xref: /netbsd-src/share/man/man9/uvm.9 (revision 5b84b3983f71fd20a534cfa5d1556623a8aaa717)
1.\"	$NetBSD: uvm.9,v 1.67 2005/09/10 12:51:13 wiz Exp $
2.\"
3.\" Copyright (c) 1998 Matthew R. Green
4.\" All rights reserved.
5.\"
6.\" Redistribution and use in source and binary forms, with or without
7.\" modification, are permitted provided that the following conditions
8.\" are met:
9.\" 1. Redistributions of source code must retain the above copyright
10.\"    notice, this list of conditions and the following disclaimer.
11.\" 2. Redistributions in binary form must reproduce the above copyright
12.\"    notice, this list of conditions and the following disclaimer in the
13.\"    documentation and/or other materials provided with the distribution.
14.\" 3. The name of the author may not be used to endorse or promote products
15.\"    derived from this software without specific prior written permission.
16.\"
17.\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18.\" IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19.\" OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20.\" IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21.\" INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
22.\" BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
23.\" LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
24.\" AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25.\" OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27.\" SUCH DAMAGE.
28.\"
29.Dd April 1, 2005
30.Dt UVM 9
31.Os
32.Sh NAME
33.Nm uvm
34.Nd virtual memory system external interface
35.Sh SYNOPSIS
36.In sys/param.h
37.In uvm/uvm.h
38.Sh DESCRIPTION
39The UVM virtual memory system manages access to the computer's memory
40resources.
41User processes and the kernel access these resources through
42UVM's external interface.
43UVM's external interface includes functions that:
44.Pp
45.Bl -hyphen -compact
46.It
47initialise UVM sub-systems
48.It
49manage virtual address spaces
50.It
51resolve page faults
52.It
53memory map files and devices
54.It
55perform uio-based I/O to virtual memory
56.It
57allocate and free kernel virtual memory
58.It
59allocate and free physical memory
60.El
61.Pp
62In addition to exporting these services, UVM has two kernel-level processes:
63pagedaemon and swapper.
64The pagedaemon process sleeps until physical memory becomes scarce.
65When that happens, pagedaemon is awoken.
66It scans physical memory, paging out and freeing memory that has not
67been recently used.
68The swapper process swaps in runnable processes that are currently swapped
69out, if there is room.
70.Pp
71There are also several miscellaneous functions.
72.Sh INITIALISATION
73.Ft void
74.br
75.Fn uvm_init "void" ;
76.Pp
77.Ft void
78.br
79.Fn uvm_init_limits "struct proc *p" ;
80.Pp
81.Ft void
82.br
83.Fn uvm_setpagesize "void" ;
84.Pp
85.Ft void
86.br
87.Fn uvm_swap_init "void" ;
88.Pp
89.Fn uvm_init
90sets up the UVM system at system boot time, after the
91copyright has been printed.
92It initialises global state, the page, map, kernel virtual memory state,
93machine-dependent physical map, kernel memory allocator,
94pager and anonymous memory sub-systems, and then enables
95paging of kernel objects.
96.Pp
97.Fn uvm_init_limits
98initialises process limits for the named process.
99This is for use by the system startup for process zero, before any
100other processes are created.
101.Pp
102.Fn uvm_setpagesize
103initialises the uvmexp members pagesize (if not already done by
104machine-dependent code), pageshift and pagemask.
105It should be called by machine-dependent code early in the
106.Fn pmap_init
107call (see
108.Xr pmap 9 ) .
109.Pp
110.Fn uvm_swap_init
111initialises the swap sub-system.
112.Sh VIRTUAL ADDRESS SPACE MANAGEMENT
113.Ft int
114.br
115.Fn uvm_map "struct vm_map *map" "vaddr_t *startp" "vsize_t size" "struct uvm_object *uobj" "voff_t uoffset" "vsize_t align" "uvm_flag_t flags" ;
116.Pp
117.Ft void
118.br
119.Fn uvm_unmap "struct vm_map *map" "vaddr_t start" "vaddr_t end" ;
120.Pp
121.Ft int
122.br
123.Fn uvm_map_pageable "struct vm_map *map" "vaddr_t start" "vaddr_t end" "boolean_t new_pageable" "int lockflags" ;
124.Pp
125.Ft boolean_t
126.br
127.Fn uvm_map_checkprot "struct vm_map *map" "vaddr_t start" "vaddr_t end" "vm_prot_t protection" ;
128.Pp
129.Ft int
130.br
131.Fn uvm_map_protect "struct vm_map *map" "vaddr_t start" "vaddr_t end" "vm_prot_t new_prot" "boolean_t set_max" ;
132.Pp
133.Ft int
134.br
135.Fn uvm_deallocate "struct vm_map *map" "vaddr_t start" "vsize_t size" ;
136.Pp
137.Ft struct vmspace *
138.br
139.Fn uvmspace_alloc "vaddr_t min" "vaddr_t max" "int pageable" ;
140.Pp
141.Ft void
142.br
143.Fn uvmspace_exec "struct proc *p" "vaddr_t start" "vaddr_t end" ;
144.Pp
145.Ft struct vmspace *
146.br
147.Fn uvmspace_fork "struct vmspace *vm" ;
148.Pp
149.Ft void
150.br
151.Fn uvmspace_free "struct vmspace *vm1" ;
152.Pp
153.Ft void
154.br
155.Fn uvmspace_share "struct proc *p1" "struct proc *p2" ;
156.Pp
157.Ft void
158.br
159.Fn uvmspace_unshare "struct proc *p" ;
160.Pp
161.Ft boolean_t
162.br
163.Fn uvm_uarea_alloc "vaddr_t *uaddrp" ;
164.Pp
165.Ft void
166.br
167.Fn uvm_uarea_free "vaddr_t uaddr" ;
168.Pp
169.Fn uvm_map
170establishes a valid mapping in map
171.Fa map ,
172which must be unlocked.
