1.\" $NetBSD: uvm.9,v 1.27 2001/08/17 17:11:51 chs Exp $ 2.\" 3.\" Copyright (c) 1998 Matthew R. Green 4.\" All rights reserved. 5.\" 6.\" Redistribution and use in source and binary forms, with or without 7.\" modification, are permitted provided that the following conditions 8.\" are met: 9.\" 1. Redistributions of source code must retain the above copyright 10.\" notice, this list of conditions and the following disclaimer. 11.\" 2. Redistributions in binary form must reproduce the above copyright 12.\" notice, this list of conditions and the following disclaimer in the 13.\" documentation and/or other materials provided with the distribution. 14.\" 3. The name of the author may not be used to endorse or promote products 15.\" derived from this software without specific prior written permission. 16.\" 17.\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18.\" IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19.\" OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20.\" IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21.\" INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 22.\" BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 23.\" LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 24.\" AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 25.\" OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27.\" SUCH DAMAGE. 28.\" 29.\" XXX this manual sets nS to 1 or 0 in the description, to obtain 30.\" synopsis-like function prototypes. any better way? 31.\" 32.Dd March 26, 2000 33.Dt UVM 9 34.Os 35.Sh NAME 36.Nm uvm 37.Nd virtual memory system external interface 38.Sh SYNOPSIS 39.Fd #include <sys/param.h> 40.Fd #include <uvm/uvm.h> 41.Sh DESCRIPTION 42The UVM virtual memory system manages access to the computer's memory 43resources. User processes and the kernel access these resources through 44UVM's external interface. UVM's external interface includes functions that: 45.Pp 46.Bl -hyphen -compact 47.It 48initialise UVM sub-systems 49.It 50manage virtual address spaces 51.It 52resolve page faults 53.It 54memory map files and devices 55.It 56perform uio-based I/O to virtual memory 57.It 58allocate and free kernel virtual memory 59.It 60allocate and free physical memory 61.El 62.Pp 63In addition to exporting these services, UVM has two kernel-level processes: 64pagedaemon and swapper. The pagedaemon process sleeps until physical memory 65becomes scarce. When that happens, pagedaemon is awoken. It scans physical 66memory, paging out and freeing memory that has not been recently used. The 67swapper process swaps in runnable processes that are currently swapped out, 68if there is room. 69.Pp 70There are also several miscellaneous functions. 71.Sh INITIALISATION 72.nr nS 1 73.Pp 74.Ft void 75.Fn uvm_init "void" 76.Ft void 77.Fn uvm_init_limits "struct proc *p" 78.Ft void 79.Fn uvm_setpagesize "void" 80.Ft void 81.Fn uvm_swap_init "void" 82.nr nS 0 83.Pp 84.Fn uvm_init 85sets up the UVM system at system boot time, after the 86copyright has been printed. It initialises 87global state, the page, map, kernel virtual memory state, 88machine-dependent physical map, kernel memory allocator, 89pager and anonymous memory sub-systems, and then enables 90paging of kernel objects. 91.Pp 92.Fn uvm_init_limits 93initialises process limits for the named process. This is for use by 94the system startup for process zero, before any other processes are 95created. 96.Pp 97.Fn uvm_setpagesize 98initialises the uvmexp members pagesize (if not already done by 99machine-dependent code), pageshift and pagemask. It should be called by 100machine-dependent code early in the 101.Fn pmap_init 102call (see 103.Xr pmap 9 ) . 