1.\" $NetBSD: uvm.9,v 1.26 2001/07/28 15:55:14 chs Exp $ 2.\" 3.\" Copyright (c) 1998 Matthew R. Green 4.\" All rights reserved. 5.\" 6.\" Redistribution and use in source and binary forms, with or without 7.\" modification, are permitted provided that the following conditions 8.\" are met: 9.\" 1. Redistributions of source code must retain the above copyright 10.\" notice, this list of conditions and the following disclaimer. 11.\" 2. Redistributions in binary form must reproduce the above copyright 12.\" notice, this list of conditions and the following disclaimer in the 13.\" documentation and/or other materials provided with the distribution. 14.\" 3. The name of the author may not be used to endorse or promote products 15.\" derived from this software without specific prior written permission. 16.\" 17.\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18.\" IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19.\" OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20.\" IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21.\" INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 22.\" BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 23.\" LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 24.\" AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 25.\" OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27.\" SUCH DAMAGE. 28.\" 29.\" XXX this manual sets nS to 1 or 0 in the description, to obtain 30.\" synopsis-like function prototypes. any better way? 31.\" 32.Dd March 26, 2000 33.Dt UVM 9 34.Os 35.Sh NAME 36.Nm uvm 37.Nd virtual memory system external interface 38.Sh SYNOPSIS 39.Fd #include <sys/param.h> 40.Fd #include <uvm/uvm.h> 41.Sh DESCRIPTION 42The UVM virtual memory system manages access to the computer's memory 43resources. User processes and the kernel access these resources through 44UVM's external interface. UVM's external interface includes functions that: 45.Pp 46.Bl -hyphen -compact 47.It 48initialise UVM sub-systems 49.It 50manage virtual address spaces 51.It 52resolve page faults 53.It 54memory map files and devices 55.It 56perform uio-based I/O to virtual memory 57.It 58allocate and free kernel virtual memory 59.It 60allocate and free physical memory 61.El 62.Pp 63In addition to exporting these services, UVM has two kernel-level processes: 64pagedaemon and swapper. The pagedaemon process sleeps until physical memory 65becomes scarce. When that happens, pagedaemon is awoken. It scans physical 66memory, paging out and freeing memory that has not been recently used. The 67swapper process swaps in runnable processes that are currently swapped out, 68if there is room. 69.Pp 70There are also several miscellaneous functions. 71.Sh INITIALISATION 72.nr nS 1 73.Pp 74.Ft void 75.Fn uvm_init "void" 76.Ft void 77.Fn uvm_init_limits "struct proc *p" 78.Ft void 79.Fn uvm_setpagesize "void" 80.Ft void 81.Fn uvm_swap_init "void" 82.nr nS 0 83.Pp 84.Fn uvm_init 85sets up the UVM system at system boot time, after the 86copyright has been printed. It initialises 87global state, the page, map, kernel virtual memory state, 88machine-dependent physical map, kernel memory allocator, 89pager and anonymous memory sub-systems, and then enables 90paging of kernel objects. 91.Pp 92.Fn uvm_init_limits 93initialises process limits for the named process. This is for use by 94the system startup for process zero, before any other processes are 95created. 96.Pp 97.Fn uvm_setpagesize 98initialises the uvmexp members pagesize (if not already done by 99machine-dependent code), pageshift and pagemask. It should be called by 100machine-dependent code early in the 101.Fn pmap_init 102call (see 103.Xr pmap 9 ) . 