	/* we seem to be forced to clear the marks[] ? */
821 	memset(marks, 0, sizeof(marks));
822 
823 	/* really load it ! */
824 	ret = loadfile(booted_file, marks, LOAD_KERNEL);
825 	if (ret == -1) panic("Kernel load failed");
826 	close(ret);
827 
828 	/* finish off the relocation information */
829 	create_initial_page_tables();
830 	add_initvectors();
831 	add_pagetables_at_top();
832 	create_configuration(argc, argv, start_args);
833 
834 	/*
835 	 * done relocating and creating information, now update and
836 	 * check the relocation mechanism
837 	 */
838 	compact_relocations();
839 
840 	/*
841 	 * grab a page to copy the bootstrap code into
842 	 */
843 	relocate_code_page = free_relocation_page++;
844 
845 	printf("\nStarting at 0x%lx, p@0x%lx\n", marks[MARK_ENTRY], kernel_physical_start);
846 	printf("%ld entries, first one is 0x%lx->0x%lx for %lx bytes\n",
847 			reloc_instruction_table[0],
848 			reloc_instruction_table[1],
849 			reloc_instruction_table[2],
850 			reloc_instruction_table[3]);
851 
852 	printf("Will boot in a few secs due to relocation....\n"
853 	    "bye bye from RISC OS!");
854 
855 	/* dismount all filesystems */
856 	xosfscontrol_shutdown();
857 
858 	os_readsysinfo_platform_class(&class, NULL, NULL);
859 	if (class != osreadsysinfo_Platform_Pace) {
860 		/* reset devices, well they try to anyway */
861 		service_pre_reset();
862 	}
863 
864 	start_kernel(
865 		/* r0 relocation code page (V)	*/ relocate_code_page->logical,
866 		/* r1 relocation pv offset	*/
867 		relocate_code_page->physical-relocate_code_page->logical,
868 		/* r2 configuration structure	*/ bconfig_new_phys,
869 		/* r3 relocation table (l)	*/
870 		(int)reloc_instruction_table,	/* one piece! */
871 		/* r4 L1 page descriptor (P)	*/ new_L1_pages_phys,
872 		/* r5 kernel entry point	*/ marks[MARK_ENTRY]
873 	);
874 	return 0;
875 }
876 
877 
878 ssize_t
879 boot32_read(int f, void *addr, size_t size)
880 {
881 	void *fragaddr;
882 	size_t fragsize;
883 	ssize_t bytes_read, total;
884 
885 	/* printf("read at %p for %ld bytes\n", addr, size); */
886 	total = 0;
887 	while (size > 0) {
888 		fragsize = nbpp;		/* select one page	*/
889 		if (size < nbpp) fragsize = size;/* clip to size left	*/
890 
891 		/* get a page for a fragment */
892 		fragaddr = (void *)get_relocated_page((u_long) addr -
893 		    pv_offset, fragsize)->logical;
894 
895 		bytes_read = read(f, fragaddr, fragsize);
896 		if (bytes_read < 0) return bytes_read;	/* error!	*/
897 		total += bytes_read;		/* account read bytes	*/
898 
899 		if (bytes_read < fragsize)
900 			return total;		/* does this happen?	*/
901 
902 		size -= fragsize;		/* advance		*/
903 		addr += fragsize;
904 	}
905 	return total;
906 }
907 
908 
909 void *
910 boot32_memcpy(void *dst, const void *src, size_t size)
911 {
912 	void *fragaddr;
913 	size_t fragsize;
914 
915 	/* printf("memcpy to %p from %p for %ld bytes\n", dst, src, size); */
916 	while (size > 0) {
917 		fragsize = nbpp;		/* select one page	*/
918 		if (size < nbpp) fragsize = size;/* clip to size left	*/
919 
920 		/* get a page for a fragment */
921 		fragaddr = (void *)get_relocated_page((u_long) dst -
922 		    pv_offset, fragsize)->logical;
923 		memcpy(fragaddr, src, size);
924 
925 		src += fragsize;		/* account copy		*/
926 		dst += fragsize;