104.Pp 105.Fn uvm_swap_init 106initialises the swap sub-system. 107.Sh VIRTUAL ADDRESS SPACE MANAGEMENT 108.Pp 109.nr nS 1 110.Ft int 111.Fn uvm_map "struct vm_map *map" "vaddr_t *startp" "vsize_t size" "struct uvm_object *uobj" "voff_t uoffset" "uvm_flag_t flags" 112.Ft int 113.Fn uvm_map_pageable "struct vm_map *map" "vaddr_t start" "vaddr_t end" "boolean_t new_pageable" "int lockflags" 114.Ft boolean_t 115.Fn uvm_map_checkprot "struct vm_map *map" "vaddr_t start" "vaddr_t end" "vm_prot_t protection" 116.Ft int 117.Fn uvm_map_protect "struct vm_map *map" "vaddr_t start" "vaddr_t end" "vm_prot_t new_prot" "boolean_t set_max" 118.Ft int 119.Fn uvm_deallocate "struct vm_map *map" "vaddr_t start" "vsize_t size" 120 121.Ft struct vmspace * 122.Fn uvmspace_alloc "vaddr_t min" "vaddr_t max" "int pageable" 123.Ft void 124.Fn uvmspace_exec "struct proc *p" "vaddr_t start" "vaddr_t end" 125.Ft struct vmspace * 126.Fn uvmspace_fork "struct vmspace *vm" 127.Ft void 128.Fn uvmspace_free "struct vmspace *vm1" 129.Ft void 130.Fn uvmspace_share "struct proc *p1" "struct proc *p2" 131.Ft void 132.Fn uvmspace_unshare "struct proc *p" 133.nr nS 0 134.Pp 135.Fn uvm_map 136establishes a valid mapping in map 137.Fa map , 138which must be unlocked. The new mapping has size 139.Fa size , 140which must be in 141.Dv PAGE_SIZE 142units. The 143.Fa uobj 144and 145.Fa uoffset 146arguments can have four meanings. When 147.Fa uobj 148is 149.Dv NULL 150and 151.Fa uoffset 152is 153.Dv UVM_UNKNOWN_OFFSET , 154.Fn uvm_map 155does not use the machine-dependent 156.Dv PMAP_PREFER 157function. If 158.Fa uoffset 159is any other value, it is used as the hint to 160.Dv PMAP_PREFER . 161When 162.Fa uobj 163is not 164.Dv NULL 165and 166.Fa uoffset 167is 168.Dv UVM_UNKNOWN_OFFSET , 169.Fn uvm_map 170finds the offset based upon the virtual address, passed as 171.Fa startp . 172If 173.Fa uoffset 174is any other value, we are doing a normal mapping at this offset. The 175start address of the map will be returned in 176.Fa startp . 177.Pp 178.Fa flags 179passed to 180.Fn uvm_map 181are typically created using the 182.Fn UVM_MAPFLAG "vm_prot_t prot" "vm_prot_t maxprot" "vm_inherit_t inh" "int advice" "int flags" 183macro, which uses the following values. 184The 185.Fa prot 186and 187.Fa maxprot 188can take are: 189.Bd -literal 190#define UVM_PROT_MASK 0x07 /* protection mask */ 191#define UVM_PROT_NONE 0x00 /* protection none */ 192#define UVM_PROT_ALL 0x07 /* everything */ 193#define UVM_PROT_READ 0x01 /* read */ 194#define UVM_PROT_WRITE 0x02 /* write */ 195#define UVM_PROT_EXEC 0x04 /* exec */ 196#define UVM_PROT_R 0x01 /* read */ 197#define UVM_PROT_W 0x02 /* write */ 198#define UVM_PROT_RW 0x03 /* read-write */ 199#define UVM_PROT_X 0x04 /* exec */ 200#define UVM_PROT_RX 0x05 /* read-exec */ 201#define UVM_PROT_WX 0x06 /* write-exec */ 202#define UVM_PROT_RWX 0x07 /* read-write-exec */ 203.Ed 204.Pp 205The values that 206.Fa inh 207can take are: 208.Bd -literal 209#define UVM_INH_MASK 0x30 /* inherit mask */ 210#define UVM_INH_SHARE 0x00 /* "share" */ 211#define UVM_INH_COPY 0x10 /* "copy" */ 212#define UVM_INH_NONE 0x20 /* "none" */ 213#define UVM_INH_DONATE 0x30 /* "donate" << not used */ 214.Ed 215.Pp 216The values that 217.Fa advice 218can take are: 219.Bd -literal 220#define UVM_ADV_NORMAL 0x0 /* 'normal' */ 221#define UVM_ADV_RANDOM 0x1 /* 'random' */ 222#define UVM_ADV_SEQUENTIAL 0x2 /* 'sequential' */ 223#define UVM_ADV_MASK 0x7 /* mask */ 224.Ed 225.Pp 226The values that 227.Fa flags 228can take are: 229.Bd -literal 230#define UVM_FLAG_FIXED 0x010000 /* find space */ 231#define UVM_FLAG_OVERLAY 0x020000 /* establish overlay */ 232#define UVM_FLAG_NOMERGE 0x040000 /* don't merge map entries */ 233#define UVM_FLAG_COPYONW 0x080000 /* set copy_on_write flag */ 234#define UVM_FLAG_AMAPPAD 0x100000 /* for bss: pad amap to reduce malloc() */ 235#define UVM_FLAG_TRYLOCK 0x200000 /* fail if we can not lock map */ 236.Ed 237.Pp 238The 239.Dv UVM_MAPFLAG 240macro arguments can be combined with an or operator. There are 241several special purpose macros for checking protection combinations, e.g. the 242.Dv UVM_PROT_WX 243macro. There are also some additional macros to extract bits from 244the flags. The 245.Dv UVM_PROTECTION , 246.Dv UVM_INHERIT , 247.Dv UVM_MAXPROTECTION 248and 249.Dv UVM_ADVICE 250macros return the protection, inheritance, maximum protection and advice, 251respectively. 252.Fn uvm_map 253returns a standard UVM return value. 254.Pp 255.Fn uvm_map_pageable 256changes the pageability of the pages in the range from 257.Fa start 258to 259.Fa end 260in map 261.Fa map 262to 263.Fa new_pageable . 264.Fn uvm_map_pageable 265returns a standard UVM return value. 266.Pp 267.Fn uvm_map_checkprot 268checks the protection of the range from 269.Fa start 270to 271.Fa end 272in map 273.Fa map 274against 275.Fa protection . 276This returns either 277.Dv TRUE 278or 279.Dv FALSE . 280.Pp 281.Fn uvm_map_protect 282changes the protection 283.Fa start 284to 285.Fa end 286in map 287.Fa map 288to 289.Fa new_prot , 290also setting the maximum protection to the region to 291.Fa new_prot 292if 293.Fa set_max 294is non-zero. This function returns a standard UVM return value. 295.Pp 296.Fn uvm_deallocate 297deallocates kernel memory in map 298.Fa map 299from address 300.Fa start 301to 302.Fa start + size . 303.Pp 304.Fn uvmspace_alloc 305allocates and returns a new address space, with ranges from 306.Fa min 307to 308.Fa max , 309setting the pageability of the address space to 310.Fa pageable . 311.Pp 312.Fn uvmspace_exec 313either reuses the address space of process 314.Fa p 315if there are no other references to it, or creates 316a new one with 317.Fn uvmspace_alloc . 318The range of valid addresses in the address space is reset to 319.Fa start 320through 321.Fa end . 322.Pp 323.Fn uvmspace_fork 324creates and returns a new address space based upon the 325.Fa vm1 326address space, typically used when allocating an address space for a 327child process. 328.Pp 329.Fn uvmspace_free 330lowers the reference count on the address space 331.Fa vm , 332freeing the data structures if there are no other references. 333.Pp 334.Fn uvmspace_share 335causes process 336.Pa p2 337to share the address space of 338.Fa p1 . 339.Pp 340.Fn uvmspace_unshare 341ensures that process 342.Fa p 343has its own, unshared address space, by creating a new one if 344necessary by calling 345.Fn uvmspace_fork . 346.Sh PAGE FAULT HANDLING 347.Pp 348.nr nS 1 349.Ft int 350.Fn uvm_fault "struct vm_map *orig_map" "vaddr_t vaddr" "vm_fault_t fault_type" "vm_prot_t access_type" 351.nr nS 0 352.Pp 353.Fn uvm_fault 354is the main entry point for faults. It takes 355.Fa orig_map 356as the map the fault originated in, a 357.Fa vaddr 358offset into the map the fault occurred, 359.Fa fault_type 360describing the type of fault, and 361.Fa access_type 362describing the type of access requested. 363.Fn uvm_fault 364returns a standard UVM return value. 365.Sh MEMORY MAPPING FILES AND DEVICES 366.Pp 367.nr nS 1 368.Ft struct uvm_object * 369.Fn uvn_attach "void *arg" "vm_prot_t accessprot" 370.Ft void 371.Fn uvm_vnp_setsize "struct vnode *vp" "voff_t newsize" 372.Ft void * 373.Fn ubc_alloc "struct uvm_object *uobj" "voff_t offset" "vsize_t *lenp" "int flags" 374.Ft void 375.Fn ubc_release "void *va" "int flags" 376.nr nS 0 377.Pp 378.Fn uvn_attach 379attaches a UVM object to vnode 380.Fa arg , 381creating the object if necessary. The object is returned. 