xref: /netbsd-src/share/man/man9/uvm.9 (revision e55cffd8e520e9b03f18a1bd98bb04223e79f69f)
1.\"	$NetBSD: uvm.9,v 1.19 2001/04/21 08:34:11 jdolecek Exp $
2.\"
3.\" Copyright (c) 1998 Matthew R. Green
4.\" All rights reserved.
5.\"
6.\" Redistribution and use in source and binary forms, with or without
7.\" modification, are permitted provided that the following conditions
8.\" are met:
9.\" 1. Redistributions of source code must retain the above copyright
10.\"    notice, this list of conditions and the following disclaimer.
11.\" 2. Redistributions in binary form must reproduce the above copyright
12.\"    notice, this list of conditions and the following disclaimer in the
13.\"    documentation and/or other materials provided with the distribution.
14.\" 3. The name of the author may not be used to endorse or promote products
15.\"    derived from this software without specific prior written permission.
16.\"
17.\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18.\" IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19.\" OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20.\" IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21.\" INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
22.\" BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
23.\" LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
24.\" AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25.\" OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27.\" SUCH DAMAGE.
28.\"
29.\" XXX this manual sets nS to 1 or 0 in the description, to obtain
30.\" synopsis-like function prototypes.  any better way?
31.\"
32.Dd March 26, 2000
33.Dt UVM 9
34.Os
35.Sh NAME
36.Nm uvm
37.Nd virtual memory system external interface
38.Sh SYNOPSIS
39.Fd #include <sys/param.h>
40.Fd #include <uvm/uvm.h>
41.Sh DESCRIPTION
42The UVM virtual memory system manages access to the computer's memory
43resources.  User processes and the kernel access these resources through
44UVM's external interface.  UVM's external interface includes functions that:
45.Pp
46.Bl -hyphen -compact
47.It
48initialise UVM sub-systems
49.It
50manage virtual address spaces
51.It
52resolve page faults
53.It
54memory map files and devices
55.It
56perform uio-based I/O to virtual memory
57.It
58allocate and free kernel virtual memory
59.It
60allocate and free physical memory
61.El
62.Pp
63In addition to exporting these services, UVM has two kernel-level processes:
64pagedaemon and swapper.   The pagedaemon process sleeps until physical memory
65becomes scarce.  When that happens, pagedaemon is awoken.   It scans physical
66memory, paging out and freeing memory that has not been recently used.  The
67swapper process swaps in runnable processes that are currently swapped out,
68if there is room.
69.Pp
70There are also several miscellaneous functions.
71.Sh INITIALISATION
72.nr nS 1
73.Pp
74.Ft void
75.Fn uvm_init
76.Ft void
77.Fn uvm_init_limits "struct proc *p"
78.Ft void
79.Fn uvm_setpagesize
80.Ft void
81.Fn uvm_swap_init
82.nr nS 0
83.Pp
84.Fn uvm_init
85sets up the UVM system at system boot time, after the
86copyright has been printed.  It initialises
87global state, the page, map, kernel virtual memory state,
88machine-dependent physical map, kernel memory allocator,
89pager and anonymous memory sub-systems, and then enables
90paging of kernel objects.
91.Pp
92.Fn uvm_init_limits
93initialises process limits for the named process.  This is for use by
94the system startup for process zero, before any other processes are
95created.
96.Pp
97.Fn uvm_setpagesize
98initialises the uvmexp members pagesize (if not already done by
99machine-dependent code), pageshift and pagemask.  It should be called by
100machine-dependent code early in the
101.Xr pmap_init 9
102call.
103.Pp
104.Fn uvm_swap_init
105initialises the swap sub-system.