104.Pp 105.Fn uvm_swap_init 106initialises the swap sub-system. 107.Sh VIRTUAL ADDRESS SPACE MANAGEMENT 108.Pp 109.nr nS 1 110.Ft int 111.Fn uvm_map "struct vm_map *map" "vaddr_t *startp" "vsize_t size" "struct uvm_object *uobj" "voff_t uoffset" "uvm_flag_t flags" 112.Ft int 113.Fn uvm_map_pageable "struct vm_map *map" "vaddr_t start" "vaddr_t end" "boolean_t new_pageable" "int lockflags" 114.Ft boolean_t 115.Fn uvm_map_checkprot "struct vm_map *map" "vaddr_t start" "vaddr_t end" "vm_prot_t protection" 116.Ft int 117.Fn uvm_map_protect "struct vm_map *map" "vaddr_t start" "vaddr_t end" "vm_prot_t new_prot" "boolean_t set_max" 118.Ft int 119.Fn uvm_deallocate "struct vm_map *map" "vaddr_t start" "vsize_t size" 120 121.Ft struct vmspace * 122.Fn uvmspace_alloc "vaddr_t min" "vaddr_t max" "int pageable" 123.Ft void 124.Fn uvmspace_exec "struct proc *p" "vaddr_t start" "vaddr_t end" 125.Ft struct vmspace * 126.Fn uvmspace_fork "struct vmspace *vm" 127.Ft void 128.Fn uvmspace_free "struct vmspace *vm1" 129.Ft void 130.Fn uvmspace_share "struct proc *p1" "struct proc *p2" 131.Ft void 132.Fn uvmspace_unshare "struct proc *p" 133.nr nS 0 134.Pp 135.Fn uvm_map 136establishes a valid mapping in map 137.Fa map , 138which must be unlocked. The new mapping has size 139.Fa size , 140which must be in 141.Dv PAGE_SIZE 142units. The 143.Fa uobj 144and 145.Fa uoffset 146arguments can have four meanings. When 147.Fa uobj 148is 149.Dv NULL 150and 151.Fa uoffset 152is 153.Dv UVM_UNKNOWN_OFFSET , 154.Fn uvm_map 155does not use the machine-dependent 156.Dv PMAP_PREFER 157function. If 158.Fa uoffset 159is any other value, it is used as the hint to 160.Dv PMAP_PREFER . 161When 162.Fa uobj 163is not 164.Dv NULL 165and 166.Fa uoffset 167is 168.Dv UVM_UNKNOWN_OFFSET , 169.Fn uvm_map 170finds the offset based upon the virtual address, passed as 171.Fa startp . 172If 173.Fa uoffset 174is any other value, we are doing a normal mapping at this offset. The 175start address of the map will be returned in 176.Fa startp . 177.Pp 178.Fa flags 179passed to 180.Fn uvm_map 181are typically created using the 182.Fn UVM_MAPFLAG "vm_prot_t prot" "vm_prot_t maxprot" "vm_inherit_t inh" "int advice" "int flags" 183macro, which uses the following values. 184The 185.Fa prot 186and 187.Fa maxprot 188can take are: 189.Bd -literal 190#define UVM_PROT_MASK 0x07 /* protection mask */ 191#define UVM_PROT_NONE 0x00 /* protection none */ 192#define UVM_PROT_ALL 0x07 /* everything */ 193#define UVM_PROT_READ 0x01 /* read */ 194#define UVM_PROT_WRITE 0x02 /* write */ 195#define UVM_PROT_EXEC 0x04 /* exec */ 196#define UVM_PROT_R 0x01 /* read */ 197#define UVM_PROT_W 0x02 /* write */ 198#define UVM_PROT_RW 0x03 /* read-write */ 199#define UVM_PROT_X 0x04 /* exec */ 200#define UVM_PROT_RX 0x05 /* read-exec */ 201#define UVM_PROT_WX 0x06 /* write-exec */ 202#define UVM_PROT_RWX 0x07 /* read-write-exec */ 203.Ed 204.Pp 205The values that 206.Fa inh 207can take are: 208.Bd -literal 209#define UVM_INH_MASK 0x30 /* inherit mask */ 210#define UVM_INH_SHARE 0x00 /* "share" */ 211#define UVM_INH_COPY 0x10 /* "copy" */ 212#define UVM_INH_NONE 0x20 /* "none" */ 213#define UVM_INH_DONATE 0x30 /* "donate" << not used */ 214.Ed 215.Pp 216The values that 217.Fa advice 218can take are: 219.Bd -literal 220#define UVM_ADV_NORMAL 0x0 /* 'normal' */ 221#define UVM_ADV_RANDOM 0x1 /* 'random' */ 222#define UVM_ADV_SEQUENTIAL 0x2 /* 'sequential' */ 223#define UVM_ADV_MASK 0x7 /* mask */ 224.Ed 225.Pp 226The values that 227.Fa flags 228can take are: 229.Bd -literal 230#define UVM_FLAG_FIXED 0x010000 /* find space */ 231#define UVM_FLAG_OVERLAY 0x020000 /* establish overlay */ 232#define UVM_FLAG_NOMERGE 0x040000 /* don't