382.Pp 383.Fn uvm_vnp_setsize 384sets the size of vnode 385.Fa vp 386to 387.Fa newsize . 388Caller must hold a reference to the vnode. If the vnode shrinks, pages 389no longer used are discarded. 390.Pp 391.Fn ubc_alloc 392creates a kernel mappings of 393.Fa uobj 394starting at offset 395.Fa offset . 396the desired length of the mapping is pointed to by 397.Fa lenp , 398but the actual mapping may be smaller than this. 399.Fa lenp 400is updated to contain the actual length mapped. 401The flags must be one of 402.Bd -literal 403#define UBC_READ 0x01 /* mapping will be accessed for read */ 404#define UBC_WRITE 0x02 /* mapping will be accessed for write */ 405.Ed 406.Pp 407Currently, 408.Fa uobj 409must actually be a vnode object. 410Once the mapping is created, it must be accessed only by methods that can 411handle faults, such as 412.Fn uiomove 413or 414.Fn kcopy . 415Page faults on the mapping will result in the vnode's 416.Fn VOP_GETPAGES 417method being called to resolve the fault. 418.Pp 419.Fn ubc_release 420frees the mapping at 421.Fa va 422for reuse. The mapping may be cached to speed future accesses to the same 423region of the object. The flags are currently unused. 424.Sh VIRTUAL MEMORY I/O 425.Pp 426.nr nS 1 427.Ft int 428.Fn uvm_io "struct vm_map *map" "struct uio *uio" 429.nr nS 0 430.Pp 431.Fn uvm_io 432performs the I/O described in 433.Fa uio 434on the memory described in 435.Fa map . 436.Sh ALLOCATION OF KERNEL MEMORY 437.Pp 438.nr nS 1 439.Ft vaddr_t 440.Fn uvm_km_alloc "struct vm_map *map" "vsize_t size" 441.Ft vaddr_t 442.Fn uvm_km_zalloc "struct vm_map *map" "vsize_t size" 443.Ft vaddr_t 444.Fn uvm_km_alloc1 "struct vm_map *map" "vsize_t size" "boolean_t zeroit" 445.Ft vaddr_t 446.Fn uvm_km_kmemalloc "struct vm_map *map" "struct uvm_object *obj" "vsize_t size" "int flags" 447.Ft vaddr_t 448.Fn uvm_km_valloc "struct vm_map *map" "vsize_t size" 449.Ft vaddr_t 450.Fn uvm_km_valloc_wait "struct vm_map *map" "vsize_t size" 451.Ft struct vm_map * 452.Fn uvm_km_suballoc "struct vm_map *map" "vaddr_t *min" "vaddr_t *max " "vsize_t size" "boolean_t pageable" "boolean_t fixed" "struct vm_map *submap" 453.Ft void 454.Fn uvm_km_free "struct vm_map *map" "vaddr_t addr" "vsize_t size" 455.Ft void 456.Fn uvm_km_free_wakeup "struct vm_map *map" "vaddr_t addr" "vsize_t size" 457.nr nS 0 458.Pp 459.Fn uvm_km_alloc 460and 461.Fn uvm_km_zalloc 462allocate 463.Fa size 464bytes of wired kernel memory in map 465.Fa map . 466In addition to allocation, 467.Fn uvm_km_zalloc 468zeros the memory. Both of these functions are defined as macros in 469terms of 470.Fn uvm_km_alloc1 , 471and should almost always be used in preference to 472.Fn uvm_km_alloc1 . 473.Pp 474.Fn uvm_km_alloc1 475allocates and returns 476.Fa size 477bytes of wired memory in the kernel map, zeroing the memory if the 478.Fa zeroit 479argument is non-zero. 480.Pp 481.Fn uvm_km_kmemalloc 482allocates and returns 483.Fa size 484bytes of wired kernel memory into 485.Fa obj . 486The flags can be any of: 487.Bd -literal 488#define UVM_KMF_NOWAIT 0x1 /* matches M_NOWAIT */ 489#define UVM_KMF_VALLOC 0x2 /* allocate VA only */ 490#define UVM_KMF_TRYLOCK UVM_FLAG_TRYLOCK /* try locking only */ 491.Ed 492.Pp 493.Dv UVM_KMF_NOWAIT 494causes 495.Fn uvm_km_kmemalloc 496to return immediately if no memory is available. 497.Dv UVM_KMF_VALLOC 498causes no pages to be allocated, only a virtual address. 499.Dv UVM_KMF_TRYLOCK 500causes 501.Fn uvm_km_kmemalloc 502to use 503.Fn simple_lock_try 504when locking maps. 505.Pp 506.Fn uvm_km_valloc 507and 508.Fn uvm_km_valloc_wait 509return a newly allocated zero-filled address in the kernel map of size 510.Fa size . 