106.Sh VIRTUAL ADDRESS SPACE MANAGEMENT
107.Pp
108.nr nS 1
109.Ft int
110.Fn uvm_map "vm_map_t map" "vaddr_t *startp" "vsize_t size" "struct uvm_object *uobj" "voff_t uoffset" "uvm_flag_t flags"
111.Ft int
112.Fn uvm_map_pageable "vm_map_t map" "vaddr_t start" "vaddr_t end" "boolean_t new_pageable" "int lockflags"
113.Ft boolean_t
114.Fn uvm_map_checkprot "vm_map_t map" "vaddr_t start" "vaddr_t end" "vm_prot_t protection"
115.Ft int
116.Fn uvm_map_protect "vm_map_t map" "vaddr_t start" "vaddr_t end" "vm_prot_t new_prot" "boolean_t set_max"
117.Ft int
118.Fn uvm_deallocate "vm_map_t map" "vaddr_t start" "vsize_t size"
119
120.Ft struct vmspace *
121.Fn uvmspace_alloc "vaddr_t min" "vaddr_t max" "int pageable"
122.Ft void
123.Fn uvmspace_exec "struct proc *p"
124.Ft struct vmspace *
125.Fn uvmspace_fork "struct vmspace *vm"
126.Ft void
127.Fn uvmspace_free "struct vmspace *vm1"
128.Ft void
129.Fn uvmspace_share "struct proc *p1" "struct proc *p2"
130.Ft void
131.Fn uvmspace_unshare "struct proc *p"
132.nr nS 0
133.Pp
134.Fn uvm_map
135establishes a valid mapping in map
136.Fa map ,
137which must be unlocked.  The new mapping has size
138.Fa size ,
139which must be in
140.Dv PAGE_SIZE
141units.  The
142.Fa uobj
143and
144.Fa uoffset
145arguments can have four meanings.  When
146.Fa uobj
147is
148.Dv NULL
149and
150.Fa uoffset
151is
152.Dv UVM_UNKNOWN_OFFSET ,
153.Fn uvm_map
154does not use the machine-dependant
155.Dv PMAP_PREFER
156function.  If
157.Fa uoffset
158is any other value, it is used as the hint to
159.Dv PMAP_PREFER .
160When
161.Fa uobj
162is not
163.Dv NULL
164and
165.Fa uoffset
166is
167.Dv UVM_UNKNOWN_OFFSET ,
168.Fn uvm_map
169finds the offset based upon the virtual address, passed as
170.Fa startp .
171If
172.Fa uoffset
173is any other value, we are doing a normal mapping at this offset.  The
174start address of the map will be returned in
175.Fa startp .
176.Pp
177.Fa flags
178passed to
179.Fn uvm_map
180are typically created using the
181.Fn UVM_MAPFLAG "vm_prot_t prot" "vm_prot_t maxprot" "vm_inherit_t inh" "int advice" "int flags"
182macro, which uses the following values.
183The
184.Fa prot
185and
186.Fa maxprot
187can take are:
188.Bd -literal
189#define UVM_PROT_MASK   0x07    /* protection mask */
190#define UVM_PROT_NONE   0x00    /* protection none */
191#define UVM_PROT_ALL    0x07    /* everything */
192#define UVM_PROT_READ   0x01    /* read */
193#define UVM_PROT_WRITE  0x02    /* write */
194#define UVM_PROT_EXEC   0x04    /* exec */
195#define UVM_PROT_R      0x01    /* read */
196#define UVM_PROT_W      0x02    /* write */
197#define UVM_PROT_RW     0x03    /* read-write */
198#define UVM_PROT_X      0x04    /* exec */
199#define UVM_PROT_RX     0x05    /* read-exec */
200#define UVM_PROT_WX     0x06    /* write-exec */
201#define UVM_PROT_RWX    0x07    /* read-write-exec */
202.Ed
203.Pp
204The values that
205.Fa inh
206can take are:
207.Bd -literal
208#define UVM_INH_MASK    0x30    /* inherit mask */
209#define UVM_INH_SHARE   0x00    /* "share" */
210#define UVM_INH_COPY    0x10    /* "copy" */
211#define UVM_INH_NONE    0x20    /* "none" */
212#define UVM_INH_DONATE  0x30    /* "donate" << not used */
213.Ed
214.Pp
215The values that
216.Fa advice
217can take are:
218.Bd -literal
219#define UVM_ADV_NORMAL  0x0     /* 'normal' */
220#define UVM_ADV_RANDOM  0x1     /* 'random' */
221#define UVM_ADV_SEQUENTIAL 0x2  /* 'sequential' */