merge map entries */ 233#define UVM_FLAG_COPYONW 0x080000 /* set copy_on_write flag */ 234#define UVM_FLAG_AMAPPAD 0x100000 /* for bss: pad amap to reduce malloc() */ 235#define UVM_FLAG_TRYLOCK 0x200000 /* fail if we can not lock map */ 236.Ed 237.Pp 238The 239.Dv UVM_MAPFLAG 240macro arguments can be combined with an or operator. There are 241several special purpose macros for checking protection combinations, e.g. the 242.Dv UVM_PROT_WX 243macro. There are also some additional macros to extract bits from 244the flags. The 245.Dv UVM_PROTECTION , 246.Dv UVM_INHERIT , 247.Dv UVM_MAXPROTECTION 248and 249.Dv UVM_ADVICE 250macros return the protection, inheritance, maximum protection and advice, 251respectively. 252.Fn uvm_map 253returns a standard UVM return value. 254.Pp 255.Fn uvm_map_pageable 256changes the pageability of the pages in the range from 257.Fa start 258to 259.Fa end 260in map 261.Fa map 262to 263.Fa new_pageable . 264.Fn uvm_map_pageable 265returns a standard UVM return value. 266.Pp 267.Fn uvm_map_checkprot 268checks the protection of the range from 269.Fa start 270to 271.Fa end 272in map 273.Fa map 274against 275.Fa protection . 276This returns either 277.Dv TRUE 278or 279.Dv FALSE . 280.Pp 281.Fn uvm_map_protect 282changes the protection 283.Fa start 284to 285.Fa end 286in map 287.Fa map 288to 289.Fa new_prot , 290also setting the maximum protection to the region to 291.Fa new_prot 292if 293.Fa set_max 294is non-zero. This function returns a standard UVM return value. 295.Pp 296.Fn uvm_deallocate 297deallocates kernel memory in map 298.Fa map 299from address 300.Fa start 301to 302.Fa start + size . 303.Pp 304.Fn uvmspace_alloc 305allocates and returns a new address space, with ranges from 306.Fa min 307to 308.Fa max , 309setting the pageability of the address space to 310.Fa pageable . 311.Pp 312.Fn uvmspace_exec 313either reuses the address space of process 314.Fa p 315if there are no other references to it, or creates 316a new one with 317.Fn uvmspace_alloc . 318The range of valid addresses in the address space is reset to 319.Fa start 320through 321.Fa end . 322.Pp 323.Fn uvmspace_fork 324creates and returns a new address space based upon the 325.Fa vm1 326address space, typically used when allocating an address space for a 327child process. 328.Pp 329.Fn uvmspace_free 330lowers the reference count on the address space 331.Fa vm , 332freeing the data structures if there are no other references. 333.Pp 334.Fn uvmspace_share 335causes process 336.Pa p2 337to share the address space of 338.Fa p1 . 339.Pp 340.Fn uvmspace_unshare 341ensures that process 342.Fa p 343has its own, unshared address space, by creating a new one if 344necessary by calling 345.Fn uvmspace_fork . 346.Sh PAGE FAULT HANDLING 347.Pp 348.nr nS 1 349.Ft int 350.Fn uvm_fault "struct vm_map *orig_map" "vaddr_t vaddr" "vm_fault_t fault_type" "vm_prot_t access_type" 351.nr nS 0 352.Pp 353.Fn uvm_fault 354is the main entry point for faults. It takes 355.Fa orig_map 356as the map the fault originated in, a 357.Fa vaddr 358offset into the map the fault occurred, 359.Fa fault_type 360describing the type of fault, and 361.Fa access_type 362describing the type of access requested. 363.Fn uvm_fault 364returns a standard UVM return value. 365.Sh MEMORY MAPPING FILES AND DEVICES 366.Pp 367.nr nS 1 368.Ft struct uvm_object * 369.Fn uvn_attach "void *arg" "vm_prot_t accessprot" 370.Ft void 371.Fn uvm_vnp_setsize "struct vnode *vp" "voff_t newsize" 372.Ft void * 373.Fn ubc_alloc "struct uvm_object *uobj" "voff_t offset" "vsize_t *lenp" "int flags" 374.Ft void 375.Fn ubc_release "void *va" "int flags" 376.nr nS 0 377.Pp 378.Fn uvn_attach 379attaches a UVM object to vnode 380.Fa arg , 381creating the object if necessary. The object is returned. 