173The new mapping has size
174.Fa size ,
175which must be a multiple of
176.Dv PAGE_SIZE .
177The
178.Fa uobj
179and
180.Fa uoffset
181arguments can have four meanings.
182When
183.Fa uobj
184is
185.Dv NULL
186and
187.Fa uoffset
188is
189.Dv UVM_UNKNOWN_OFFSET ,
190.Fn uvm_map
191does not use the machine-dependent
192.Dv PMAP_PREFER
193function.
194If
195.Fa uoffset
196is any other value, it is used as the hint to
197.Dv PMAP_PREFER .
198When
199.Fa uobj
200is not
201.Dv NULL
202and
203.Fa uoffset
204is
205.Dv UVM_UNKNOWN_OFFSET ,
206.Fn uvm_map
207finds the offset based upon the virtual address, passed as
208.Fa startp .
209If
210.Fa uoffset
211is any other value, we are doing a normal mapping at this offset.
212The start address of the map will be returned in
213.Fa startp .
214.Pp
215.Fa align
216specifies alignment of mapping unless
217.Dv UVM_FLAG_FIXED
218is specified in
219.Fa flags .
220.Fa align
221must be a power of 2.
222.Pp
223.Fa flags
224passed to
225.Fn uvm_map
226are typically created using the
227.Fn UVM_MAPFLAG "vm_prot_t prot" "vm_prot_t maxprot" "vm_inherit_t inh" "int advice" "int flags"
228macro, which uses the following values.
229The
230.Fa prot
231and
232.Fa maxprot
233can take are:
234.Bd -literal
235#define UVM_PROT_MASK   0x07    /* protection mask */
236#define UVM_PROT_NONE   0x00    /* protection none */
237#define UVM_PROT_ALL    0x07    /* everything */
238#define UVM_PROT_READ   0x01    /* read */
239#define UVM_PROT_WRITE  0x02    /* write */
240#define UVM_PROT_EXEC   0x04    /* exec */
241#define UVM_PROT_R      0x01    /* read */
242#define UVM_PROT_W      0x02    /* write */
243#define UVM_PROT_RW     0x03    /* read-write */
244#define UVM_PROT_X      0x04    /* exec */
245#define UVM_PROT_RX     0x05    /* read-exec */
246#define UVM_PROT_WX     0x06    /* write-exec */
247#define UVM_PROT_RWX    0x07    /* read-write-exec */
248.Ed
249.Pp
250The values that
251.Fa inh
252can take are:
253.Bd -literal
254#define UVM_INH_MASK    0x30    /* inherit mask */
255#define UVM_INH_SHARE   0x00    /* "share" */
256#define UVM_INH_COPY    0x10    /* "copy" */
257#define UVM_INH_NONE    0x20    /* "none" */
258#define UVM_INH_DONATE  0x30    /* "donate" \*[Lt]\*[Lt] not used */
259.Ed
260.Pp
261The values that
262.Fa advice
263can take are:
264.Bd -literal
265#define UVM_ADV_NORMAL     0x0  /* 'normal' */
266#define UVM_ADV_RANDOM     0x1  /* 'random' */
267#define UVM_ADV_SEQUENTIAL 0x2  /* 'sequential' */
268#define UVM_ADV_MASK       0x7  /* mask */
269.Ed
270.Pp
271The values that
272.Fa flags
273can take are:
274.Bd -literal
275#define UVM_FLAG_FIXED   0x010000 /* find space */
276#define UVM_FLAG_OVERLAY 0x020000 /* establish overlay */
277#define UVM_FLAG_NOMERGE 0x040000 /* don't merge map entries */
278#define UVM_FLAG_COPYONW 0x080000 /* set copy_on_write flag */
279#define UVM_FLAG_AMAPPAD 0x100000 /* for bss: pad amap to reduce malloc() */
280#define UVM_FLAG_TRYLOCK 0x200000 /* fail if we can not lock map */
281.Ed
282.Pp
283The
284.Dv UVM_MAPFLAG
285macro arguments can be combined with an or operator.
286There are several special purpose macros for checking protection
287combinations, e.g., the
288.Dv UVM_PROT_WX
289macro.