222#define UVM_ADV_MASK    0x7     /* mask */
223.Ed
224.Pp
225The values that
226.Fa flags
227can take are:
228.Bd -literal
229#define UVM_FLAG_FIXED   0x010000 /* find space */
230#define UVM_FLAG_OVERLAY 0x020000 /* establish overlay */
231#define UVM_FLAG_NOMERGE 0x040000 /* don't merge map entries */
232#define UVM_FLAG_COPYONW 0x080000 /* set copy_on_write flag */
233#define UVM_FLAG_AMAPPAD 0x100000 /* for bss: pad amap to reduce malloc() */
234#define UVM_FLAG_TRYLOCK 0x200000 /* fail if we can not lock map */
235.Ed
236.Pp
237The
238.Dv UVM_MAPFLAG
239macro arguments can be combined with an or operator.  There are
240several special purpose macros for checking protection combinations, e.g. the
241.Dv UVM_PROT_WX
242macro.  There are also some additional macros to extract bits from
243the flags.  The
244.Dv UVM_PROTECTION ,
245.Dv UVM_INHERIT ,
246.Dv UVM_MAXPROTECTION
247and
248.Dv UVM_ADVICE
249macros return the protection, inheritance, maximum protection and advice,
250respectively.
251.Fn uvm_map
252returns a standard UVM return value.
253.Pp
254.Fn uvm_map_pageable
255changes the pageability of the pages in the range from
256.Fa start
257to
258.Fa end
259in map
260.Fa map
261to
262.Fa new_pageable .
263.Fn uvm_map_pageable
264returns a standard UVM return value.
265.Pp
266.Fn uvm_map_checkprot
267checks the protection of the range from
268.Fa start
269to
270.Fa end
271in map
272.Fa map
273against
274.Fa protection .
275This returns either
276.Dv TRUE
277or
278.Dv FALSE .
279.Pp
280.Fn uvm_map_protect
281changes the protection
282.Fa start
283to
284.Fa end
285in map
286.Fa map
287to
288.Fa new_prot ,
289also setting the maximum protection to the region to
290.Fa new_prot
291if
292.Fa set_max
293is non-zero.  This function returns a standard UVM return value.
294.Pp
295.Fn uvm_deallocate
296deallocates kernel memory in map
297.Fa map
298from address
299.Fa start
300to
301.Fa start + size .
302.Pp
303.Fn uvmspace_alloc
304allocates and returns a new address space, with ranges from
305.Fa min
306to
307.Fa max ,
308setting the pageability of the address space to
309.Fa pageable.
310.Pp
311.Fn uvmspace_exec
312either reuses the address space of process
313.Fa p
314if there are no other references to it, or creates
315a new one with
316.Fn uvmspace_alloc .
317.Pp
318.Fn uvmspace_fork
319creates and returns a new address space based upon the
320.Fa vm1
321address space, typically used when allocating an address space for a
322child process.
323.Pp
324.Fn uvmspace_free
325lowers the reference count on the address space
326.Fa vm ,
327freeing the data structures if there are no other references.
328.Pp
329.Fn uvmspace_share
330causes process
331.Pa p2
332to share the address space of
333.Fa p1 .
334.Pp
335.Fn uvmspace_unshare
336ensures that process
337.Fa p
338has its own, unshared address space, by creating a new one if
339necessary by calling
340.Fn uvmspace_fork .
341.Sh PAGE FAULT HANDLING
342.Pp
343.nr nS 1
344.Ft int
345.Fn uvm_fault "vm_map_t orig_map" "vaddr_t vaddr" "vm_fault_t fault_type" "vm_prot_t access_type"
346.nr nS 0
347.Pp
348.Fn uvm_fault
349is the main entry point for faults.  It takes
350.Fa orig_map
351as the map the fault originated in, a
352.Fa vaddr
353offset into the map the fault occured,
354.Fa fault_type
355describing the type of fault, and
356.Fa access_type
357describing the type of access requested.