382.Pp 383.Fn uvm_vnp_setsize 384sets the size of vnode 385.Fa vp 386to 387.Fa newsize . 388Caller must hold a reference to the vnode. If the vnode shrinks, pages 389no longer used are discarded. 390.Pp 391.Fn ubc_alloc 392creates a kernel mappings of 393.Fa uobj 394starting at offset 395.Fa offset . 396the desired length of the mapping is pointed to by 397.Fa lenp , 398but the actual mapping may be smaller than this. 399.Fa lenp 400is updated to contain the actual length mapped. 401The flags must be one of 402.Bd -literal 403#define UBC_READ 0x01 /* mapping will be accessed for read */ 404#define UBC_WRITE 0x02 /* mapping will be accessed for write */ 405.Ed 406.Pp 407Currently, 408.Fa uobj 409must actually be a vnode object. 410Once the mapping is created, it must be accessed only by methods that can 411handle faults, such as 412.Fn uiomove 413or 414.Fn kcopy . 415Page faults on the mapping will result in the vnode's 416.Fn VOP_GETPAGES 417method being called to resolve the fault. 418.Pp 419.Fn ubc_release 420frees the mapping at 421.Fa va 422for reuse. The mapping may be cached to speed future accesses to the same 423region of the object. The flags are currently unused. 424.Sh VIRTUAL MEMORY I/O 425.Pp 426.nr nS 1 427.Ft int 428.Fn uvm_io "struct vm_map *map" "struct uio *uio" 429.nr nS 0 430.Pp 431.Fn uvm_io 432performs the I/O described in 433.Fa uio 434on the memory described in 435.Fa map . 436.Sh ALLOCATION OF KERNEL MEMORY 437.Pp 438.nr nS 1 439.Ft vaddr_t 440.Fn uvm_km_alloc "struct vm_map *map" "vsize_t size" 441.Ft vaddr_t 442.Fn uvm_km_zalloc "struct vm_map *map" "vsize_t size" 443.Ft vaddr_t 444.Fn uvm_km_alloc1 "struct vm_map *map" "vsize_t size" "boolean_t zeroit" 445.Ft vaddr_t 446.Fn uvm_km_kmemalloc "struct vm_map *map" "struct uvm_object *obj" "vsize_t size" "int flags" 447.Ft vaddr_t 448.Fn uvm_km_valloc "struct vm_map *map" "vsize_t size" 449.Ft vaddr_t 450.Fn uvm_km_valloc_wait "struct vm_map *map" "vsize_t size" 451.Ft struct vm_map * 452.Fn uvm_km_suballoc "struct vm_map *map" "vaddr_t *min" "vaddr_t *max " "vsize_t size" "boolean_t pageable" "boolean_t fixed" "struct vm_map *submap" 453.Ft void 454.Fn uvm_km_free "struct vm_map *map" "vaddr_t addr" "vsize_t size" 455.Ft void 456.Fn uvm_km_free_wakeup "struct vm_map *map" "vaddr_t addr" "vsize_t size" 457.nr nS 0 458.Pp 459.Fn uvm_km_alloc 460and 461.Fn uvm_km_zalloc 462allocate 463.Fa size 464bytes of wired kernel memory in map 465.Fa map . 466In addition to allocation, 467.Fn uvm_km_zalloc 468zeros the memory. Both of these functions are defined as macros in 469terms of 470.Fn uvm_km_alloc1 , 471and should almost always be used in preference to 472.Fn uvm_km_alloc1 . 473.Pp 474.Fn uvm_km_alloc1 475allocates and returns 476.Fa size 477bytes of wired memory in the kernel map, zeroing the memory if the 478.Fa zeroit 479argument is non-zero. 480.Pp 481.Fn uvm_km_kmemalloc 482allocates and returns 483.Fa size 484bytes of wired kernel memory into 485.Fa obj . 486The flags can be any of: 487.Bd -literal 488#define UVM_KMF_NOWAIT 0x1 /* matches M_NOWAIT */ 489#define UVM_KMF_VALLOC 0x2 /* allocate VA only */ 490#define UVM_KMF_TRYLOCK UVM_FLAG_TRYLOCK /* try locking only */ 491.Ed 492.Pp 493.Dv UVM_KMF_NOWAIT 494causes 495.Fn uvm_km_kmemalloc 496to return immediately if no memory is available. 497.Dv UVM_KMF_VALLOC 498causes no pages to be allocated, only a virtual address. 499.Dv UVM_KMF_TRYLOCK 500causes 501.Fn uvm_km_kmemalloc 502to use 503.Fn simple_lock_try 504when locking maps. 505.Pp 506.Fn uvm_km_valloc 507and 508.Fn uvm_km_valloc_wait 509return a newly allocated zero-filled address in the kernel map of size 510.Fa size . 