511.Fn uvm_km_valloc_wait 512will also wait for kernel memory to become available, if there is a 513memory shortage. 514.Pp 515.Fn uvm_km_free 516and 517.Fn uvm_km_free_wakeup 518free 519.Fa size 520bytes of memory in the kernel map, starting at address 521.Fa addr . 522.Fn uvm_km_free_wakeup 523calls 524.Fn wakeup 525on the map before unlocking the map. 526.Pp 527.Fn uvm_km_suballoc 528allocates submap from 529.Fa map , 530creating a new map if 531.Fa submap 532is 533.Dv NULL . 534The addresses of the submap can be specified exactly by setting the 535.Fa fixed 536argument to non-zero, which causes the 537.Fa min 538argument specify the beginning of the address in the submap. If 539.Fa fixed 540is zero, any address of size 541.Fa size 542will be allocated from 543.Fa map 544and the start and end addresses returned in 545.Fa min 546and 547.Fa max . 548If 549.Fa pageable 550is non-zero, entries in the map may be paged out. 551.Sh ALLOCATION OF PHYSICAL MEMORY 552.Pp 553.nr nS 1 554.Ft struct vm_page * 555.Fn uvm_pagealloc "struct uvm_object *uobj" "voff_t off" "struct vm_anon *anon" "int flags" 556.Ft void 557.Fn uvm_pagerealloc "struct vm_page *pg" "struct uvm_object *newobj" "voff_t newoff" 558.Ft void 559.Fn uvm_pagefree "struct vm_page *pg" 560.Ft int 561.Fn uvm_pglistalloc "psize_t size" "paddr_t low" "paddr_t high" "paddr_t alignment" "paddr_t boundary" "struct pglist *rlist" "int nsegs" "int waitok" 562.Ft void 563.Fn uvm_pglistfree "struct pglist *list" 564.Ft void 565.Fn uvm_page_physload "vaddr_t start" "vaddr_t end" "vaddr_t avail_start" "vaddr_t avail_end" 566.nr nS 0 567.Pp 568.Fn uvm_pagealloc 569allocates a page of memory at virtual address 570.Fa off 571in either the object 572.Fa uobj 573or the anonymous memory 574.Fa anon , 575which must be locked by the caller. 576Only one of 577.Fa uobj 578and 579.Fa anon 580can be non 581.Dv NULL . 582Returns 583.Dv NULL 584when no page can be found. 585The flags can be any of 586.Bd -literal 587#define UVM_PGA_USERESERVE 0x0001 /* ok to use reserve pages */ 588#define UVM_PGA_ZERO 0x0002 /* returned page must be zero'd */ 589.Ed 590.Pp 591.Dv UVM_PGA_USERESERVE 592means to allocate a page even if that will result in the number of free pages 593being lower than 594.Dv uvmexp.reserve_pagedaemon 595(if the current thread is the pagedaemon) or 596.Dv uvmexp.reserve_kernel 597(if the current thread is not the pagedaemon). 598.Dv UVM_PGA_ZERO 599causes the returned page to be filled with zeroes, either by allocating it 600from a pool of pre-zeroed pages or by zeroing it in-line as necessary. 601.Pp 602.Fn uvm_pagerealloc 603reallocates page 604.Fa pg 605to a new object 606.Fa newobj , 607at a new offset 608.Fa newoff . 609.Pp 610.Fn uvm_pagefree 611frees the physical page 612.Fa pg . 613.Pp 614.Fn uvm_pglistalloc 615allocates a list of pages for size 616.Fa size 617byte under various constraints. 618.Fa low 619and 620.Fa high 621describe the lowest and highest addresses acceptable for the list. If 622.Fa alignment 623is non-zero, it describes the required alignment of the list, in 624power-of-two notation. If 625.Fa boundary 626is non-zero, no segment of the list may cross this power-of-two 627boundary, relative to zero. 628The 629.Fa nsegs 630and 631.Fa waitok 632arguments are currently ignored. 633.Pp 634.Fn uvm_pglistfree 635frees the list of pages pointed to by 636.Fa list . 637.Pp 638.Fn uvm_page_physload 639loads physical memory segments into VM space. It must be called at system 640boot time to setup physical memory management pages. The arguments describe 641the 642.Fa start 643and 644.Fa end 645of the physical addresses of the segment, and the available start and end 646addresses of pages not already in use. 647.