358.Fn uvm_fault
359returns a standard UVM return value.
360.Sh MEMORY MAPPING FILES AND DEVICES
361.Pp
362.nr nS 1
363.Ft struct uvm_object *
364.Fn uvn_attach "void *arg" "vm_prot_t accessprot"
365.Ft void
366.Fn uvm_vnp_setsize "struct vnode *vp" "u_quad_t newsize"
367.Ft void
368.Fn uvm_vnp_sync "struct mount *mp"
369.Ft void
370.Fn uvm_vnp_terminate "struct vnode *vp"
371.Ft boolean_t
372.Fn uvm_vnp_uncache "struct vnode *vp"
373.nr nS 0
374.Pp
375.Fn uvn_attach
376attaches a UVM object to vnode
377.Fa arg ,
378creating the object if necessary.  The object is returned.
379.Pp
380.Fn uvm_vnp_setsize
381sets the size of vnode
382.Fa vp
383to
384.Fa newsize .
385Caller must hold a reference to the vnode.  If the vnode shrinks, pages
386no longer used are discarded.  This function will be removed when the
387filesystem and VM buffer caches are merged.
388.Pp
389.Fn uvm_vnp_sync
390flushes dirty vnodes from either the mount point passed in
391.Fa mp ,
392or all dirty vnodes if
393.Fa mp
394is
395.Dv NULL .
396This function will be removed when the filesystem and VM buffer caches
397are merged.
398.Pp
399.Fn uvm_vnp_terminate
400frees all VM resources allocated to vnode
401.Fa vp .
402If the vnode still has references, it will not be destroyed; however
403all future operations using this vnode will fail.  This function will be
404removed when the filesystem and VM buffer caches are merged.
405.Pp
406.Fn uvm_vnp_uncache
407disables vnode
408.Fa vp
409from persisting when all references are freed.  This function will be
410removed when the file-system and UVM caches are unified.  Returns
411true if there is no active vnode.
412.Sh VIRTUAL MEMORY I/O
413.Pp
414.nr nS 1
415.Ft int
416.Fn uvm_io "vm_map_t map" "struct uio *uio"
417.nr nS 0
418.Pp
419.Fn uvm_io
420performs the I/O described in
421.Fa uio
422on the memory described in
423.Fa map .
424.Sh ALLOCATION OF KERNEL MEMORY
425.Pp
426.nr nS 1
427.Ft vaddr_t
428.Fn uvm_km_alloc "vm_map_t map" "vsize_t size"
429.Ft vaddr_t
430.Fn uvm_km_zalloc "vm_map_t map" "vsize_t size"
431.Ft vaddr_t
432.Fn uvm_km_alloc1 "vm_map_t map" "vsize_t size" "boolean_t zeroit"
433.Ft vaddr_t
434.Fn uvm_km_kmemalloc "vm_map_t map" "struct uvm_object *obj" "vsize_t size" "int flags"
435.Ft vaddr_t
436.Fn uvm_km_valloc "vm_map_t map" "vsize_t size"
437.Ft vaddr_t
438.Fn uvm_km_valloc_wait "vm_map_t map" "vsize_t size"
439.Ft struct vm_map *
440.Fn uvm_km_suballoc "vm_map_t map" "vaddr_t *min" "vaddr_t *max " "vsize_t size" "boolean_t pageable" "boolean_t fixed" "vm_map_t submap"
441.Ft void
442.Fn uvm_km_free "vm_map_t map" "vaddr_t addr" "vsize_t size"
443.Ft void
444.Fn uvm_km_free_wakeup "vm_map_t map" "vaddr_t addr" "vsize_t size"
445.nr nS 0
446.Pp
447.Fn uvm_km_alloc
448and
449.Fn uvm_km_zalloc
450allocate
451.Fa size
452bytes of wired kernel memory in map
453.Fa map .
