xref: /netbsd-src/sys/arch/acorn32/stand/boot32/boot32.c (revision b62fc9e20372b08e1785ff6d769312d209fa2005)
1 /*	$NetBSD: boot32.c,v 1.37 2009/08/02 11:20:37 gavan Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002 Reinoud Zandijk
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the author may not be used to endorse or promote products
16  *    derived from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  * Thanks a bunch for Ben's framework for the bootloader and its suporting
30  * libs. This file tries to actually boot NetBSD/acorn32 !
31  *
32  * XXX eventually to be partly merged back with boot26 ? XXX
33  */
34 
35 #include <lib/libsa/stand.h>
36 #include <lib/libsa/loadfile.h>
37 #include <lib/libkern/libkern.h>
38 #include <riscoscalls.h>
39 #include <srt0.h>
40 #include <sys/boot_flag.h>
41 #include <machine/vmparam.h>
42 #include <arm/arm32/pte.h>
43 #include <machine/bootconfig.h>
44 
45 extern char end[];
46 
47 /* debugging flags */
48 int debug = 1;
49 
50 
51 /* constants */
52 #define PODRAM_START   (512*1024*1024)		/* XXX Kinetic cards XXX */
53 
54 #define MAX_RELOCPAGES	4096
55 
56 #define DEFAULT_ROOT	"/dev/wd0a"
57 
58 
59 #define IO_BLOCKS	 16	/* move these to the bootloader structure? */
60 #define ROM_BLOCKS	 16
61 #define PODRAM_BLOCKS	 16
62 
63 
64 /* booter variables */
65 char	 scrap[80], twirl_cnt;		/* misc				*/
66 char	 booted_file[80];
67 
68 struct bootconfig *bconfig;		/* bootconfig passing		*/
69 u_long	 bconfig_new_phys;		/* physical address its bound	*/
70 
71 /* computer knowledge		*/
72 u_int	 monitor_type, monitor_sync, ioeb_flags, lcd_flags;
73 u_int	 superio_flags, superio_flags_basic, superio_flags_extra;
74 
75 /* sizes			*/
76 int	 nbpp, memory_table_size, memory_image_size;
77 /* relocate info		*/
78 u_long	 reloc_tablesize, *reloc_instruction_table;
79 u_long	*reloc_pos;			/* current empty entry		*/
80 int	 reloc_entries;			/* number of relocations	*/
81 int	 first_mapped_DRAM_page_index;	/* offset in RISC OS blob	*/
82 int	 first_mapped_PODRAM_page_index;/* offset in RISC OS blob	*/
83 
84 struct page_info *mem_pages_info;	/* {nr, virt, phys}*		*/
85 struct page_info *free_relocation_page;	/* points to the page_info chain*/
86 struct page_info *relocate_code_page;	/* points to the copied code	*/
87 struct page_info *bconfig_page;		/* page for passing on settings	*/
88 
89 unsigned char *memory_page_types;	/* packed array of 4 bit typeId	*/
90 
91 u_long	*initial_page_tables;		/* pagetables to be booted from	*/
92 
93 
94 /* XXX rename *_BLOCKS to MEM_BLOCKS */
95 /* DRAM/VRAM/ROM/IO info */
96 /* where the display is		*/
97 u_long	 videomem_start, videomem_pages, display_size;
98 
99 u_long	 pv_offset, top_physdram;	/* kernel_base - phys. diff	*/
100 u_long	 top_1Mb_dram;			/* the lower mapped top 1Mb	*/
101 u_long	 new_L1_pages_phys;		/* physical address of L1 pages	*/
102 
103 /* for bootconfig passing	*/
104 u_long	 total_podram_pages, total_dram_pages, total_vram_pages;
105 int	 dram_blocks, podram_blocks;	/* number of mem. objects/type  */
106 int	 vram_blocks, rom_blocks, io_blocks;
107 
108 u_long	 DRAM_addr[DRAM_BLOCKS],     DRAM_pages[DRAM_BLOCKS];
109 /* processor only RAM	*/
110 u_long	 PODRAM_addr[PODRAM_BLOCKS], PODRAM_pages[PODRAM_BLOCKS];
111 u_long	 VRAM_addr[VRAM_BLOCKS],     VRAM_pages[VRAM_BLOCKS];
112 u_long	 ROM_addr[ROM_BLOCKS],       ROM_pages[ROM_BLOCKS];
113 u_long	 IO_addr[IO_BLOCKS],         IO_pages[IO_BLOCKS];
114 
115 
116 /* RISC OS memory pages we claimed */
117 u_long	 firstpage, lastpage, totalpages; /* RISC OS pagecounters	*/
118 /* RISC OS memory		*/
119 char	*memory_image, *bottom_memory, *top_memory;
120 
121 /* kernel info */
122 u_long	 marks[MARK_MAX];		/* loader mark pointers 	*/