290There are also some additional macros to extract bits from the flags.
291The
292.Dv UVM_PROTECTION ,
293.Dv UVM_INHERIT ,
294.Dv UVM_MAXPROTECTION
295and
296.Dv UVM_ADVICE
297macros return the protection, inheritance, maximum protection and advice,
298respectively.
299.Fn uvm_map
300returns a standard UVM return value.
301.Pp
302.Fn uvm_unmap
303removes a valid mapping,
304from
305.Fa start
306to
307.Fa end ,
308in map
309.Fa map ,
310which must be unlocked.
311.Pp
312.Fn uvm_map_pageable
313changes the pageability of the pages in the range from
314.Fa start
315to
316.Fa end
317in map
318.Fa map
319to
320.Fa new_pageable .
321.Fn uvm_map_pageable
322returns a standard UVM return value.
323.Pp
324.Fn uvm_map_checkprot
325checks the protection of the range from
326.Fa start
327to
328.Fa end
329in map
330.Fa map
331against
332.Fa protection .
333This returns either
334.Dv TRUE
335or
336.Dv FALSE .
337.Pp
338.Fn uvm_map_protect
339changes the protection
340.Fa start
341to
342.Fa end
343in map
344.Fa map
345to
346.Fa new_prot ,
347also setting the maximum protection to the region to
348.Fa new_prot
349if
350.Fa set_max
351is non-zero.
352This function returns a standard UVM return value.
353.Pp
354.Fn uvm_deallocate
355deallocates kernel memory in map
356.Fa map
357from address
358.Fa start
359to
360.Fa start + size .
361.Pp
362.Fn uvmspace_alloc
363allocates and returns a new address space, with ranges from
364.Fa min
365to
366.Fa max ,
367setting the pageability of the address space to
368.Fa pageable .
369.Pp
370.Fn uvmspace_exec
371either reuses the address space of process
372.Fa p
373if there are no other references to it, or creates
374a new one with
375.Fn uvmspace_alloc .
376The range of valid addresses in the address space is reset to
377.Fa start
378through
379.Fa end .
380.Pp
381.Fn uvmspace_fork
382creates and returns a new address space based upon the
383.Fa vm1
384address space, typically used when allocating an address space for a
385child process.
386.Pp
387.Fn uvmspace_free
388lowers the reference count on the address space
389.Fa vm ,
390freeing the data structures if there are no other references.
391.Pp
392.Fn uvmspace_share
393causes process
394.Pa p2
395to share the address space of
396.Fa p1 .
397.Pp
398.Fn uvmspace_unshare
399ensures that process
400.Fa p
401has its own, unshared address space, by creating a new one if
402necessary by calling
403.Fn uvmspace_fork .
404.Pp
405.Fn uvm_uarea_alloc
406allocates virtual space for a u-area (i.e., a kernel stack) and stores
407its virtual address in
408.Fa *uaddrp .
409The return value is
410.Dv TRUE
411if the u-area is already backed by wired physical memory, otherwise
412.Dv FALSE .
413.Pp
414.Fn uvm_uarea_free
415frees a u-area allocated with
416.Fn uvm_uarea_alloc ,
417freeing both the virtual space and any physical pages which may have been
418allocated to back that virtual space later.
419.Sh PAGE FAULT HANDLING
420.Ft int
421.br
422.Fn uvm_fault "struct vm_map *orig_map" "vaddr_t vaddr" "vm_fault_t fault_type" "vm_prot_t access_type" ;
423.Pp
424.Fn uvm_fault
425is the main entry point for faults.
426It takes
427.Fa orig_map
428as the map the fault originated in, a
429.Fa vaddr
430offset into the map the fault occurred,
431.Fa fault_type
432describing the type of fault, and
433.Fa access_type
434describing the type of access requested.
435.Fn uvm_fault
436returns a standard UVM return value.
437.Sh MEMORY MAPPING FILES AND DEVICES
438.Ft struct uvm_object *
439.br
440.Fn uvn_attach "void *arg" "vm_prot_t accessprot" ;
441.Pp
442.Ft void
443.br
444.Fn uvm_vnp_setsize "struct vnode *vp" "voff_t newsize" ;
445.Pp
446.Ft void *
447.br
448.Fn ubc_alloc "struct uvm_object *uobj" "voff_t offset" "vsize_t *lenp" "int flags" ;
449.Pp
450.Ft void
451.br
452.Fn ubc_release "void *va" "int flags" ;
453.Pp
454.Fn uvn_attach
455attaches a UVM object to vnode
456.Fa arg ,
457creating the object if necessary.
458The object is returned.
459.Pp
460.Fn uvm_vnp_setsize
461sets the size of vnode
462.Fa vp
463to
464.Fa newsize .
465Caller must hold a reference to the vnode.
466If the vnode shrinks, pages no longer used are discarded.
467.Pp
468.Fn ubc_alloc
469creates a kernel mappings of
470.Fa uobj
471starting at offset
472.Fa offset .
473the desired length of the mapping is pointed to by
474.Fa lenp ,
475but the actual mapping may be smaller than this.