454In addition to allocation,
455.Fn uvm_km_zalloc
456zeros the memory.  Both of these functions are defined as macros in
457terms of
458.Fn uvm_km_alloc1 ,
459and should almost always be used in preference to
460.Fn uvm_km_alloc1 .
461.Pp
462.Fn uvm_km_alloc1
463allocates and returns
464.Fa size
465bytes of wired memory in the kernel map, zeroing the memory if the
466.Fa zeroit
467argument is non-zero.
468.Pp
469.Fn uvm_km_kmemalloc
470allocates and returns
471.Fa size
472bytes of wired kernel memory into
473.Fa obj .
474The flags can be any of:
475.Bd -literal
476#define UVM_KMF_NOWAIT  0x1                     /* matches M_NOWAIT */
477#define UVM_KMF_VALLOC  0x2                     /* allocate VA only */
478#define UVM_KMF_TRYLOCK UVM_FLAG_TRYLOCK        /* try locking only */
479.Ed
480.Pp
481.Dv UVM_KMF_NOWAIT
482causes
483.Fn uvm_km_kmemalloc
484to return immediately if no memory is available.
485.Dv UVM_KMF_VALLOC
486causes no pages to be allocated, only a virtual address.
487.Dv UVM_KMF_TRYLOCK
488causes
489.Fn uvm_km_kmemalloc
490to use
491.Fn simple_lock_try
492when locking maps.
493.Pp
494.Fn uvm_km_valloc
495and
496.Fn uvm_km_valloc_wait
497return a newly allocated zero-filled address in the kernel map of size
498.Fa size .
499.Fn uvm_km_valloc_wait
500will also wait for kernel memory to become available, if there is a
501memory shortage.
502.Sh ALLOCATION OF PHYSICAL MEMORY
503.Pp
504.nr nS 1
505.Ft struct vm_page *
506.Fn uvm_pagealloc "struct uvm_object *uobj" "voff_t off" "struct vm_anon *anon"
507.Ft void
508.Fn uvm_pagerealloc "struct vm_page *pg" "struct uvm_object *newobj" "voff_t newoff"
509.Ft void
510.Fn uvm_pagefree "struct vm_page *pg"
511.Ft int
512.Fn uvm_pglistalloc "psize_t size" "paddr_t low" "paddr_t high" "paddr_t alignment" "paddr_t boundary" "struct pglist *rlist" "int nsegs" "int waitok"
513.Ft void
514.Fn uvm_pglistfree "struct pglist *list"
515.Ft void
516.Fn uvm_page_physload "vaddr_t start" "vaddr_t end" "vaddr_t avail_start" "vaddr_t avail_end"
517.nr nS 0
518.Pp
519.Fn uvm_pagealloc
520allocates a page of memory at virtual address
521.Fa off
522in either the object
523.Fa uobj
524or the anonymous memory
525.Fa anon ,
526which must be locked by the caller.  Only one of
527.Fa off
528and
529.Fa uobj
530can be non
531.Dv NULL .
532Returns
533.Dv NULL
534when no page can be found.
535.Pp
536.Fn uvm_pagerealloc
537reallocates page
538.Fa pg
539to a new object
540.Fa newobj ,
541at a new offset
542.Fa newoff .
543.Pp
544.Fn uvm_pagefree
545free's the physical page
546.Fa pg .
547.Pp
548.Fn uvm_pglistalloc
549allocates a list of pages for size
550.Fa size
551byte under various constraints.
552.Fa low
553and
554.Fa high
555describe the lowest and highest addresses acceptable for the list.  If
556.Fa alignment
557is non-zero, it describes the required alignment of the list, in
558power-of-two notation.  If
559.Fa boundary
560is non-zero, no segment of the list may cross this power-of-two
561boundary, relative to zero.
562The
563.Fa nsegs
564and
565.Fa waitok
566arguments are currently ignored.
567.Pp
568.Fn uvm_pglistfree
569frees the list of pages pointed to by
570.Fa list .