123 u_long	 kernel_physical_start;		/* where does it get relocated	*/
124 u_long	 kernel_physical_maxsize;	/* Max allowed size of kernel	*/
125 u_long	 kernel_free_vm_start;		/* where does the free VM start	*/
126 /* some free space to mess with	*/
127 u_long	 scratch_virtualbase, scratch_physicalbase;
128 
129 
130 /* bootprogram identifiers */
131 extern const char bootprog_rev[];
132 extern const char bootprog_name[];
133 extern const char bootprog_date[];
134 extern const char bootprog_maker[];
135 
136 
137 /* predefines / prototypes */
138 void	 init_datastructures(void);
139 void	 get_memory_configuration(void);
140 void	 get_memory_map(void);
141 void	 create_initial_page_tables(void);
142 void	 add_pagetables_at_top(void);
143 int	 page_info_cmp(const void *a, const void *);
144 void	 add_initvectors(void);
145 void	 create_configuration(int argc, char **argv, int start_args);
146 void	 prepare_and_check_relocation_system(void);
147 void	 compact_relocations(void);
148 void	 twirl(void);
149 int	 vdu_var(int);
150 void	 process_args(int argc, char **argv, int *howto, char *file,
151     int *start_args);
152 
153 char		 *sprint0(int width, char prefix, char base, int value);
154 struct page_info *get_relocated_page(u_long destination, int size);
155 
156 extern void start_kernel(
157 		int relocate_code_page,
158 		int relocation_pv_offset,
159 		int configuration_structure_in_flat_physical_space,
160 		int virtual_address_relocation_table,
161 		int physical_address_of_new_L1_pages,
162 		int kernel_entry_point
163 		);	/* asm */
164 
165 
166 /* the loader itself */
167 void
168 init_datastructures(void)
169 {
170 
171 	/* Get number of pages and the memorytablesize */
172 	osmemory_read_arrangement_table_size(&memory_table_size, &nbpp);
173 
174 	/* Allocate 99% - (small fixed amount) of the heap for memory_image */
175 	memory_image_size = (int)HIMEM - (int)end - 512 * 1024;
176 	memory_image_size /= 100;
177 	memory_image_size *= 99;
178 	if (memory_image_size <= 256*1024)
179 		panic("Insufficient memory");
180 
181 	memory_image = alloc(memory_image_size);
182 	if (!memory_image)
183 		panic("Can't alloc get my memory image ?");
184 
185 	bottom_memory = memory_image;
186 	top_memory    = memory_image + memory_image_size;
187 
188 	firstpage  = ((int)bottom_memory / nbpp) + 1;	/* safety */
189 	lastpage   = ((int)top_memory    / nbpp) - 1;
190 	totalpages = lastpage - firstpage;
191 
192 	printf("Allocated %ld memory pages, each of %d kilobytes.\n\n",
193 			totalpages, nbpp>>10 );
194 
195 	/*
196 	 * Setup the relocation table. Its a simple array of 3 * 32 bit
197 	 * entries. The first word in the array is the number of relocations
198 	 * to be done
199 	 */
200 	reloc_tablesize = (MAX_RELOCPAGES+1)*3*sizeof(u_long);
201 	reloc_instruction_table = alloc(reloc_tablesize);
202 	if (!reloc_instruction_table)
203 		panic("Can't alloc my relocate instructions pages");
204 
205 	reloc_entries = 0;
206 	reloc_pos     = reloc_instruction_table;
207 	*reloc_pos++  = 0;
208 
209 	/*
210 	 * Set up the memory translation info structure. We need to allocate
211 	 * one more for the end of list marker. See get_memory_map.
212 	 */
213 	mem_pages_info = alloc((totalpages + 1)*sizeof(struct page_info));
214 	if (!mem_pages_info)
215 		panic("Can't alloc my phys->virt page info");
216 
217 	/*
218 	 * Allocate memory for the memory arrangement table. We use this
219 	 * structure to retrieve memory page properties to clasify them.
220 	 */
221 	memory_page_types = alloc(memory_table_size);
222 	if (!memory_page_types)
223 		panic("Can't alloc my memory page type block");
224 
225 	/*
226 	 * Initial page tables is 16 kb per definition since only sections are
227 	 * used.