476.Fa lenp
477is updated to contain the actual length mapped.
478The flags must be one of
479.Bd -literal
480#define UBC_READ        0x01    /* mapping will be accessed for read */
481#define UBC_WRITE       0x02    /* mapping will be accessed for write */
482.Ed
483.Pp
484Currently,
485.Fa uobj
486must actually be a vnode object.
487Once the mapping is created, it must be accessed only by methods that can
488handle faults, such as
489.Fn uiomove
490or
491.Fn kcopy .
492Page faults on the mapping will result in the vnode's
493.Fn VOP_GETPAGES
494method being called to resolve the fault.
495.Pp
496.Fn ubc_release
497frees the mapping at
498.Fa va
499for reuse.
500The mapping may be cached to speed future accesses to the same region
501of the object.
502The flags can be any of
503.Bd -literal
504#define UBC_UNMAP       0x01    /* do not cache mapping */
505.Ed
506.Sh VIRTUAL MEMORY I/O
507.Ft int
508.br
509.Fn uvm_io "struct vm_map *map" "struct uio *uio" ;
510.Pp
511.Fn uvm_io
512performs the I/O described in
513.Fa uio
514on the memory described in
515.Fa map .
516.Sh ALLOCATION OF KERNEL MEMORY
517.Ft vaddr_t
518.br
519.Fn uvm_km_alloc "struct vm_map *map" "vsize_t size" "vsize_t align" "uvm_flag_t flags" ;
520.Pp
521.Ft void
522.br
523.Fn uvm_km_free "struct vm_map *map" "vaddr_t addr" "vsize_t size" "uvm_flag_t flags" ;
524.Pp
525.Ft struct vm_map *
526.br
527.Fn uvm_km_suballoc "struct vm_map *map" "vaddr_t *min" "vaddr_t *max" "vsize_t size" "boolean_t pageable" "boolean_t fixed" "struct vm_map *submap" ;
528.Pp
529.Fn uvm_km_alloc
530allocates
531.Fa size
532bytes of kernel memory in map
533.Fa map .
534The first address of the allocated memory range will be aligned according to the
535.Fa align
536argument
537.Pq specify 0 if no alignment is necessary .
538The alignment must be a multiple of page size.
539The
540.Fa flags
541is a bitwise inclusive OR of the allocation type and operation flags.
542.Pp
543The allocation type should be one of:
544.Bl -tag -width UVM_KMF_PAGEABLE
545.It UVM_KMF_WIRED
546Wired memory.
547.It UVM_KMF_PAGEABLE
548Demand-paged zero-filled memory.
549.It UVM_KMF_VAONLY
550Virtual address only.
551No physical pages are mapped in the allocated region.
552If necessary, it's the caller's responsibility to enter page mappings.
553It's also the caller's responsibility to clean up the mappings before freeing
554the address range.
555.El
556.Pp
557The following operation flags are available:
558.Bl -tag -width UVM_KMF_PAGEABLE
559.It UVM_KMF_CANFAIL
560Can fail even if
561.Dv UVM_KMF_NOWAIT
562is not specified and
563.Dv UVM_KMF_WAITVA
564is specified.
565.It UVM_KMF_ZERO
566Request zero-filled memory.
567Only supported for
568.Dv UVM_KMF_WIRED .
569Shouldn't be used with other types.
570.It UVM_KMF_TRYLOCK
571Fail if we can't lock the map.
572.It UVM_KMF_NOWAIT
573Fail immediately if no memory is available.
574.It UVM_KMF_WAITVA
575Sleep to wait for the virtual address resources if needed.
576.El
577.Pp
578(If neither
579.Dv UVM_KMF_NOWAIT
580nor
581.Dv UVM_KMF_CANFAIL
582are specified and
583.Dv UVM_KMF_WAITVA
584is specified,
585.Fn uvm_km_alloc
586will never fail, but rather sleep indefinitely until the allocation succeeds.)
587.Pp
588Pageability of the pages allocated with
589.Dv UVM_KMF_PAGEABLE
590can be changed by
591.Fn uvm_map_pageable .
592In that case, the entire range must be changed atomically.
593Changing a part of the range is not supported.
594.Pp
595.Fn uvm_km_free
596frees the memory range allocated by
597.Fn uvm_km_alloc .
598.Fa addr
599must be an address returned by
600.Fn uvm_km_alloc .
601.Fa map
602and
603.Fa size
604must be the same as the ones used for the corresponding
605.Fn uvm_km_alloc .
606.Fa flags
607must be the allocation type used for the corresponding
608.Fn uvm_km_alloc .
609.Pp
610.Fn uvm_km_free
611is the only way to free memory ranges allocated by
612.Fn uvm_km_alloc .
613.Fn uvm_unmap
614must not be used.
615.Pp
616.Fn uvm_km_suballoc
617allocates submap from
618.Fa map ,
619creating a new map if
620.Fa submap
621is
622.Dv NULL .
623The addresses of the submap can be specified exactly by setting the
624.Fa fixed
625argument to non-zero, which causes the
626.Fa min
627argument to specify the beginning of the address in the submap.