927 		size-= fragsize;
928 	}
929 	return dst;
930 }
931 
932 
933 void *
934 boot32_memset(void *dst, int c, size_t size)
935 {
936 	void *fragaddr;
937 	size_t fragsize;
938 
939 	/* printf("memset %p for %ld bytes with %d\n", dst, size, c); */
940 	while (size > 0) {
941 		fragsize = nbpp;		/* select one page	*/
942 		if (size < nbpp) fragsize = size;/* clip to size left	*/
943 
944 		/* get a page for a fragment */
945 		fragaddr = (void *)get_relocated_page((u_long)dst - pv_offset,
946 		    fragsize)->logical;
947 		memset(fragaddr, c, fragsize);
948 
949 		dst += fragsize;		/* account memsetting	*/
950 		size-= fragsize;
951 
952 	}
953 	return dst;
954 }
955 
956 
957 /* We can rely on the fact that two entries never have identical ->physical */
958 int
959 page_info_cmp(const void *a, const void *b)
960 {
961 
962 	return (((struct page_info *)a)->physical <
963 	    ((struct page_info *)b)->physical) ? -1 : 1;
964 }
965 
966 struct page_info *
967 get_relocated_page(u_long destination, int size)
968 {
969 	struct page_info *page;
970 
971 	/* get a page for a fragment */
972 	page = free_relocation_page;
973 	if (free_relocation_page->pagenumber < 0) panic("\n\nOut of pages");
974 	reloc_entries++;
975 	if (reloc_entries >= MAX_RELOCPAGES)
976 		panic("\n\nToo many relocations! What are you loading ??");
977 
978 	/* record the relocation */
979 	if (free_relocation_page->physical & 0x3)
980 		panic("\n\nphysical address is not aligned!");
981 
982 	if (destination & 0x3)
983 		panic("\n\ndestination address is not aligned!");
984 
985 	*reloc_pos++ = free_relocation_page->physical;
986 	*reloc_pos++ = destination;
987 	*reloc_pos++ = size;
988 	free_relocation_page++;			/* advance 		*/
989 
990 	return page;
991 }
992 
993 
994 int
995 vdu_var(int var)
996 {
997 	int varlist[2], vallist[2];
998 
999 	varlist[0] = var;
1000 	varlist[1] = -1;
1001 	os_read_vdu_variables(varlist, vallist);
1002 	return vallist[0];
1003 }
1004 
1005 
1006 void
1007 twirl(void)
1008 {
1009 
1010 	printf("%c%c", "|/-\\"[(int) twirl_cnt], 8);
1011 	twirl_cnt++;
1012 	twirl_cnt &= 3;
1013 }
1014 
1015 
1016 void
1017 process_args(int argc, char **argv, int *howto, char *file, int *start_args)
1018 {
1019 	int i, j;
1020 	static char filename[80];
1021 
1022 	*howto = 0;
1023 	*file = NULL; *start_args = 1;
1024 	for (i = 1; i < argc; i++) {
1025 		if (argv[i][0] == '-')
1026 			for (j = 1; argv[i][j]; j++)
1027 				BOOT_FLAG(argv[i][j], *howto);
1028 		else {
1029 			if (*file)
1030 				*start_args = i;
1031 			else {
1032 				strcpy(file, argv[i]);
1033 				*start_args = i+1;
1034 			}
1035 			break;
1036 		}
1037 	}
1038 	if (*file == NULL) {
1039 		if (*howto & RB_ASKNAME) {
1040 			printf("boot: ");
1041 			gets(filename);
1042 			strcpy(file, filename);
1043 		} else
1044 			strcpy(file, "netbsd");
1045 	}
1046 }
1047 
1048 
1049 char *
1050 sprint0(int width, char prefix, char base, int value)
1051 {
1052 	static char format[50], scrap[50];
1053 	char *pos;
1054 	int length;
1055 
1056 	for (pos = format, length = 0; length<width; length++) *pos++ = prefix;
1057 	*pos++ = '%';
1058 	*pos++ = base;
1059 	*pos++ = (char) 0;
1060 
1061 	snprintf(scrap, sizeof(scrap), format, value);
1062 	length = strlen(scrap);
1063 
1064 	return scrap+length-width;
1065 }
1066 
1067