511.Fn uvm_km_valloc_wait 512will also wait for kernel memory to become available, if there is a 513memory shortage. 514.Pp 515.Fn uvm_km_free 516and 517.Fn uvm_km_free_wakeup 518free 519.Fa size 520bytes of memory in the kernel map, starting at address 521.Fa addr . 522.Fn uvm_km_free_wakeup 523calls 524.Fn wakeup 525on the map before unlocking the map. 526.Pp 527.Fn uvm_km_suballoc 528allocates submap from 529.Fa map , 530creating a new map if 531.Fa submap 532is 533.Dv NULL . 534The addresses of the submap can be specified exactly by setting the 535.Fa fixed 536argument to non-zero, which causes the 537.Fa min 538argument specify the beginning of the address in the submap. If 539.Fa fixed 540is zero, any address of size 541.Fa size 542will be allocated from 543.Fa map 544and the start and end addresses returned in 545.Fa min 546and 547.Fa max . 548If 549.Fa pageable 550is non-zero, entries in the map may be paged out. 551.Sh ALLOCATION OF PHYSICAL MEMORY 552.Pp 553.nr nS 1 554.Ft struct vm_page * 555.Fn uvm_pagealloc "struct uvm_object *uobj" "voff_t off" "struct vm_anon *anon" "int flags" 556.Ft void 557.Fn uvm_pagerealloc "struct vm_page *pg" "struct uvm_object *newobj" "voff_t newoff" 558.Ft void 559.Fn uvm_pagefree "struct vm_page *pg" 560.Ft int 561.Fn uvm_pglistalloc "psize_t size" "paddr_t low" "paddr_t high" "paddr_t alignment" "paddr_t boundary" "struct pglist *rlist" "int nsegs" "int waitok" 562.Ft void 563.Fn uvm_pglistfree "struct pglist *list" 564.Ft void 565.Fn uvm_page_physload "vaddr_t start" "vaddr_t end" "vaddr_t avail_start" "vaddr_t avail_end" 566.nr nS 0 567.Pp 568.Fn uvm_pagealloc 569allocates a page of memory at virtual address 570.Fa off 571in either the object 572.Fa uobj 573or the anonymous memory 574.Fa anon , 575which must be locked by the caller. 576Returns 577.Dv NULL 578when no page can be found. 579The flags can be any of 580.Bd -literal 581#define UVM_PGA_USERESERVE 0x0001 /* ok to use reserve pages */ 582#define UVM_PGA_ZERO 0x0002 /* returned page must be zero'd */ 583.Ed 584.Pp 585.Dv UVM_PGA_USERESERVE 586means to allocate a page even if that will result in the number of free pages 587being lower than 588.Dv uvmexp.reserve_pagedaemon 589(if the current thread is the pagedaemon) or 590.Dv uvmexp.reserve_kernel 591(if the current thread is not the pagedaemon). 592.Dv UVM_PGA_ZERO 593causes the returned page to be filled with zeroes, either by allocating it 594from a pool of pre-zeroed pages or by zeroing it in-line as necessary. 595.Pp 596.Fn uvm_pagerealloc 597reallocates page 598.Fa pg 599to a new object 600.Fa newobj , 601at a new offset 602.Fa newoff . 603.Pp 604.Fn uvm_pagefree 605frees the physical page 606.Fa pg . 607.Pp 608.Fn uvm_pglistalloc 609allocates a list of pages for size 610.Fa size 611byte under various constraints. 612.Fa low 613and 614.Fa high 615describe the lowest and highest addresses acceptable for the list. If 616.Fa alignment 617is non-zero, it describes the required alignment of the list, in 618power-of-two notation. If 619.Fa boundary 620is non-zero, no segment of the list may cross this power-of-two 621boundary, relative to zero. 622The 623.Fa nsegs 624and 625.Fa waitok 626arguments are currently ignored. 627.Pp 628.Fn uvm_pglistfree 629frees the list of pages pointed to by 630.Fa list . 631.Pp 632.Fn uvm_page_physload 633loads physical memory segments into VM space. It must be called at system 634boot time to setup physical memory management pages. The arguments describe 635the 636.Fa start 637and 638.Fa end 639of the physical addresses of the segment, and the available start and end 640addresses of pages not already in use. 641.