\" XXX expand on "system boot time"! 648.Sh PROCESSES 649.Pp 650.nr nS 1 651.Ft void 652.Fn uvm_pageout "void" 653.Ft void 654.Fn uvm_scheduler "void" 655.Ft void 656.Fn uvm_swapin "struct proc *p" 657.nr nS 0 658.Pp 659.Fn uvm_pageout 660is the main loop for the page daemon. 661.Pp 662.Fn uvm_scheduler 663is the process zero main loop, which is to be called after the 664system has finished starting other processes. It handles the 665swapping in of runnable, swapped out processes in priority 666order. 667.Pp 668.Fn uvm_swapin 669swaps in the named process. 670.Sh MISCELLANEOUS FUNCTIONS 671.nr nS 1 672.Pp 673.Ft struct uvm_object * 674.Fn uao_create "vsize_t size" "int flags" 675.Ft void 676.Fn uao_detach "struct uvm_object *uobj" 677.Ft void 678.Fn uao_reference "struct uvm_object *uobj" 679 680.Ft boolean_t 681.Fn uvm_chgkprot "caddr_t addr" "size_t len" "int rw" 682.Ft void 683.Fn uvm_kernacc "caddr_t addr" "size_t len" "int rw" 684.Ft boolean_t 685.Fn uvm_useracc "caddr_t addr" "size_t len" "int rw" 686 687.Ft int 688.Fn uvm_vslock "struct proc *p" "caddr_t addr" "size_t len" "vm_prot_t prot" 689.Ft void 690.Fn uvm_vsunlock "struct proc *p" "caddr_t addr" "size_t len" 691 692.Ft void 693.Fn uvm_meter "void" 694.Ft int 695.Fn uvm_sysctl "int *name" "u_int namelen" "void *oldp" "size_t *oldlenp" "void *newp " "size_t newlen" "struct proc *p" 696 697.Ft void 698.Fn uvm_fork "struct proc *p1" "struct proc *p2" "boolean_t shared" 699.Ft int 700.Fn uvm_grow "struct proc *p" "vaddr_t sp" 701.Ft int 702.Fn uvm_coredump "struct proc *p" "struct vnode *vp" "struct ucred *cred" "struct core *chdr" 703 704.Ft void 705.Fn uvn_findpages "struct uvm_object *uobj" "voff_t offset" "int *npagesp" "struct vm_page **pps" "int flags" 706 707.nr nS 0 708.Pp 709The 710.Fn uao_create , 711.Fn uao_detach 712and 713.Fn uao_reference 714functions operate on anonymous memory objects, such as those used to support 715System V shared memory. 716.Fn uao_create 717returns an object of size 718.Fa size 719with flags: 720.Bd -literal 721#define UAO_FLAG_KERNOBJ 0x1 /* create kernel object */ 722#define UAO_FLAG_KERNSWAP 0x2 /* enable kernel swap */ 723.Ed 724.Pp 725which can only be used once each at system boot time. 726.Fn uao_reference 727creates an additional reference to the named anonymous memory object. 728.Fn uao_detach 729removes a reference from the named anonymous memory object, destroying 730it if removing the last reference. 731.Pp 732.Fn uvm_chgkprot 733changes the protection of kernel memory from 734.Fa addr 735to 736.Fa addr + len 737to the value of 738.Fa rw . 739This is primarily useful for debuggers, for setting breakpoints. 740This function is only available with options 741.Dv KGDB . 742.Pp 743.Fn uvm_kernacc 744and 745.Fn uvm_useracc 746check the access at address 747.Fa addr 748to 749.Fa addr + len 750for 751.Fa rw 752access, in the kernel address space, and the current process' 753address space respectively. 754.Pp 755.Fn uvm_vslock 756and 757.Fn uvm_vsunlock 758control the wiring and unwiring of pages for process 759.Fa p 760from 761.Fa addr 762to 763.Fa addr + len . 764These functions are normally used to wire memory for I/O. 765.Pp 766.Fn uvm_meter 767calculates the load average and wakes up the swapper if necessary. 768.Pp 769.Fn uvm_sysctl 770provides support for the 771.Dv CTL_VM 772domain of the 773.Xr sysctl 3 774hierarchy. 