628If
629.Fa fixed
630is zero, any address of size
631.Fa size
632will be allocated from
633.Fa map
634and the start and end addresses returned in
635.Fa min
636and
637.Fa max .
638If
639.Fa pageable
640is non-zero, entries in the map may be paged out.
641.Sh ALLOCATION OF PHYSICAL MEMORY
642.Ft struct vm_page *
643.br
644.Fn uvm_pagealloc "struct uvm_object *uobj" "voff_t off" "struct vm_anon *anon" "int flags" ;
645.Pp
646.Ft void
647.br
648.Fn uvm_pagerealloc "struct vm_page *pg" "struct uvm_object *newobj" "voff_t newoff" ;
649.Pp
650.Ft void
651.br
652.Fn uvm_pagefree "struct vm_page *pg" ;
653.Pp
654.Ft int
655.br
656.Fn uvm_pglistalloc "psize_t size" "paddr_t low" "paddr_t high" "paddr_t alignment" "paddr_t boundary" "struct pglist *rlist" "int nsegs" "int waitok" ;
657.Pp
658.Ft void
659.br
660.Fn uvm_pglistfree "struct pglist *list" ;
661.Pp
662.Ft void
663.br
664.Fn uvm_page_physload "vaddr_t start" "vaddr_t end" "vaddr_t avail_start" "vaddr_t avail_end" "int free_list" ;
665.Pp
666.Fn uvm_pagealloc
667allocates a page of memory at virtual address
668.Fa off
669in either the object
670.Fa uobj
671or the anonymous memory
672.Fa anon ,
673which must be locked by the caller.
674Only one of
675.Fa uobj
676and
677.Fa anon
678can be non
679.Dv NULL .
680Returns
681.Dv NULL
682when no page can be found.
683The flags can be any of
684.Bd -literal
685#define UVM_PGA_USERESERVE      0x0001  /* ok to use reserve pages */
686#define UVM_PGA_ZERO            0x0002  /* returned page must be zero'd */
687.Ed
688.Pp
689.Dv UVM_PGA_USERESERVE
690means to allocate a page even if that will result in the number of free pages
691being lower than
692.Dv uvmexp.reserve_pagedaemon
693(if the current thread is the pagedaemon) or
694.Dv uvmexp.reserve_kernel
695(if the current thread is not the pagedaemon).
696.Dv UVM_PGA_ZERO
697causes the returned page to be filled with zeroes, either by allocating it
698from a pool of pre-zeroed pages or by zeroing it in-line as necessary.
699.Pp
700.Fn uvm_pagerealloc
701reallocates page
702.Fa pg
703to a new object
704.Fa newobj ,
705at a new offset
706.Fa newoff .
707.Pp
708.Fn uvm_pagefree
709frees the physical page
710.Fa pg .
711If the content of the page is known to be zero-filled,
712caller should set
713.Dv PG_ZERO
714in pg-\*[Gt]flags so that the page allocator will use
715the page to serve future
716.Dv UVM_PGA_ZERO
717requests efficiently.
718.Pp
719.Fn uvm_pglistalloc
720allocates a list of pages for size
721.Fa size
722byte under various constraints.
723.Fa low
724and
725.Fa high
726describe the lowest and highest addresses acceptable for the list.
727If
728.Fa alignment
729is non-zero, it describes the required alignment of the list, in
730power-of-two notation.
731If
732.Fa boundary
733is non-zero, no segment of the list may cross this power-of-two
734boundary, relative to zero.
735.Fa nsegs
736is the maximum number of physically contigous segments.
737If
738.Fa waitok
739is non-zero, the function may sleep until enough memory is available.
740(It also may give up in some situations, so a non-zero
741.Fa waitok
742does not imply that
743.Fn uvm_pglistalloc
744cannot return an error.)
745The allocated memory is returned in the
746.Fa rlist
747list; the caller has to provide storage only, the list is initialized by
748.Fn uvm_pglistalloc .
749.Pp
750.Fn uvm_pglistfree
751frees the list of pages pointed to by
752.Fa list .
753If the content of the page is known to be zero-filled,
754caller should set
755.Dv PG_ZERO
756in pg-\*[Gt]flags so that the page allocator will use
757the page to serve future
758.Dv UVM_PGA_ZERO
759requests efficiently.
760.Pp
761.Fn uvm_page_physload
762loads physical memory segments into VM space on the specified
763.Fa free_list .
764It must be called at system boot time to set up physical memory
765management pages.
766The arguments describe the
767.Fa start
768and
769.Fa end
770of the physical addresses of the segment, and the available start and end
771addresses of pages not already in use.
772.\" XXX expand on "system boot time"!
773.Sh PROCESSES
774.Ft void
775.br
776.Fn uvm_pageout "void" ;
777.Pp
778.Ft void
779.br
780.Fn uvm_scheduler "void" ;
781.Pp
782.Ft void
783.br
784.Fn uvm_swapin "struct proc *p" ;
785.Pp
786.Fn uvm_pageout
787is the main loop for the page daemon.