228 	 */
229 	initial_page_tables = alloc(16*1024);
230 	if (!initial_page_tables)
231 		panic("Can't alloc my initial page tables");
232 }
233 
234 void
235 compact_relocations(void)
236 {
237 	u_long *reloc_entry, current_length, length;
238 	u_long  src, destination, current_src, current_destination;
239 	u_long *current_entry;
240 
241 	current_entry = reloc_entry = reloc_instruction_table + 1;
242 
243 	/* prime the loop */
244 	current_src		= reloc_entry[0];
245 	current_destination	= reloc_entry[1];
246 	current_length		= reloc_entry[2];
247 
248 	reloc_entry += 3;
249 	while (reloc_entry < reloc_pos) {
250 		src         = reloc_entry[0];
251 		destination = reloc_entry[1];
252 		length      = reloc_entry[2];
253 
254 		if (src == (current_src + current_length) &&
255 		    destination == (current_destination + current_length)) {
256 			/* can merge */
257 			current_length += length;
258 		} else {
259 			/* nothing else to do, so save the length */
260 			current_entry[2] = current_length;
261 			/* fill in next entry */
262 			current_entry += 3;
263 			current_src = current_entry[0] = src;
264 			current_destination = current_entry[1] = destination;
265 			current_length = length;
266 		}
267 		reloc_entry += 3;
268 	}
269 	/* save last length */
270 	current_entry[2] = current_length;
271 	current_entry += 3;
272 
273 	/* workout new count of entries */
274 	length = current_entry - (reloc_instruction_table + 1);
275 	printf("Compacted relocations from %d entries to %ld\n",
276 		       reloc_entries, length/3);
277 
278 	/* update table to reflect new size */
279 	reloc_entries = length/3;
280 	reloc_instruction_table[0] = length/3;
281 	reloc_pos = current_entry;
282 }
283 
284 void
285 get_memory_configuration(void)
286 {
287 	int loop, current_page_type, page_count, phys_page;
288 	int page, count, bank, top_bank, video_bank;
289 	int mapped_screen_memory;
290 	int one_mb_pages;
291 	u_long top;
292 
293 	printf("Getting memory configuration ");
294 
295 	osmemory_read_arrangement_table(memory_page_types);
296 
297 	/* init counters */
298 	bank = vram_blocks = dram_blocks = rom_blocks = io_blocks =
299 	    podram_blocks = 0;
300 
301 	current_page_type = -1;
302 	phys_page = 0;			/* physical address in pages	*/
303 	page_count = 0;			/* page counter in this block	*/
304 	loop = 0;			/* loop variable over entries	*/
305 
306 	/* iterating over a packed array of 2 page types/byte i.e. 8 kb/byte */
307 	while (loop < 2*memory_table_size) {
308 		page = memory_page_types[loop / 2];	/* read	twice */
309 		if (loop & 1) page >>= 4;		/* take other nibble */
310 
311 		/*
312 		 * bits 0-2 give type, bit3 means the bit page is
313 		 * allocatable
314 		 */
315 		page &= 0x7;			/* only take bottom 3 bits */
316 		if (page != current_page_type) {
317 			/* passed a boundary ... note this block	   */
318 			/*
319 			 * splitting in different vars is for
320 			 * compatability reasons
321 			 */
322 			switch (current_page_type) {
323 			case -1:
324 			case  0:
325 				break;
326 			case osmemory_TYPE_DRAM:
327 				if ((phys_page * nbpp)< PODRAM_START) {
328 					DRAM_addr[dram_blocks]  =
329 					    phys_page * nbpp;
330 					DRAM_pages[dram_blocks] =
331 					    page_count;
332 					dram_blocks++;
333 				} else {
334 					PODRAM_addr[podram_blocks]  =
335 					    phys_page * nbpp;
336 					PODRAM_pages[podram_blocks] =
337 					    page_count;
338 					podram_blocks++;
339 				}
340 				break;
341 			case osmemory_TYPE_VRAM:
342 				VRAM_addr[vram_blocks]  = phys_page * nbpp;
343 				VRAM_pages[vram_blocks] = page_count;
344 				vram_blocks++;
345 				break;
346 			case osmemory_TYPE_ROM:
347 				ROM_addr[rom_blocks]  = phys_page * nbpp;
348 				ROM_pages[rom_blocks] = page_count;
349 				rom_blocks++;
350 				break;
351 			case osmemory_TYPE_IO:
352 				IO_addr[io_blocks]  = phys_page * nbpp;
353 				IO_pages[io_blocks] = page_count;
354 				io_blocks++;
355 				break;
356 			default:
357 				printf("WARNING : found unknown "
358 				    "memory object %d ", current_page_type);
359 				printf(" at 0x%s",
360 				    sprint0(8,'0','x', phys_page * nbpp));
361 				printf(" for %s k\n",
362 				    sprint0(5,' ','d', (page_count*nbpp)>>10));
363 				break;
364 			}
365 			current_page_type = page;
366 			phys_page = loop;
367 			page_count = 0;
368 		}
369 		/*
370 		 * smallest unit we recognise is one page ... silly
371 		 * could be upto 64 pages i.e. 256 kb
372 		 */
373 		page_count += 1;
374 		loop       += 1;
375 		if ((loop & 31) == 0) twirl();
376 	}
377 
378 	printf(" \n\n");
379 
380 	if (VRAM_pages[0] == 0) {
381 		/* map DRAM as video memory */
382 		display_size	 =
383 		    vdu_var(os_VDUVAR_TOTAL_SCREEN_SIZE) & ~(nbpp-1);
384 #if 0
385 		mapped_screen_memory = 1024 * 1024; /* max allowed on RiscPC */
386 		videomem_pages   = (mapped_screen_memory / nbpp);
387 		videomem_start   = DRAM_addr[0];
388 		DRAM_addr[0]	+= videomem_pages * nbpp;
389 		DRAM_pages[0]	-= videomem_pages;
390 #else
391 		mapped_screen_memory = display_size;
392 		videomem_pages   = mapped_screen_memory / nbpp;
393 		one_mb_pages	 = (1024*1024)/nbpp;
394 
395 		/*
396 		 * OK... we need one Mb at the top for compliance with current
397 		 * kernel structure. This ought to be abolished one day IMHO.
398 		 * Also we have to take care that the kernel needs to be in
399 		 * DRAM0a and even has to start there.