775.Fn uvm_sysctl 776handles the 777.Dv VM_LOADAVG , 778.Dv VM_METER 779and 780.Dv VM_UVMEXP 781calls, which return the current load averages, calculates current VM 782totals, and returns the uvmexp structure respectively. The load averages 783are access from userland using the 784.Xr getloadavg 3 785function. The uvmexp structure has all global state of the UVM system, 786and has the following members: 787.Bd -literal 788/* vm_page constants */ 789int pagesize; /* size of a page (PAGE_SIZE): must be power of 2 */ 790int pagemask; /* page mask */ 791int pageshift; /* page shift */ 792 793/* vm_page counters */ 794int npages; /* number of pages we manage */ 795int free; /* number of free pages */ 796int active; /* number of active pages */ 797int inactive; /* number of pages that we free'd but may want back */ 798int paging; /* number of pages in the process of being paged out */ 799int wired; /* number of wired pages */ 800int reserve_pagedaemon; /* number of pages reserved for pagedaemon */ 801int reserve_kernel; /* number of pages reserved for kernel */ 802 803/* pageout params */ 804int freemin; /* min number of free pages */ 805int freetarg; /* target number of free pages */ 806int inactarg; /* target number of inactive pages */ 807int wiredmax; /* max number of wired pages */ 808 809/* swap */ 810int nswapdev; /* number of configured swap devices in system */ 811int swpages; /* number of PAGE_SIZE'ed swap pages */ 812int swpginuse; /* number of swap pages in use */ 813int nswget; /* number of times fault calls uvm_swap_get() */ 814int nanon; /* number total of anon's in system */ 815int nfreeanon; /* number of free anon's */ 816 817/* stat counters */ 818int faults; /* page fault count */ 819int traps; /* trap count */ 820int intrs; /* interrupt count */ 821int swtch; /* context switch count */ 822int softs; /* software interrupt count */ 823int syscalls; /* system calls */ 824int pageins; /* pagein operation count */ 825 /* pageouts are in pdpageouts below */ 826int swapins; /* swapins */ 827int swapouts; /* swapouts */ 828int pgswapin; /* pages swapped in */ 829int pgswapout; /* pages swapped out */ 830int forks; /* forks */ 831int forks_ppwait; /* forks where parent waits */ 832int forks_sharevm; /* forks where vmspace is shared */ 833 834/* fault subcounters */ 835int fltnoram; /* number of times fault was out of ram */ 836int fltnoanon; /* number of times fault was out of anons */ 837int fltpgwait; /* number of times fault had to wait on a page */ 838int fltpgrele; /* number of times fault found a released page */ 839int fltrelck; /* number of times fault relock called */ 840int fltrelckok; /* number of times fault relock is a success */ 841int fltanget; /* number of times fault gets anon page */ 842int fltanretry; /* number of times fault retrys an anon get */ 843int fltamcopy; /* number of times fault clears "needs copy" */ 844int fltnamap; /* number of times fault maps a neighbor anon page */ 845int fltnomap; /* number of times fault maps a neighbor obj page */ 846int fltlget; /* number of times fault does a locked pgo_get */ 847int fltget; /* number of times fault does an unlocked get */ 848int flt_anon; /* number of times fault anon (case 1a) */ 849int flt_acow; /* number of times fault anon cow (case 1b) */ 850int flt_obj; /* number of times fault is on object page (2a) */ 851int flt_prcopy; /* number of times fault promotes with copy (2b) */ 852int flt_przero; /* number of times fault promotes with zerofill (2b) */ 853 854/* daemon counters */ 855int pdwoke; /* number of times daemon woke up */ 856int pdrevs; /* number of times daemon rev'd clock hand */ 857int pdswout; /* number of times daemon called for swapout */ 858int pdfreed; /* number of pages daemon freed since boot */ 859int pdscans; /* number of pages daemon scanned since boot */ 860int pdanscan; /* number of anonymous pages scanned by daemon */ 861int pdobscan; /* number of object pages scanned by daemon */ 862int pdreact; /* number of pages daemon reactivated since boot */ 863int pdbusy; /* number of times daemon found a busy page */ 864int pdpageouts; /* number of times daemon started a pageout */ 865int pdpending; /* number of times daemon got a pending pageout */ 866int pddeact; /* number of pages daemon deactivates */ 867.Ed 868.Pp 869.Fn uvm_fork 870forks a virtual address space for process' (old) 871.Fa p1 872and (new) 873.Fa p2 . 