571.Pp
572.Fn uvm_page_physload
573loads physical memory segments into VM space.  It must be called at system
574boot time to setup physical memory management pages.  The arguments describe
575the
576.Fa start
577and
578.Fa end
579of the physical addresses of the segment, and the available start and end
580addresses of pages not already in use.
581.\" XXX expand on "system boot time"!
582.Pp
583.Fn uvm_km_suballoc
584allocates submap from
585.Fa map ,
586creating a new map if
587.Fa submap
588is
589.Dv NULL .
590The addresses of the submap can be specified exactly by setting the
591.Fa fixed
592argument to non-zero, which causes the
593.Fa min
594argument specify the beginning of the address in thes submap.  If
595.Fa fixed
596is zero, any address of size
597.Fa size
598will be allocated from
599.Fa map
600and the start and end addresses returned in
601.Fa min
602and
603.Fa max .
604If
605.Fa pageable
606is non-zero, entries in the map may be paged out.
607.Pp
608.Fn uvm_km_free
609and
610.Fn uvm_km_free_wakeup
611free
612.Fa size
613bytes of memory in the kernal map, starting at address
614.Fa addr .
615.Fn uvm_km_free_wakeup
616calls
617.Fn thread_wakeup
618on the map before unlocking the map.
619.Sh PROCESSES
620.Pp
621.nr nS 1
622.Ft void
623.Fn uvm_pageout
624.Ft void
625.Fn uvm_scheduler
626.Ft void
627.Fn uvm_swapin "struct proc *p"
628.nr nS 0
629.Pp
630.Fn uvm_pageout
631is the main loop for the page daemon.
632.Pp
633.Fn uvm_scheduler
634is the process zero main loop, which is to be called after the
635system has finished starting other processes.  It handles the
636swapping in of runnable, swapped out processes in priority
637order.
638.Pp
639.Fn uvm_swapin
640swaps in the named process.
641.Sh MISCELLANEOUS FUNCTIONS
642.nr nS 1
643.Pp
644.Ft struct uvm_object *
645.Fn uao_create "vsize_t size" "int flags"
646.Ft void
647.Fn uao_detach "struct uvm_object *uobj"
648.Ft void
649.Fn uao_reference "struct uvm_object *uobj"
650
651.Ft boolean_t
652.Fn uvm_chgkprot "caddr_t addr" "size_t len" "int rw"
653.Ft void
654.Fn uvm_kernacc "caddr_t addr" "size_t len" "int rw"
655.Ft boolean_t
656.Fn uvm_useracc "caddr_t addr" "size_t len" "int rw"
657
658.Ft int
659.Fn uvm_vslock "struct proc *p" "caddr_t addr" "size_t len" "vm_prot_t prot"
660.Ft void
661.Fn uvm_vsunlock "struct proc *p" "caddr_t addr" "size_t len"
662
663.Ft void
664.Fn uvm_meter
665.Ft int
666.Fn uvm_sysctl "int *name" "u_int namelen" "void *oldp" "size_t *oldlenp" "void *newp " "size_t newlen" "struct proc *p"
667
668.Ft void
669.Fn uvm_fork "struct proc *p1" "struct proc *p2" "boolean_t shared"
670.Ft int
671.Fn uvm_grow "struct proc *p" "vaddr_t sp"
672.Ft int
673.Fn uvm_coredump "struct proc *p" "struct vnode *vp" "struct ucred *cred" "struct core *chdr"
674.nr nS 0
675.Pp
676The
677.Fn uao_create ,
678.Fn uao_detach
679and
680.Fn uao_reference
681functions operate on anonymous memory objects, such as those used to support
682System V shared memory.
683.Fn uao_create
684returns an object of size
685.Fa size
686with flags:
687.Bd -literal
688#define UAO_FLAG_KERNOBJ        0x1     /* create kernel object */
689#define UAO_FLAG_KERNSWAP       0x2     /* enable kernel swap */
690.Pp
691.Ed
692which can only be used once each at system boot time.
693.Fn uao_reference
694creates an additional reference to the named anonymous memory object.