400 		 * XXX one Mb simms are the smallest supported XXX
401 		 */
402 		top_bank = dram_blocks-1;
403 		video_bank = top_bank;
404 		if (DRAM_pages[top_bank] == one_mb_pages) video_bank--;
405 
406 		if (DRAM_pages[video_bank] < videomem_pages)
407 			panic("Weird memory configuration found; please "
408 			    "contact acorn32 portmaster.");
409 
410 		/* split off the top 1Mb */
411 		DRAM_addr [top_bank+1]  = DRAM_addr[top_bank] +
412 		    (DRAM_pages[top_bank] - one_mb_pages)*nbpp;
413 		DRAM_pages[top_bank+1]  = one_mb_pages;
414 		DRAM_pages[top_bank  ] -= one_mb_pages;
415 		dram_blocks++;
416 
417 		/* Map video memory at the end of the choosen DIMM */
418 		videomem_start          = DRAM_addr[video_bank] +
419 		    (DRAM_pages[video_bank] - videomem_pages)*nbpp;
420 		DRAM_pages[video_bank] -= videomem_pages;
421 
422 		/* sanity */
423 		if (DRAM_pages[top_bank] == 0) {
424 			DRAM_addr [top_bank] = DRAM_addr [top_bank+1];
425 			DRAM_pages[top_bank] = DRAM_pages[top_bank+1];
426 			dram_blocks--;
427 		}
428 #endif
429 	} else {
430 		/* use VRAM */
431 		mapped_screen_memory = 0;
432 		videomem_start	 = VRAM_addr[0];
433 		videomem_pages	 = VRAM_pages[0];
434 		display_size	 = videomem_pages * nbpp;
435 	}
436 
437 	if (mapped_screen_memory) {
438 		printf("Used %d kb DRAM ", mapped_screen_memory / 1024);
439 		printf("at 0x%s for video memory\n",
440 		    sprint0(8,'0','x', videomem_start));
441 	}
442 
443 	/* find top of (PO)DRAM pages */
444 	top_physdram = 0;
445 	for (loop = 0; loop < podram_blocks; loop++) {
446 		top = PODRAM_addr[loop] + PODRAM_pages[loop]*nbpp;
447 		if (top > top_physdram) top_physdram = top;
448 	}
449 	for (loop = 0; loop < dram_blocks; loop++) {
450 		top = DRAM_addr[loop] + DRAM_pages[loop]*nbpp;
451 		if (top > top_physdram) top_physdram = top;
452 	}
453 	if (top_physdram == 0)
454 		panic("reality check: No DRAM in this machine?");
455 	if (((top_physdram >> 20) << 20) != top_physdram)
456 		panic("Top is not not aligned on a Mb; "
457 		    "remove very small DIMMS?");
458 
459 	/* pretty print the individual page types */
460 	for (count = 0; count < rom_blocks; count++) {
461 		printf("Found ROM  (%d)", count);
462 		printf(" at 0x%s", sprint0(8,'0','x', ROM_addr[count]));
463 		printf(" for %s k\n",
464 		    sprint0(5,' ','d', (ROM_pages[count]*nbpp)>>10));
465 	}
466 
467 	for (count = 0; count < io_blocks; count++) {
468 		printf("Found I/O  (%d)", count);
469 		printf(" at 0x%s", sprint0(8,'0','x', IO_addr[count]));
470 		printf(" for %s k\n",
471 		    sprint0(5,' ','d', (IO_pages[count]*nbpp)>>10));
472 	}
473 
474 	/* for DRAM/VRAM also count the number of pages */
475 	total_dram_pages = 0;
476 	for (count = 0; count < dram_blocks; count++) {
477 		total_dram_pages += DRAM_pages[count];
478 		printf("Found DRAM (%d)", count);
479 		printf(" at 0x%s", sprint0(8,'0','x', DRAM_addr[count]));
480 		printf(" for %s k\n",
481 		    sprint0(5,' ','d', (DRAM_pages[count]*nbpp)>>10));
482 	}
483 
484 	total_vram_pages = 0;
485 	for (count = 0; count < vram_blocks; count++) {
486 		total_vram_pages += VRAM_pages[count];
487 		printf("Found VRAM (%d)", count);
488 		printf(" at 0x%s", sprint0(8,'0','x', VRAM_addr[count]));
489 		printf(" for %s k\n",
490 		    sprint0(5,' ','d', (VRAM_pages[count]*nbpp)>>10));
491 	}
492 
493 	total_podram_pages = 0;
494 	for (count = 0; count < podram_blocks; count++) {
495 		total_podram_pages += PODRAM_pages[count];
496 		printf("Found Processor only (S)DRAM (%d)", count);
497 		printf(" at 0x%s", sprint0(8,'0','x', PODRAM_addr[count]));
498 		printf(" for %s k\n",
499 		    sprint0(5,' ','d', (PODRAM_pages[count]*nbpp)>>10));
500 	}
501 }
502 
503 
504 void
505 get_memory_map(void)
506 {
507 	struct page_info *page_info;
508 	int	page, inout;
509 	int	phys_addr;
510 
511 	printf("\nGetting actual memorymapping");
512 	for (page = 0, page_info = mem_pages_info;
513 	     page < totalpages;
514 	     page++, page_info++) {
515 		page_info->pagenumber = 0;	/* not used */
516 		page_info->logical    = (firstpage + page) * nbpp;
517 		page_info->physical   = 0;	/* result comes here */
518 		/* to avoid triggering a `bug' in RISC OS 4, page it in */