\" XXX expand on "system boot time"! 642.Sh PROCESSES 643.Pp 644.nr nS 1 645.Ft void 646.Fn uvm_pageout "void" 647.Ft void 648.Fn uvm_scheduler "void" 649.Ft void 650.Fn uvm_swapin "struct proc *p" 651.nr nS 0 652.Pp 653.Fn uvm_pageout 654is the main loop for the page daemon. 655.Pp 656.Fn uvm_scheduler 657is the process zero main loop, which is to be called after the 658system has finished starting other processes. It handles the 659swapping in of runnable, swapped out processes in priority 660order. 661.Pp 662.Fn uvm_swapin 663swaps in the named process. 664.Sh MISCELLANEOUS FUNCTIONS 665.nr nS 1 666.Pp 667.Ft struct uvm_object * 668.Fn uao_create "vsize_t size" "int flags" 669.Ft void 670.Fn uao_detach "struct uvm_object *uobj" 671.Ft void 672.Fn uao_reference "struct uvm_object *uobj" 673 674.Ft boolean_t 675.Fn uvm_chgkprot "caddr_t addr" "size_t len" "int rw" 676.Ft void 677.Fn uvm_kernacc "caddr_t addr" "size_t len" "int rw" 678.Ft boolean_t 679.Fn uvm_useracc "caddr_t addr" "size_t len" "int rw" 680 681.Ft int 682.Fn uvm_vslock "struct proc *p" "caddr_t addr" "size_t len" "vm_prot_t prot" 683.Ft void 684.Fn uvm_vsunlock "struct proc *p" "caddr_t addr" "size_t len" 685 686.Ft void 687.Fn uvm_meter "void" 688.Ft int 689.Fn uvm_sysctl "int *name" "u_int namelen" "void *oldp" "size_t *oldlenp" "void *newp " "size_t newlen" "struct proc *p" 690 691.Ft void 692.Fn uvm_fork "struct proc *p1" "struct proc *p2" "boolean_t shared" 693.Ft int 694.Fn uvm_grow "struct proc *p" "vaddr_t sp" 695.Ft int 696.Fn uvm_coredump "struct proc *p" "struct vnode *vp" "struct ucred *cred" "struct core *chdr" 697 698.Ft void 699.Fn uvn_findpages "struct uvm_object *uobj" "voff_t offset" "int *npagesp" "struct vm_page **pps" "int flags" 700 701.nr nS 0 702.Pp 703The 704.Fn uao_create , 705.Fn uao_detach 706and 707.Fn uao_reference 708functions operate on anonymous memory objects, such as those used to support 709System V shared memory. 710.Fn uao_create 711returns an object of size 712.Fa size 713with flags: 714.Bd -literal 715#define UAO_FLAG_KERNOBJ 0x1 /* create kernel object */ 716#define UAO_FLAG_KERNSWAP 0x2 /* enable kernel swap */ 717.Ed 718.Pp 719which can only be used once each at system boot time. 720.Fn uao_reference 721creates an additional reference to the named anonymous memory object. 722.Fn uao_detach 723removes a reference from the named anonymous memory object, destroying 724it if removing the last reference. 725.Pp 726.Fn uvm_chgkprot 727changes the protection of kernel memory from 728.Fa addr 729to 730.Fa addr + len 731to the value of 732.Fa rw . 733This is primarily useful for debuggers, for setting breakpoints. 734This function is only available with options 735.Dv KGDB . 736.Pp 737.Fn uvm_kernacc 738and 739.Fn uvm_useracc 740check the access at address 741.Fa addr 742to 743.Fa addr + len 744for 745.Fa rw 746access, in the kernel address space, and the current process' 747address space respectively. 748.Pp 749.Fn uvm_vslock 750and 751.Fn uvm_vsunlock 752control the wiring and unwiring of pages for process 753.Fa p 754from 755.Fa addr 756to 757.Fa addr + len . 758These functions are normally used to wire memory for I/O. 759.Pp 760.Fn uvm_meter 761calculates the load average and wakes up the swapper if necessary. 762.Pp 763.Fn uvm_sysctl 764provides support for the 765.Dv CTL_VM 766domain of the 767.Xr sysctl 3 768hierarchy. 