788.Pp
789.Fn uvm_scheduler
790is the process zero main loop, which is to be called after the
791system has finished starting other processes.
792It handles the swapping in of runnable, swapped out processes in priority
793order.
794.Pp
795.Fn uvm_swapin
796swaps in the named process.
797.Sh PAGE LOAN
798.Ft int
799.br
800.Fn uvm_loan "struct vm_map *map" "vaddr_t start" "vsize_t len" "void *v" "int flags" ;
801.Pp
802.Ft void
803.br
804.Fn uvm_unloan "void *v" "int npages" "int flags" ;
805.Pp
806.Fn uvm_loan
807loans pages in a map out to anons or to the kernel.
808.Fa map
809should be unlocked,
810.Fa start
811and
812.Fa len
813should be multiples of
814.Dv PAGE_SIZE .
815Argument
816.Fa flags
817should be one of
818.Bd -literal
819#define UVM_LOAN_TOANON       0x01    /* loan to anons */
820#define UVM_LOAN_TOPAGE       0x02    /* loan to kernel */
821.Ed
822.Pp
823.Fa v
824should be pointer to array of pointers to
825.Li struct anon
826or
827.Li struct vm_page ,
828as appropriate.
829The caller has to allocate memory for the array and
830ensure it's big enough to hold
831.Fa len / PAGE_SIZE
832pointers.
833Returns 0 for success, or appropriate error number otherwise.
834Note that wired pages can't be loaned out and
835.Fn uvm_loan
836will fail in that case.
837.Pp
838.Fn uvm_unloan
839kills loans on pages or anons.
840The
841.Fa v
842must point to the array of pointers initialized by previous call to
843.Fn uvm_loan .
844.Fa npages
845should match number of pages allocated for loan, this also matches
846number of items in the array.
847Argument
848.Fa flags
849should be one of
850.Bd -literal
851#define UVM_LOAN_TOANON       0x01    /* loan to anons */
852#define UVM_LOAN_TOPAGE       0x02    /* loan to kernel */
853.Ed
854.Pp
855and should match what was used for previous call to
856.Fn uvm_loan .
857.Sh MISCELLANEOUS FUNCTIONS
858.Ft struct uvm_object *
859.br
860.Fn uao_create "vsize_t size" "int flags" ;
861.Pp
862.Ft void
863.br
864.Fn uao_detach "struct uvm_object *uobj" ;
865.Pp
866.Ft void
867.br
868.Fn uao_reference "struct uvm_object *uobj" ;
869.Pp
870.Ft boolean_t
871.br
872.Fn uvm_chgkprot "caddr_t addr" "size_t len" "int rw" ;
873.Pp
874.Ft void
875.br
876.Fn uvm_kernacc "caddr_t addr" "size_t len" "int rw" ;
877.Pp
878.Ft int
879.br
880.Fn uvm_vslock "struct proc *p" "caddr_t addr" "size_t len" "vm_prot_t prot" ;
881.Pp
882.Ft void
883.br
884.Fn uvm_vsunlock "struct proc *p" "caddr_t addr" "size_t len" ;
885.Pp
886.Ft void
887.br
888.Fn uvm_meter "void" ;
889.Pp
890.Ft void
891.br
892.Fn uvm_fork "struct proc *p1" "struct proc *p2" "boolean_t shared" ;
893.Pp
894.Ft int
895.br
896.Fn uvm_grow "struct proc *p" "vaddr_t sp" ;
897.Pp
898.Ft int
899.br
900.Fn uvm_coredump "struct proc *p" "struct vnode *vp" "struct ucred *cred" "struct core *chdr" ;
901.Pp
902.Ft void
903.br
904.Fn uvn_findpages "struct uvm_object *uobj" "voff_t offset" "int *npagesp" "struct vm_page **pps" "int flags" ;
905.Pp
906.Ft void
907.br
908.Fn uvm_swap_stats "int cmd" "struct swapent *sep" "int sec" "register_t *retval" ;
909.Pp
910The
911.Fn uao_create ,
912.Fn uao_detach ,
913and
914.Fn uao_reference
915functions operate on anonymous memory objects, such as those used to support
916System V shared memory.
917.Fn uao_create
918returns an object of size
919.Fa size
920with flags:
921.Bd -literal
922#define UAO_FLAG_KERNOBJ        0x1     /* create kernel object */
923#define UAO_FLAG_KERNSWAP       0x2     /* enable kernel swap */
924.Ed
925.Pp
926which can only be used once each at system boot time.
927.Fn uao_reference
928creates an additional reference to the named anonymous memory object.
929.Fn uao_detach
930removes a reference from the named anonymous memory object, destroying
931it if removing the last reference.
932.Pp
933.Fn uvm_chgkprot
934changes the protection of kernel memory from
935.Fa addr
936to
937.Fa addr + len
938to the value of
939.Fa rw .
940This is primarily useful for debuggers, for setting breakpoints.
941This function is only available with options
942.Dv KGDB .