519 		*((int *)page_info->logical) = 0;
520 	}
521 	/* close list */
522 	page_info->pagenumber = -1;
523 
524 	inout = osmemory_GIVEN_LOG_ADDR | osmemory_RETURN_PAGE_NO |
525 	    osmemory_RETURN_PHYS_ADDR;
526 	osmemory_page_op(inout, mem_pages_info, totalpages);
527 
528 	printf(" ; sorting ");
529 	qsort(mem_pages_info, totalpages, sizeof(struct page_info),
530 	    &page_info_cmp);
531 	printf(".\n");
532 
533 	/*
534 	 * get the first DRAM index and show the physical memory
535 	 * fragments we got
536 	 */
537 	printf("\nFound physical memory blocks :\n");
538 	first_mapped_DRAM_page_index = -1;
539 	first_mapped_PODRAM_page_index = -1;
540 	for (page=0; page < totalpages; page++) {
541 		phys_addr = mem_pages_info[page].physical;
542 		printf("[0x%x", phys_addr);
543 		while (mem_pages_info[page+1].physical - phys_addr == nbpp) {
544 			if (first_mapped_DRAM_page_index < 0 &&
545 			    phys_addr >= DRAM_addr[0])
546 				first_mapped_DRAM_page_index = page;
547 			if (first_mapped_PODRAM_page_index < 0 &&
548 			    phys_addr >= PODRAM_addr[0])
549 				first_mapped_PODRAM_page_index = page;
550 			page++;
551 			phys_addr = mem_pages_info[page].physical;
552 		}
553 		printf("-0x%x]  ", phys_addr + nbpp -1);
554 	}
555 	printf("\n\n");
556 
557 	if (first_mapped_PODRAM_page_index < 0 && PODRAM_addr[0])
558 		panic("Found no (S)DRAM mapped in the bootloader");
559 	if (first_mapped_DRAM_page_index < 0)
560 		panic("No DRAM mapped in the bootloader");
561 }
562 
563 
564 void
565 create_initial_page_tables(void)
566 {
567 	u_long page, section, addr, kpage;
568 
569 	/* mark a section by the following bits and domain 0, AP=01, CB=0 */
570 	/*         A         P         C        B        section
571 	           domain		*/
572 	section = (0<<11) | (1<<10) | (0<<3) | (0<<2) | (1<<4) | (1<<1) |
573 	    (0) | (0 << 5);
574 
575 	/* first of all a full 1:1 mapping */
576 	for (page = 0; page < 4*1024; page++)
577 		initial_page_tables[page] = (page<<20) | section;
578 
579 	/*
580 	 * video memory is mapped 1:1 in the DRAM section or in VRAM
581 	 * section
582 	 *
583 	 * map 1Mb from top of DRAM memory to bottom 1Mb of virtual memmap
584 	 */
585 	top_1Mb_dram = (((top_physdram - 1024*1024) >> 20) << 20);
586 
587 	initial_page_tables[0] = top_1Mb_dram | section;
588 
589 	/*
590 	 * map 16 Mb of kernel space to KERNEL_BASE
591 	 * i.e. marks[KERNEL_START]
592 	 */
593 	for (page = 0; page < 16; page++) {
594 		addr  = (kernel_physical_start >> 20) + page;
595 		kpage = (marks[MARK_START]     >> 20) + page;
596 		initial_page_tables[kpage] = (addr << 20) | section;
597 	}
598 }
599 
600 
601 void
602 add_pagetables_at_top(void)
603 {
604 	int page;
605 	u_long src, dst, fragaddr;
606 
607 	/* Special : destination must be on a 16 Kb boundary */
608 	/* get 4 pages on the top of the physical memory and copy PT's in it */
609 	new_L1_pages_phys = top_physdram - 4 * nbpp;
610 
611 	/*
612 	 * If the L1 page tables are not 16 kb aligned, adjust base
613 	 * until it is
614 	 */
615 	while (new_L1_pages_phys & (16*1024-1))
616 		new_L1_pages_phys -= nbpp;
617 	if (new_L1_pages_phys & (16*1024-1))
618 		panic("Paranoia : L1 pages not on 16Kb boundary");
619 
620 	dst = new_L1_pages_phys;
621 	src = (u_long)initial_page_tables;
622 
623 	for (page = 0; page < 4; page++) {
624 		/* get a page for a fragment */
625 		fragaddr = get_relocated_page(dst, nbpp)->logical;
626 		memcpy((void *)fragaddr, (void *)src, nbpp);
627 
628 		src += nbpp;
629 		dst += nbpp;
630 	}
631 }
632 
633 
634 void
635 add_initvectors(void)
636 {
637 	u_long *pos;
638 	u_long  vectoraddr, count;
639 
640 	/* the top 1Mb of the physical DRAM pages is mapped at address 0 */
641 	vectoraddr = get_relocated_page(top_1Mb_dram, nbpp)->logical;
642 
643 	/* fill the vectors with `movs pc, lr' opcodes */
644 	pos = (u_long *)vectoraddr; memset(pos, 0, nbpp);
645 	for (count = 0; count < 128; count++) *pos++ = 0xE1B0F00E;
646 }
647 
648 /*
649  * Work out the display's vertical sync rate.  One might hope that there
650  * would be a simpler way than by counting vsync interrupts for a second,
651  * but if there is, I can't find it.