874If the 875.Fa shared 876argument is non zero, p1 shares its address space with p2, 877otherwise a new address space is created. This function 878currently has no return value, and thus cannot fail. In 879the future, this function will changed to allowed it to 880fail in low memory conditions. 881.Pp 882.Fn uvm_grow 883increases the stack segment of process 884.Fa p 885to include 886.Fa sp . 887.Pp 888.Fn uvm_coredump 889generates a coredump on vnode 890.Fa vp 891for process 892.Fa p 893with credentials 894.Fa cred 895and core header description in 896.Fa chdr . 897.Pp 898.Fn uvn_findpages 899looks up or creates pages in 900.Fa uobj 901at offset 902.Fa offset , 903marks them busy and returns them in the 904.Fa pps 905array. 906Currently 907.Fa uobj 908must be a vnode object. 909The number of pages requested is pointed to by 910.Fa npagesp , 911and this value is updated with the actual number of pages returned. 912The flags can be 913.Bd -literal 914#define UFP_ALL 0x00 /* return all pages requested */ 915#define UFP_NOWAIT 0x01 /* don't sleep */ 916#define UFP_NOALLOC 0x02 /* don't allocate new pages */ 917#define UFP_NOCACHE 0x04 /* don't return pages which already exist */ 918#define UFP_NORDONLY 0x08 /* don't return PG_READONLY pages */ 919.Ed 920.Pp 921.Dv UFP_ALL 922is a pseudo-flag meaning all requested pages should be returned. 923.Dv UFP_NOWAIT 924means that we must not sleep. 925.Dv UFP_NOALLOC 926causes any pages which do not already exist to be skipped. 927.Dv UFP_NOCACHE 928causes any pages which do already exist to be skipped. 929.Dv UFP_NORDONLY 930causes any pages which are marked PG_READONLY to be skipped. 931.Sh NOTES 932.Fn uvm_chgkprot 933is only available if the kernel has been compiled with options 934.Dv KGDB . 935.Pp 936All structure and types whose names begin with 937.Dq vm_ 938will be renamed to 939.Dq uvm_ . 940.Sh HISTORY 941UVM is a new VM system developed at Washington University in St. Louis 942(Missouri). UVM's roots lie partly in the Mach-based 943.Bx 4.4 944VM system, the 945.Fx 946VM system, and the SunOS4 VM system. UVM's basic structure is based on the 947.Bx 4.4 948VM system. UVM's new anonymous memory system is based on the 949anonymous memory system found in the SunOS4 VM (as described in papers 950published by Sun Microsystems, Inc.). UVM also includes a number of feature 951new to 952.Bx 953including page loanout, map entry passing, simplified 954copy-on-write, and clustered anonymous memory pageout. UVM is also 955further documented in a August 1998 dissertation by Charles D. Cranor. 956.Pp 957UVM appeared in 958.Nx 1.4 . 959.Sh AUTHORS 960Charles D. Cranor <chuck@ccrc.wustl.edu> designed and implemented UVM. 961.Pp 962Matthew Green <mrg@eterna.com.au> wrote the swap-space management code 963and handled the logistical issues involved with merging UVM into the 964.Nx 965source tree. 966.Pp 967Chuck Silvers <chuq@chuq.com> implemented the aobj pager, thus allowing 968UVM to support System V shared memory and process swapping. He also 969designed and implemented the UBC part of UVM, which uses UVM pages to 970cache vnode data rather than the traditional buffer cache buffers. 971.Sh SEE ALSO 972.Xr getloadavg 3 , 973.Xr kvm 3 , 974.Xr sysctl 3 , 975.Xr ddb 4 , 976.Xr options 4 , 977.Xr pmap 9 . 978