943.Pp
944.Fn uvm_kernacc
945checks the access at address
946.Fa addr
947to
948.Fa addr + len
949for
950.Fa rw
951access in the kernel address space.
952.Pp
953.Fn uvm_vslock
954and
955.Fn uvm_vsunlock
956control the wiring and unwiring of pages for process
957.Fa p
958from
959.Fa addr
960to
961.Fa addr + len .
962These functions are normally used to wire memory for I/O.
963.Pp
964.Fn uvm_meter
965calculates the load average and wakes up the swapper if necessary.
966.Pp
967.Fn uvm_fork
968forks a virtual address space for process' (old)
969.Fa p1
970and (new)
971.Fa p2 .
972If the
973.Fa shared
974argument is non zero, p1 shares its address space with p2,
975otherwise a new address space is created.
976This function currently has no return value, and thus cannot fail.
977In the future, this function will be changed to allow it to
978fail in low memory conditions.
979.Pp
980.Fn uvm_grow
981increases the stack segment of process
982.Fa p
983to include
984.Fa sp .
985.Pp
986.Fn uvm_coredump
987generates a coredump on vnode
988.Fa vp
989for process
990.Fa p
991with credentials
992.Fa cred
993and core header description in
994.Fa chdr .
995.Pp
996.Fn uvn_findpages
997looks up or creates pages in
998.Fa uobj
999at offset
1000.Fa offset ,
1001marks them busy and returns them in the
1002.Fa pps
1003array.
1004Currently
1005.Fa uobj
1006must be a vnode object.
1007The number of pages requested is pointed to by
1008.Fa npagesp ,
1009and this value is updated with the actual number of pages returned.
1010The flags can be
1011.Bd -literal
1012#define UFP_ALL         0x00    /* return all pages requested */
1013#define UFP_NOWAIT      0x01    /* don't sleep */
1014#define UFP_NOALLOC     0x02    /* don't allocate new pages */
1015#define UFP_NOCACHE     0x04    /* don't return pages which already exist */
1016#define UFP_NORDONLY    0x08    /* don't return PG_READONLY pages */
1017.Ed
1018.Pp
1019.Dv UFP_ALL
1020is a pseudo-flag meaning all requested pages should be returned.
1021.Dv UFP_NOWAIT
1022means that we must not sleep.
1023.Dv UFP_NOALLOC
1024causes any pages which do not already exist to be skipped.
1025.Dv UFP_NOCACHE
1026causes any pages which do already exist to be skipped.
1027.Dv UFP_NORDONLY
1028causes any pages which are marked PG_READONLY to be skipped.
1029.Pp
1030.Fn uvm_swap_stats
1031implements the
1032.Dv SWAP_STATS
1033and
1034.Dv SWAP_OSTATS
1035operation of the
1036.Xr swapctl 2
1037system call.
1038.Fa cmd
1039is the requested command,
1040.Dv SWAP_STATS
1041or
1042.Dv SWAP_OSTATS .
1043The function will copy no more than
1044.Fa sec
1045entries in the array pointed by
1046.Fa sep .
1047On return,
1048.Fa retval
1049holds the actual number of entries copied in the array.
1050.Sh SYSCTL
1051UVM provides support for the
1052.Dv CTL_VM
1053domain of the
1054.Xr sysctl 3
1055hierarchy.
1056It handles the
1057.Dv VM_LOADAVG ,
1058.Dv VM_METER ,
1059.Dv VM_UVMEXP ,
1060and
1061.Dv VM_UVMEXP2
1062nodes, which return the current load averages, calculates current VM
1063totals, returns the uvmexp structure, and a kernel version independent
1064view of the uvmexp structure, respectively.
1065It also exports a number of tunables that control how much VM space is
1066allowed to be consumed by various tasks.
1067The load averages are typically accessed from userland using the
1068.Xr getloadavg 3
1069function.