652  */
653 static int
654 vsync_rate(void)
655 {
656 	uint8_t count0;
657 	unsigned int time0;
658 
659 	count0 = osbyte_read(osbyte_VAR_VSYNC_TIMER);
660 	time0 = os_read_monotonic_time();
661 	while (os_read_monotonic_time() - time0 < 100)
662 		continue;
663 	return (u_int8_t)(count0 - osbyte_read(osbyte_VAR_VSYNC_TIMER));
664 }
665 
666 void
667 create_configuration(int argc, char **argv, int start_args)
668 {
669 	int   i, root_specified, id_low, id_high;
670 	char *pos;
671 
672 	bconfig_new_phys = kernel_free_vm_start - pv_offset;
673 	bconfig_page = get_relocated_page(bconfig_new_phys, nbpp);
674 	bconfig = (struct bootconfig *)(bconfig_page->logical);
675 	kernel_free_vm_start += nbpp;
676 
677 	/* get some miscelanious info for the bootblock */
678 	os_readsysinfo_monitor_info(NULL, (int *)&monitor_type, (int *)&monitor_sync);
679 	os_readsysinfo_chip_presence((int *)&ioeb_flags, (int *)&superio_flags, (int *)&lcd_flags);
680 	os_readsysinfo_superio_features((int *)&superio_flags_basic,
681 	    (int *)&superio_flags_extra);
682 	os_readsysinfo_unique_id(&id_low, &id_high);
683 
684 	/* fill in the bootconfig *bconfig structure : generic version II */
685 	memset(bconfig, 0, sizeof(*bconfig));
686 	bconfig->magic		= BOOTCONFIG_MAGIC;
687 	bconfig->version	= BOOTCONFIG_VERSION;
688 	strcpy(bconfig->kernelname, booted_file);
689 
690 	/*
691 	 * get the kernel base name and update the RiscOS name to a
692 	 * Unix name
693 	 */
694 	i = strlen(booted_file);
695 	while (i >= 0 && booted_file[i] != '.') i--;
696 	if (i) {
697 		strcpy(bconfig->kernelname, "/");
698 		strcat(bconfig->kernelname, booted_file+i+1);
699 	}
700 
701 	pos = bconfig->kernelname+1;
702 	while (*pos) {
703 		if (*pos == '/') *pos = '.';
704 		pos++;
705 	}
706 
707 	/* set the machine_id */
708 	memcpy(&(bconfig->machine_id), &id_low, 4);
709 
710 	/* check if the `root' is specified */
711 	root_specified = 0;
712 	strcpy(bconfig->args, "");
713 	for (i = start_args; i < argc; i++) {
714 		if (strncmp(argv[i], "root=",5) ==0) root_specified = 1;
715 		if (i > start_args)
716 			strcat(bconfig->args, " ");
717 		strcat(bconfig->args, argv[i]);
718 	}
719 	if (!root_specified) {
720 		if (start_args < argc)
721 			strcat(bconfig->args, " ");
722 		strcat(bconfig->args, "root=");
723 		strcat(bconfig->args, DEFAULT_ROOT);
724 	}
725 
726 	/* mark kernel pointers */
727 	bconfig->kernvirtualbase	= marks[MARK_START];
728 	bconfig->kernphysicalbase	= kernel_physical_start;
729 	bconfig->kernsize		= kernel_free_vm_start -
730 					    marks[MARK_START];
731 	bconfig->ksym_start		= marks[MARK_SYM];
732 	bconfig->ksym_end		= marks[MARK_SYM] + marks[MARK_NSYM];
733 
734 	/* setup display info */
735 	bconfig->display_phys		= videomem_start;
736 	bconfig->display_start		= videomem_start;
737 	bconfig->display_size		= display_size;
738 	bconfig->width			= vdu_var(os_MODEVAR_XWIND_LIMIT);
739 	bconfig->height			= vdu_var(os_MODEVAR_YWIND_LIMIT);
740 	bconfig->log2_bpp		= vdu_var(os_MODEVAR_LOG2_BPP);
741 	bconfig->framerate		= vsync_rate();
742 
743 	/* fill in memory info */
744 	bconfig->pagesize		= nbpp;
745 	bconfig->drampages		= total_dram_pages +
746 					    total_podram_pages;	/* XXX */
747 	bconfig->vrampages		= total_vram_pages;
748 	bconfig->dramblocks		= dram_blocks + podram_blocks; /*XXX*/
749 	bconfig->vramblocks		= vram_blocks;
750 
751 	for (i = 0; i < dram_blocks; i++) {
752 		bconfig->dram[i].address = DRAM_addr[i];
753 		bconfig->dram[i].pages   = DRAM_pages[i];
754 		bconfig->dram[i].flags   = PHYSMEM_TYPE_GENERIC;
755 	}
756 	for (; i < dram_blocks + podram_blocks; i++) {
757 		bconfig->dram[i].address = PODRAM_addr[i-dram_blocks];
758 		bconfig->dram[i].pages   = PODRAM_pages[i-dram_blocks];
759 		bconfig->dram[i].flags   = PHYSMEM_TYPE_PROCESSOR_ONLY;
760 	}
761 	for (i = 0; i < vram_blocks; i++) {
762 		bconfig->vram[i].address = VRAM_addr[i];
763 		bconfig->vram[i].pages   = VRAM_pages[i];
764 		bconfig->vram[i].flags   = PHYSMEM_TYPE_GENERIC;
765 	}
766 }
767 
768 
769 int
770 main(int argc, char **argv)
771 {
772 	int howto, start_args, ret;
773 	int class;
774 
775 	printf("\n\n");