695.Fn uao_detach
696removes a reference from the named anonymous memory object, destroying
697it if removing the last reference.
698.Pp
699.Fn uvm_chgkprot
700changes the protection of kernel memory from
701.Fa addr
702to
703.Fa addr + len
704to the value of
705.Fa rw .
706This is primarily useful for debuggers, for setting breakpoints.
707This function is only available with options
708.Dv KGDB .
709.Pp
710.Fn uvm_kernacc
711and
712.Fn uvm_useracc
713check the access at address
714.Fa addr
715to
716.Fa addr + len
717for
718.Fa rw
719access, in the kernel address space, and the current process'
720address space respectively.
721.Pp
722.Fn uvm_vslock
723and
724.Fn uvm_vsunlock
725control the wiring and unwiring of pages for process
726.Fa p
727from
728.Fa addr
729to
730.Fa addr + len .
731These functions are normally used to wire memory for I/O.
732.Pp
733.Fn uvm_meter
734calculates the load average and wakes up the swapper if necessary.
735.Pp
736.Fn uvm_sysctl
737provides support for the
738.Dv CTL_VM
739domain of the
740.Xr sysctl 3
741hierarchy.
742.Fn uvm_sysctl
743handles the
744.Dv VM_LOADAVG ,
745.Dv VM_METER
746and
747.Dv VM_UVMEXP
748calls, which return the current load averages, calculates current VM
749totals, and returns the uvmexp structure respectively.  The load averages
750are access from userland using the
751.Xr getloadavg 3
752function.  The uvmexp structure has all global state of the UVM system,
753and has the following members:
754.Bd -literal
755/* vm_page constants */
756int pagesize;   /* size of a page (PAGE_SIZE): must be power of 2 */
757int pagemask;   /* page mask */
758int pageshift;  /* page shift */
759
760/* vm_page counters */
761int npages;     /* number of pages we manage */
762int free;       /* number of free pages */
763int active;     /* number of active pages */
764int inactive;   /* number of pages that we free'd but may want back */
765int paging;     /* number of pages in the process of being paged out */
766int wired;      /* number of wired pages */
767int reserve_pagedaemon; /* number of pages reserved for pagedaemon */
768int reserve_kernel; /* number of pages reserved for kernel */
769
770/* pageout params */
771int freemin;    /* min number of free pages */
772int freetarg;   /* target number of free pages */
773int inactarg;   /* target number of inactive pages */
774int wiredmax;   /* max number of wired pages */
775
776/* swap */
777int nswapdev;   /* number of configured swap devices in system */
778int swpages;    /* number of PAGE_SIZE'ed swap pages */
779int swpginuse;  /* number of swap pages in use */
780int nswget;     /* number of times fault calls uvm_swap_get() */
781int nanon;      /* number total of anon's in system */
782int nfreeanon;  /* number of free anon's */
783
784/* stat counters */
785int faults;             /* page fault count */
786int traps;              /* trap count */
787int intrs;              /* interrupt count */
788int swtch;              /* context switch count */
789int softs;              /* software interrupt count */
790int syscalls;           /* system calls */
791int pageins;            /* pagein operation count */
792                        /* pageouts are in pdpageouts below */
793int swapins;            /* swapins */
794int swapouts;           /* swapouts */
795int pgswapin;           /* pages swapped in */
796int pgswapout;          /* pages swapped out */
797int forks;              /* forks */
798int forks_ppwait;       /* forks where parent waits */
799int forks_sharevm;      /* forks where vmspace is shared */
800
801/* fault subcounters */
802int fltnoram;   /* number of times fault was out of ram */
803int fltnoanon;  /* number of times fault was out of anons */
804int fltpgwait;  /* number of times fault had to wait on a page */
805int fltpgrele;  /* number of times fault found a released page */
806int fltrelck;   /* number of times fault relock called */