1070The uvmexp structure has all global state of the UVM system,
1071and has the following members:
1072.Bd -literal
1073/* vm_page constants */
1074int pagesize;   /* size of a page (PAGE_SIZE): must be power of 2 */
1075int pagemask;   /* page mask */
1076int pageshift;  /* page shift */
1077
1078/* vm_page counters */
1079int npages;     /* number of pages we manage */
1080int free;       /* number of free pages */
1081int active;     /* number of active pages */
1082int inactive;   /* number of pages that we free'd but may want back */
1083int paging;     /* number of pages in the process of being paged out */
1084int wired;      /* number of wired pages */
1085int reserve_pagedaemon; /* number of pages reserved for pagedaemon */
1086int reserve_kernel; /* number of pages reserved for kernel */
1087
1088/* pageout params */
1089int freemin;    /* min number of free pages */
1090int freetarg;   /* target number of free pages */
1091int inactarg;   /* target number of inactive pages */
1092int wiredmax;   /* max number of wired pages */
1093
1094/* swap */
1095int nswapdev;   /* number of configured swap devices in system */
1096int swpages;    /* number of PAGE_SIZE'ed swap pages */
1097int swpginuse;  /* number of swap pages in use */
1098int nswget;     /* number of times fault calls uvm_swap_get() */
1099int nanon;      /* number total of anon's in system */
1100int nfreeanon;  /* number of free anon's */
1101
1102/* stat counters */
1103int faults;             /* page fault count */
1104int traps;              /* trap count */
1105int intrs;              /* interrupt count */
1106int swtch;              /* context switch count */
1107int softs;              /* software interrupt count */
1108int syscalls;           /* system calls */
1109int pageins;            /* pagein operation count */
1110                        /* pageouts are in pdpageouts below */
1111int swapins;            /* swapins */
1112int swapouts;           /* swapouts */
1113int pgswapin;           /* pages swapped in */
1114int pgswapout;          /* pages swapped out */
1115int forks;              /* forks */
1116int forks_ppwait;       /* forks where parent waits */
1117int forks_sharevm;      /* forks where vmspace is shared */
1118
1119/* fault subcounters */
1120int fltnoram;   /* number of times fault was out of ram */
1121int fltnoanon;  /* number of times fault was out of anons */
1122int fltpgwait;  /* number of times fault had to wait on a page */
1123int fltpgrele;  /* number of times fault found a released page */
1124int fltrelck;   /* number of times fault relock called */
1125int fltrelckok; /* number of times fault relock is a success */
1126int fltanget;   /* number of times fault gets anon page */
1127int fltanretry; /* number of times fault retrys an anon get */
1128int fltamcopy;  /* number of times fault clears "needs copy" */
1129int fltnamap;   /* number of times fault maps a neighbor anon page */
1130int fltnomap;   /* number of times fault maps a neighbor obj page */
1131int fltlget;    /* number of times fault does a locked pgo_get */
1132int fltget;     /* number of times fault does an unlocked get */
1133int flt_anon;   /* number of times fault anon (case 1a) */
1134int flt_acow;   /* number of times fault anon cow (case 1b) */
1135int flt_obj;    /* number of times fault is on object page (2a) */
1136int flt_prcopy; /* number of times fault promotes with copy (2b) */
1137int flt_przero; /* number of times fault promotes with zerofill (2b) */
1138
1139/* daemon counters */
1140int pdwoke;     /* number of times daemon woke up */
1141int pdrevs;     /* number of times daemon rev'd clock hand */
1142int pdswout;    /* number of times daemon called for swapout */
1143int pdfreed;    /* number of pages daemon freed since boot */
1144int pdscans;    /* number of pages daemon scanned since boot */
1145int pdanscan;   /* number of anonymous pages scanned by daemon */
1146int pdobscan;   /* number of object pages scanned by daemon */
1147int pdreact;    /* number of pages daemon reactivated since boot */
1148int pdbusy;     /* number of times daemon found a busy page */
1149int pdpageouts; /* number of times daemon started a pageout */
1150int pdpending;  /* number of times daemon got a pending pageout */
1151int pddeact;    /* number of pages daemon deactivates */
1152.Ed
1153.Sh NOTES
1154.Fn uvm_chgkprot
1155is only available if the kernel has been compiled with options
1156.Dv KGDB .
1157.Pp
1158All structure and types whose names begin with
1159.Dq vm_
1160will be renamed to
1161.Dq uvm_ .
1162.Sh SEE ALSO
1163.Xr swapctl 2 ,
1164.Xr getloadavg 3 ,
1165.Xr kvm 3 ,
1166.Xr sysctl 3 ,
1167.Xr ddb 4 ,
1168.Xr options 4 ,
1169.Xr pmap 9
1170.Sh HISTORY
1171UVM is a new VM system developed at Washington University in St. Louis
1172(Missouri).
1173UVM's roots lie partly in the Mach-based
1174.Bx 4.4
1175VM system, the
1176.Fx
1177VM system, and the SunOS 4 VM system.
1178UVM's basic structure is based on the
1179.Bx 4.4
1180VM system.
1181UVM's new anonymous memory system is based on the
1182anonymous memory system found in the SunOS 4 VM (as described in papers
1183published by Sun Microsystems, Inc.).
1184UVM also includes a number of features new to
1185.Bx
1186including page loanout, map entry passing, simplified
1187copy-on-write, and clustered anonymous memory pageout.
1188UVM is also further documented in an August 1998 dissertation by
1189Charles D. Cranor.
1190.Pp
1191UVM appeared in
1192.Nx 1.4 .
1193.Sh AUTHORS
1194Charles D. Cranor
1195.Aq chuck@ccrc.wustl.edu
1196designed and implemented UVM.
1197.Pp
1198Matthew Green
1199.Aq mrg@eterna.com.au
1200wrote the swap-space management code and handled the logistical issues
1201involved with merging UVM into the
1202.Nx
1203source tree.
1204.Pp
1205Chuck Silvers
1206.Aq chuq@chuq.com
1207implemented the aobj pager, thus allowing UVM to support System V shared
1208memory and process swapping.
1209He also designed and implemented the UBC part of UVM, which uses UVM pages
1210to cache vnode data rather than the traditional buffer cache buffers.
1211