776 	printf(">> %s, Revision %s\n", bootprog_name, bootprog_rev);
777 	printf(">> (%s, %s)\n", bootprog_maker, bootprog_date);
778 	printf(">> Booting NetBSD/acorn32 on a RiscPC/A7000/NC\n");
779 	printf("\n");
780 
781 	process_args(argc, argv, &howto, booted_file, &start_args);
782 
783 	printf("Booting %s (howto = 0x%x)\n", booted_file, howto);
784 
785 	init_datastructures();
786 	get_memory_configuration();
787 	get_memory_map();
788 
789 	/*
790 	 * point to the first free DRAM page guaranteed to be in
791 	 * strict order up
792 	 */
793 	if (podram_blocks != 0) {
794 		free_relocation_page =
795 		    mem_pages_info + first_mapped_PODRAM_page_index;
796 		kernel_physical_start = PODRAM_addr[0];
797 		kernel_physical_maxsize = PODRAM_pages[0] * nbpp;
798 	} else {
799 		free_relocation_page =
800 		    mem_pages_info + first_mapped_DRAM_page_index;
801 		kernel_physical_start = DRAM_addr[0];
802 		kernel_physical_maxsize = DRAM_pages[0] * nbpp;
803 	}
804 
805 	printf("\nLoading %s ", booted_file);
806 
807 	/* first count the kernel to get the markers */
808 	ret = loadfile(booted_file, marks, COUNT_KERNEL);
809 	if (ret == -1) panic("Kernel load failed"); /* lie to the user ... */
810 	close(ret);
811 
812 	if (marks[MARK_END] - marks[MARK_START] > kernel_physical_maxsize)
813 	{
814 		panic("\nKernel is bigger than the first DRAM module, unable to boot\n");
815 	}
816 
817 	/*
818 	 * calculate how much the difference is between physical and
819 	 * virtual space for the kernel
820 	 */
821 	pv_offset = ((u_long)marks[MARK_START] - kernel_physical_start);
822 	/* round on a page	*/
823 	kernel_free_vm_start = (marks[MARK_END] + nbpp-1) & ~(nbpp-1);
824 
825 	/* we seem to be forced to clear the marks[] ? */
826 	memset(marks, 0, sizeof(marks));
827 
828 	/* really load it ! */
829 	ret = loadfile(booted_file, marks, LOAD_KERNEL);
830 	if (ret == -1) panic("Kernel load failed");
831 	close(ret);
832 
833 	/* finish off the relocation information */
834 	create_initial_page_tables();
835 	add_initvectors();
836 	add_pagetables_at_top();
837 	create_configuration(argc, argv, start_args);
838 
839 	/*
840 	 * done relocating and creating information, now update and
841 	 * check the relocation mechanism
842 	 */
843 	compact_relocations();
844 
845 	/*
846 	 * grab a page to copy the bootstrap code into
847 	 */
848 	relocate_code_page = free_relocation_page++;
849 
850 	printf("\nStarting at 0x%lx, p@0x%lx\n", marks[MARK_ENTRY], kernel_physical_start);
851 	printf("%ld entries, first one is 0x%lx->0x%lx for %lx bytes\n",
852 			reloc_instruction_table[0],
853 			reloc_instruction_table[1],
854 			reloc_instruction_table[2],
855 			reloc_instruction_table[3]);
856 
857 	printf("Will boot in a few secs due to relocation....\n"
858 	    "bye bye from RISC OS!");
859 
860 	/* dismount all filesystems */
861 	xosfscontrol_shutdown();
862 
863 	os_readsysinfo_platform_class(&class, NULL, NULL);
864 	if (class != osreadsysinfo_Platform_Pace) {
865 		/* reset devices, well they try to anyway */
866 		service_pre_reset();
867 	}
868 
869 	start_kernel(
870 		/* r0 relocation code page (V)	*/ relocate_code_page->logical,
871 		/* r1 relocation pv offset	*/
872 		relocate_code_page->physical-relocate_code_page->logical,
873 		/* r2 configuration structure	*/ bconfig_new_phys,
874 		/* r3 relocation table (l)	*/
875 		(int)reloc_instruction_table,	/* one piece! */
876 		/* r4 L1 page descriptor (P)	*/ new_L1_pages_phys,
877 		/* r5 kernel entry point	*/ marks[MARK_ENTRY]
878 	);
879 	return 0;
880 }
881 
882 
883 ssize_t
884 boot32_read(int f, void *addr, size_t size)
885 {
886 	void *fragaddr;
887 	size_t fragsize;
888 	ssize_t bytes_read, total;
889 
890 	/* printf("read at %p for %ld bytes\n", addr, size); */
891 	total = 0;
892 	while (size > 0) {
893 		fragsize = nbpp;		/* select one page	*/
894 		if (size < nbpp) fragsize = size;/* clip to size left	*/
895 
896 		/* get a page for a fragment */
897 		fragaddr = (void *)get_relocated_page((u_long) addr -
898 		    pv_offset, fragsize)->logical;
899 
900 		bytes_read = read(f, fragaddr, fragsize);
901 		if (bytes_read < 0) return bytes_read;	/* error!	*/