807int fltrelckok; /* number of times fault relock is a success */
808int fltanget;   /* number of times fault gets anon page */
809int fltanretry; /* number of times fault retrys an anon get */
810int fltamcopy;  /* number of times fault clears "needs copy" */
811int fltnamap;   /* number of times fault maps a neighbor anon page */
812int fltnomap;   /* number of times fault maps a neighbor obj page */
813int fltlget;    /* number of times fault does a locked pgo_get */
814int fltget;     /* number of times fault does an unlocked get */
815int flt_anon;   /* number of times fault anon (case 1a) */
816int flt_acow;   /* number of times fault anon cow (case 1b) */
817int flt_obj;    /* number of times fault is on object page (2a) */
818int flt_prcopy; /* number of times fault promotes with copy (2b) */
819int flt_przero; /* number of times fault promotes with zerofill (2b) */
820
821/* daemon counters */
822int pdwoke;     /* number of times daemon woke up */
823int pdrevs;     /* number of times daemon rev'd clock hand */
824int pdswout;    /* number of times daemon called for swapout */
825int pdfreed;    /* number of pages daemon freed since boot */
826int pdscans;    /* number of pages daemon scaned since boot */
827int pdanscan;   /* number of anonymous pages scanned by daemon */
828int pdobscan;   /* number of object pages scanned by daemon */
829int pdreact;    /* number of pages daemon reactivated since boot */
830int pdbusy;     /* number of times daemon found a busy page */
831int pdpageouts; /* number of times daemon started a pageout */
832int pdpending;  /* number of times daemon got a pending pagout */
833int pddeact;    /* number of pages daemon deactivates */
834.Ed
835.Pp
836.Fn uvm_fork
837forks a virtual address space for process' (old)
838.Fa p1
839and (new)
840.Fa p2 .
841If the
842.Fa shared
843argument is non zero, p1 shares its address space with p2,
844otherwise a new address space is created.  This function
845currently has no return value, and thus cannot fail.  In
846the future, this function will changed to allowed it to
847fail in low memory conditions.
848.Pp
849.Fn uvm_grow
850increases the stack segment of process
851.Fa p
852to include
853.Fa sp .
854.Pp
855.Fn uvm_coredump
856generates a coredump on vnode
857.Fa vp
858for process
859.Fa p
860with credentials
861.Fa cred
862and core header description in
863.Fa chdr .
864.Sh NOTES
865.Fn uvm_chgkprot
866is only available if the kernel has been compiled with options
867.Dv KGDB .
868.Pp
869All structure and types whose names begin with
870.Dq vm_
871will be renamed to
872.Dq uvm_ .
873.Pp
874The
875.Xr pmap 9
876manual page is not yet written.
877.Sh HISTORY
878UVM is a new VM system developed at Washington University in St. Louis
879(Missouri).  UVM's roots lie partly in the Mach-based
880.Bx 4.4
881VM system, the
882.Fx
883VM system, and the SunOS4 VM system.  UVM's basic structure is based on the
884.Bx 4.4
885VM system.  UVM's new anonymous memory system is based on the
886anonymous memory system found in the SunOS4 VM (as described in papers by
887published Sun Microsystems, Inc.).  UVM also includes a number of feature
888new to
889.Bx
890including page loanout, map entry passing, simplified
891copy-on-write, and clustered anonymous memory pageout.  UVM is also
892further documented in a August 1998 dissertation by Charles D. Cranor.
893.Pp
894UVM appeared in
895.Nx 1.4 .
896.Sh AUTHORS
897Charles D. Cranor <chuck@ccrc.wustl.edu> designed and implemented UVM.
898.Pp
899Matthew Green <mrg@eterna.com.au> wrote the swap-space management code
900and handled the logistical issues involved with merging UVM into the
901.Nx
902source tree.
903.Pp
904Chuck Silvers <chuq@chuq.com> implemented the aobj pager, thus allowing
905UVM to support System V shared memory and process swapping.
906.Sh SEE ALSO
907.Xr getloadavg 3 ,
908.Xr kvm 3 ,
909.Xr sysctl 3 ,
910.Xr ddb 4 ,
911.Xr options 4
912