769.Fn uvm_sysctl 770handles the 771.Dv VM_LOADAVG , 772.Dv VM_METER 773and 774.Dv VM_UVMEXP 775calls, which return the current load averages, calculates current VM 776totals, and returns the uvmexp structure respectively. The load averages 777are access from userland using the 778.Xr getloadavg 3 779function. The uvmexp structure has all global state of the UVM system, 780and has the following members: 781.Bd -literal 782/* vm_page constants */ 783int pagesize; /* size of a page (PAGE_SIZE): must be power of 2 */ 784int pagemask; /* page mask */ 785int pageshift; /* page shift */ 786 787/* vm_page counters */ 788int npages; /* number of pages we manage */ 789int free; /* number of free pages */ 790int active; /* number of active pages */ 791int inactive; /* number of pages that we free'd but may want back */ 792int paging; /* number of pages in the process of being paged out */ 793int wired; /* number of wired pages */ 794int reserve_pagedaemon; /* number of pages reserved for pagedaemon */ 795int reserve_kernel; /* number of pages reserved for kernel */ 796 797/* pageout params */ 798int freemin; /* min number of free pages */ 799int freetarg; /* target number of free pages */ 800int inactarg; /* target number of inactive pages */ 801int wiredmax; /* max number of wired pages */ 802 803/* swap */ 804int nswapdev; /* number of configured swap devices in system */ 805int swpages; /* number of PAGE_SIZE'ed swap pages */ 806int swpginuse; /* number of swap pages in use */ 807int nswget; /* number of times fault calls uvm_swap_get() */ 808int nanon; /* number total of anon's in system */ 809int nfreeanon; /* number of free anon's */ 810 811/* stat counters */ 812int faults; /* page fault count */ 813int traps; /* trap count */ 814int intrs; /* interrupt count */ 815int swtch; /* context switch count */ 816int softs; /* software interrupt count */ 817int syscalls; /* system calls */ 818int pageins; /* pagein operation count */ 819 /* pageouts are in pdpageouts below */ 820int swapins; /* swapins */ 821int swapouts; /* swapouts */ 822int pgswapin; /* pages swapped in */ 823int pgswapout; /* pages swapped out */ 824int forks; /* forks */ 825int forks_ppwait; /* forks where parent waits */ 826int forks_sharevm; /* forks where vmspace is shared */ 827 828/* fault subcounters */ 829int fltnoram; /* number of times fault was out of ram */ 830int fltnoanon; /* number of times fault was out of anons */ 831int fltpgwait; /* number of times fault had to wait on a page */ 832int fltpgrele; /* number of times fault found a released page */ 833int fltrelck; /* number of times fault relock called */ 834int fltrelckok; /* number of times fault relock is a success */ 835int fltanget; /* number of times fault gets anon page */ 836int fltanretry; /* number of times fault retrys an anon get */ 837int fltamcopy; /* number of times fault clears "needs copy" */ 838int fltnamap; /* number of times fault maps a neighbor anon page */ 839int fltnomap; /* number of times fault maps a neighbor obj page */ 840int fltlget; /* number of times fault does a locked pgo_get */ 841int fltget; /* number of times fault does an unlocked get */ 842int flt_anon; /* number of times fault anon (case 1a) */ 843int flt_acow; /* number of times fault anon cow (case 1b) */ 844int flt_obj; /* number of times fault is on object page (2a) */ 845int flt_prcopy; /* number of times fault promotes with copy (2b) */ 846int flt_przero; /* number of times fault promotes with zerofill (2b) */ 847 848/* daemon counters */ 849int pdwoke; /* number of times daemon woke up */ 850int pdrevs; /* number of times daemon rev'd clock hand */ 851int pdswout; /* number of times daemon called for swapout */ 852int pdfreed; /* number of pages daemon freed since boot */ 853int pdscans; /* number of pages daemon scanned since boot */ 854int pdanscan; /* number of anonymous pages scanned by daemon */ 855int pdobscan; /* number of object pages scanned by daemon */ 856int pdreact; /* number of pages daemon reactivated since boot */ 857int pdbusy; /* number of times daemon found a busy page */ 858int pdpageouts; /* number of times daemon started a pageout */ 859int pdpending; /* number of times daemon got a pending pageout */ 860int pddeact; /* number of pages daemon deactivates */ 861.Ed 862.Pp 863.Fn uvm_fork 864forks a virtual address space for process' (old) 865.Fa p1 866and (new) 867.Fa p2 . 