902 		total += bytes_read;		/* account read bytes	*/
903 
904 		if (bytes_read < fragsize)
905 			return total;		/* does this happen?	*/
906 
907 		size -= fragsize;		/* advance		*/
908 		addr += fragsize;
909 	}
910 	return total;
911 }
912 
913 
914 void *
915 boot32_memcpy(void *dst, const void *src, size_t size)
916 {
917 	void *fragaddr;
918 	size_t fragsize;
919 
920 	/* printf("memcpy to %p from %p for %ld bytes\n", dst, src, size); */
921 	while (size > 0) {
922 		fragsize = nbpp;		/* select one page	*/
923 		if (size < nbpp) fragsize = size;/* clip to size left	*/
924 
925 		/* get a page for a fragment */
926 		fragaddr = (void *)get_relocated_page((u_long) dst -
927 		    pv_offset, fragsize)->logical;
928 		memcpy(fragaddr, src, size);
929 
930 		src += fragsize;		/* account copy		*/
931 		dst += fragsize;
932 		size-= fragsize;
933 	}
934 	return dst;
935 }
936 
937 
938 void *
939 boot32_memset(void *dst, int c, size_t size)
940 {
941 	void *fragaddr;
942 	size_t fragsize;
943 
944 	/* printf("memset %p for %ld bytes with %d\n", dst, size, c); */
945 	while (size > 0) {
946 		fragsize = nbpp;		/* select one page	*/
947 		if (size < nbpp) fragsize = size;/* clip to size left	*/
948 
949 		/* get a page for a fragment */
950 		fragaddr = (void *)get_relocated_page((u_long)dst - pv_offset,
951 		    fragsize)->logical;
952 		memset(fragaddr, c, fragsize);
953 
954 		dst += fragsize;		/* account memsetting	*/
955 		size-= fragsize;
956 
957 	}
958 	return dst;
959 }
960 
961 
962 /* We can rely on the fact that two entries never have identical ->physical */
963 int
964 page_info_cmp(const void *a, const void *b)
965 {
966 
967 	return (((struct page_info *)a)->physical <
968 	    ((struct page_info *)b)->physical) ? -1 : 1;
969 }
970 
971 struct page_info *
972 get_relocated_page(u_long destination, int size)
973 {
974 	struct page_info *page;
975 
976 	/* get a page for a fragment */
977 	page = free_relocation_page;
978 	if (free_relocation_page->pagenumber < 0) panic("\n\nOut of pages");
979 	reloc_entries++;
980 	if (reloc_entries >= MAX_RELOCPAGES)
981 		panic("\n\nToo many relocations! What are you loading ??");
982 
983 	/* record the relocation */
984 	if (free_relocation_page->physical & 0x3)
985 		panic("\n\nphysical address is not aligned!");
986 
987 	if (destination & 0x3)
988 		panic("\n\ndestination address is not aligned!");
989 
990 	*reloc_pos++ = free_relocation_page->physical;
991 	*reloc_pos++ = destination;
992 	*reloc_pos++ = size;
993 	free_relocation_page++;			/* advance 		*/
994 
995 	return page;
996 }
997 
998 
999 int
1000 vdu_var(int var)
1001 {
1002 	int varlist[2], vallist[2];
1003 
1004 	varlist[0] = var;
1005 	varlist[1] = -1;
1006 	os_read_vdu_variables(varlist, vallist);
1007 	return vallist[0];
1008 }
1009 
1010 
1011 void
1012 twirl(void)
1013 {
1014 
1015 	printf("%c%c", "|/-\\"[(int) twirl_cnt], 8);
1016 	twirl_cnt++;
1017 	twirl_cnt &= 3;
1018 }
1019 
1020 
1021 void
1022 process_args(int argc, char **argv, int *howto, char *file, int *start_args)
1023 {
1024 	int i, j;
1025 	static char filename[80];
1026 
1027 	*howto = 0;
1028 	*file = NULL; *start_args = 1;
1029 	for (i = 1; i < argc; i++) {
1030 		if (argv[i][0] == '-')
1031 			for (j = 1; argv[i][j]; j++)
1032 				BOOT_FLAG(argv[i][j], *howto);
1033 		else {
1034 			if (*file)
1035 				*start_args = i;
1036 			else {
1037 				strcpy(file, argv[i]);
1038 				*start_args = i+1;
1039 			}
1040 			break;
1041 		}
1042 	}
1043 	if (*file == NULL) {
1044 		if (*howto & RB_ASKNAME) {
1045 			printf("boot: ");
1046 			gets(filename);
1047 			strcpy(file, filename);
1048 		} else
1049 			strcpy(file, "netbsd");
1050 	}
1051 }
1052 
1053 
1054 char *
1055 sprint0(int width, char prefix, char base, int value)
1056 {
1057 	static char format[50], scrap[50];
1058 	char *pos;
1059 	int length;
1060 
1061 	for (pos = format, length = 0; length<width; length++) *pos++ = prefix;
1062 	*pos++ = '%';
1063 	*pos++ = base;
1064 	*pos++ = (char) 0;
1065 
1066 	sprintf(scrap, format, value);
1067 	length = strlen(scrap);
1068 
1069 	return scrap+length-width;
1070 }
1071 
1072