868If the 869.Fa shared 870argument is non zero, p1 shares its address space with p2, 871otherwise a new address space is created. This function 872currently has no return value, and thus cannot fail. In 873the future, this function will changed to allowed it to 874fail in low memory conditions. 875.Pp 876.Fn uvm_grow 877increases the stack segment of process 878.Fa p 879to include 880.Fa sp . 881.Pp 882.Fn uvm_coredump 883generates a coredump on vnode 884.Fa vp 885for process 886.Fa p 887with credentials 888.Fa cred 889and core header description in 890.Fa chdr . 891.Pp 892.Fn uvn_findpages 893looks up or creates pages in 894.Fa uobj 895at offset 896.Fa offset , 897marks them busy and returns them in the 898.Fa pps 899array. 900Currently 901.Fa uobj 902must be a vnode object. 903The number of pages requested is pointed to by 904.Fa npagesp , 905and this value is updated with the actual number of pages returned. 906The flags can be 907.Bd -literal 908#define UFP_ALL 0x00 /* return all pages requested */ 909#define UFP_NOWAIT 0x01 /* don't sleep */ 910#define UFP_NOALLOC 0x02 /* don't allocate new pages */ 911#define UFP_NOCACHE 0x04 /* don't return pages which already exist */ 912#define UFP_NORDONLY 0x08 /* don't return PG_READONLY pages */ 913.Ed 914.Pp 915.Dv UFP_ALL 916is a pseudo-flag meaning all requested pages should be returned. 917.Dv UFP_NOWAIT 918means that we must not sleep. 919.Dv UFP_NOALLOC 920causes any pages which do not already exist to be skipped. 921.Dv UFP_NOCACHE 922causes any pages which do already exist to be skipped. 923.Dv UFP_NORDONLY 924causes any pages which are marked PG_READONLY to be skipped. 925.Sh NOTES 926.Fn uvm_chgkprot 927is only available if the kernel has been compiled with options 928.Dv KGDB . 929.Pp 930All structure and types whose names begin with 931.Dq vm_ 932will be renamed to 933.Dq uvm_ . 934.Sh HISTORY 935UVM is a new VM system developed at Washington University in St. Louis 936(Missouri). UVM's roots lie partly in the Mach-based 937.Bx 4.4 938VM system, the 939.Fx 940VM system, and the SunOS4 VM system. UVM's basic structure is based on the 941.Bx 4.4 942VM system. UVM's new anonymous memory system is based on the 943anonymous memory system found in the SunOS4 VM (as described in papers 944published by Sun Microsystems, Inc.). UVM also includes a number of feature 945new to 946.Bx 947including page loanout, map entry passing, simplified 948copy-on-write, and clustered anonymous memory pageout. UVM is also 949further documented in a August 1998 dissertation by Charles D. Cranor. 950.Pp 951UVM appeared in 952.Nx 1.4 . 953.Sh AUTHORS 954Charles D. Cranor <chuck@ccrc.wustl.edu> designed and implemented UVM. 955.Pp 956Matthew Green <mrg@eterna.com.au> wrote the swap-space management code 957and handled the logistical issues involved with merging UVM into the 958.Nx 959source tree. 960.Pp 961Chuck Silvers <chuq@chuq.com> implemented the aobj pager, thus allowing 962UVM to support System V shared memory and process swapping. He also 963designed and implemented the UBC part of UVM, which uses UVM pages to 964cache vnode data rather than the traditional buffer cache buffers. 965.Sh SEE ALSO 966.Xr getloadavg 3 , 967.Xr kvm 3 , 968.Xr sysctl 3 , 969.Xr ddb 4 , 970.Xr options 4 , 971.Xr pmap 9 . 972