1 /* $NetBSD: resize_ffs.c,v 1.46 2016/03/17 01:41:54 christos Exp $ */ 2 /* From sources sent on February 17, 2003 */ 3 /*- 4 * As its sole author, I explicitly place this code in the public 5 * domain. Anyone may use it for any purpose (though I would 6 * appreciate credit where it is due). 7 * 8 * der Mouse 9 * 10 * mouse@rodents.montreal.qc.ca 11 * 7D C8 61 52 5D E7 2D 39 4E F1 31 3E E8 B3 27 4B 12 */ 13 /* 14 * resize_ffs: 15 * 16 * Resize a file system. Is capable of both growing and shrinking. 17 * 18 * Usage: resize_ffs [-s newsize] [-y] file_system 19 * 20 * Example: resize_ffs -s 29574 /dev/rsd1e 21 * 22 * newsize is in DEV_BSIZE units (ie, disk sectors, usually 512 bytes 23 * each). 24 * 25 * Note: this currently requires gcc to build, since it is written 26 * depending on gcc-specific features, notably nested function 27 * definitions (which in at least a few cases depend on the lexical 28 * scoping gcc provides, so they can't be trivially moved outside). 29 * 30 * Many thanks go to John Kohl <jtk@NetBSD.org> for finding bugs: the 31 * one responsible for the "realloccgblk: can't find blk in cyl" 32 * problem and a more minor one which left fs_dsize wrong when 33 * shrinking. (These actually indicate bugs in fsck too - it should 34 * have caught and fixed them.) 35 * 36 */ 37 38 #include <sys/cdefs.h> 39 __RCSID("$NetBSD: resize_ffs.c,v 1.46 2016/03/17 01:41:54 christos Exp $"); 40 41 #include <sys/disk.h> 42 #include <sys/disklabel.h> 43 #include <sys/dkio.h> 44 #include <sys/ioctl.h> 45 #include <sys/stat.h> 46 #include <sys/mman.h> 47 #include <sys/param.h> /* MAXFRAG */ 48 #include <ufs/ffs/fs.h> 49 #include <ufs/ffs/ffs_extern.h> 50 #include <ufs/ufs/dir.h> 51 #include <ufs/ufs/dinode.h> 52 #include <ufs/ufs/ufs_bswap.h> /* ufs_rw32 */ 53 54 #include <err.h> 55 #include <errno.h> 56 #include <fcntl.h> 57 #include <stdio.h> 58 #include <stdlib.h> 59 #include <strings.h> 60 #include <unistd.h> 61 62 #include "progress.h" 63 64 /* new size of file system, in sectors */ 65 static int64_t newsize; 66 67 /* fd open onto disk device or file */ 68 static int fd; 69 70 /* disk device or file path */ 71 char *special; 72 73 /* must we break up big I/O operations - see checksmallio() */ 74 static int smallio; 75 76 /* size of a cg, in bytes, rounded up to a frag boundary */ 77 static int cgblksz; 78 79 /* possible superblock localtions */ 80 static int search[] = SBLOCKSEARCH; 81 /* location of the superblock */ 82 static off_t where; 83 84 /* Superblocks. */ 85 static struct fs *oldsb; /* before we started */ 86 static struct fs *newsb; /* copy to work with */ 87 /* Buffer to hold the above. Make sure it's aligned correctly. */ 88 static char sbbuf[2 * SBLOCKSIZE] 89 __attribute__((__aligned__(__alignof__(struct fs)))); 90 91 union dinode { 92 struct ufs1_dinode dp1; 93 struct ufs2_dinode dp2; 94 }; 95 #define DIP(dp, field) \ 96 ((is_ufs2) ? \ 97 (dp)->dp2.field : (dp)->dp1.field) 98 99 #define DIP_ASSIGN(dp, field, value) \ 100 do { \ 101 if (is_ufs2) \ 102 (dp)->dp2.field = (value); \ 103 else \ 104 (dp)->dp1.field = (value); \ 105 } while (0) 106 107 /* a cg's worth of brand new squeaky-clean inodes */ 108 static struct ufs1_dinode *zinodes; 109 110 /* pointers to the in-core cgs, read off disk and possibly modified */ 111 static struct cg **cgs; 112 113 /* pointer to csum array - the stuff pointed to on-disk by fs_csaddr */ 114 static struct csum *csums; 115 116 /* per-cg flags, indexed by cg number */ 117 static unsigned char *cgflags; 118 #define CGF_DIRTY 0x01 /* needs to be written to disk */ 119 #define CGF_BLKMAPS 0x02 /* block bitmaps need rebuilding */ 120 #define CGF_INOMAPS 0x04 /* inode bitmaps need rebuilding */ 121 122 /* when shrinking, these two arrays record how we want blocks to move. */ 123 /* if blkmove[i] is j, the frag that started out as frag #i should end */ 124 /* up as frag #j. inomove[i]=j means, similarly, that the inode that */ 125 /* started out as inode i should end up as inode j. */ 126 static unsigned int *blkmove; 127 static unsigned int *inomove; 128 129 /* in-core copies of all inodes in the fs, indexed by inumber */ 130 union dinode *inodes; 131 132 void *ibuf; /* ptr to fs block-sized buffer for reading/writing inodes */ 133 134 /* byteswapped inodes */ 135 union dinode *sinodes; 136 137 /* per-inode flags, indexed by inumber */ 138 static unsigned char *iflags; 139 #define IF_DIRTY 0x01 /* needs to be written to disk */ 140 #define IF_BDIRTY 0x02 /* like DIRTY, but is set on first inode in a 141 * block of inodes, and applies to the whole 142 * block. */ 143 144 /* resize_ffs works directly on dinodes, adapt blksize() */ 145 #define dblksize(fs, dip, lbn, filesize) \ 146 (((lbn) >= UFS_NDADDR || (uint64_t)(filesize) >= ffs_lblktosize(fs, (lbn) + 1)) \ 147 ? (fs)->fs_bsize \ 148 : (ffs_fragroundup(fs, ffs_blkoff(fs, (filesize))))) 149 150 151 /* 152 * Number of disk sectors per block/fragment 153 */ 154 #define NSPB(fs) (FFS_FSBTODB((fs),1) << (fs)->fs_fragshift) 155 #define NSPF(fs) (FFS_FSBTODB((fs),1)) 156 157 /* global flags */ 158 int is_ufs2 = 0; 159 int needswap = 0; 160 int verbose = 0; 161 int progress = 0; 162 163 static void usage(void) __dead; 164 165 /* 166 * See if we need to break up large I/O operations. This should never 167 * be needed, but under at least one <version,platform> combination, 168 * large enough disk transfers to the raw device hang. So if we're 169 * talking to a character special device, play it safe; in this case, 170 * readat() and writeat() break everything up into pieces no larger 171 * than 8K, doing multiple syscalls for larger operations. 172 */ 173 static void 174 checksmallio(void) 175 { 176 struct stat stb; 177 178 fstat(fd, &stb); 179 smallio = ((stb.st_mode & S_IFMT) == S_IFCHR); 180 } 181 182 static int 183 isplainfile(void) 184 { 185 struct stat stb; 186 187 fstat(fd, &stb); 188 return S_ISREG(stb.st_mode); 189 } 190 /* 191 * Read size bytes starting at blkno into buf. blkno is in DEV_BSIZE 192 * units, ie, after FFS_FSBTODB(); size is in bytes. 193 */ 194 static void 195 readat(off_t blkno, void *buf, int size) 196 { 197 /* Seek to the correct place. */ 198 if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0) 199 err(EXIT_FAILURE, "lseek failed"); 200 201 /* See if we have to break up the transfer... */ 202 if (smallio) { 203 char *bp; /* pointer into buf */ 204 int left; /* bytes left to go */ 205 int n; /* number to do this time around */ 206 int rv; /* syscall return value */ 207 bp = buf; 208 left = size; 209 while (left > 0) { 210 n = (left > 8192) ? 8192 : left; 211 rv = read(fd, bp, n); 212 if (rv < 0) 213 err(EXIT_FAILURE, "read failed"); 214 if (rv != n) 215 errx(EXIT_FAILURE, 216 "read: wanted %d, got %d", n, rv); 217 bp += n; 218 left -= n; 219 } 220 } else { 221 int rv; 222 rv = read(fd, buf, size); 223 if (rv < 0) 224 err(EXIT_FAILURE, "read failed"); 225 if (rv != size) 226 errx(EXIT_FAILURE, "read: wanted %d, got %d", 227 size, rv); 228 } 229 } 230 /* 231 * Write size bytes from buf starting at blkno. blkno is in DEV_BSIZE 232 * units, ie, after FFS_FSBTODB(); size is in bytes. 233 */ 234 static void 235 writeat(off_t blkno, const void *buf, int size) 236 { 237 /* Seek to the correct place. */ 238 if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0) 239 err(EXIT_FAILURE, "lseek failed"); 240 /* See if we have to break up the transfer... */ 241 if (smallio) { 242 const char *bp; /* pointer into buf */ 243 int left; /* bytes left to go */ 244 int n; /* number to do this time around */ 245 int rv; /* syscall return value */ 246 bp = buf; 247 left = size; 248 while (left > 0) { 249 n = (left > 8192) ? 8192 : left; 250 rv = write(fd, bp, n); 251 if (rv < 0) 252 err(EXIT_FAILURE, "write failed"); 253 if (rv != n) 254 errx(EXIT_FAILURE, 255 "write: wanted %d, got %d", n, rv); 256 bp += n; 257 left -= n; 258 } 259 } else { 260 int rv; 261 rv = write(fd, buf, size); 262 if (rv < 0) 263 err(EXIT_FAILURE, "write failed"); 264 if (rv != size) 265 errx(EXIT_FAILURE, 266 "write: wanted %d, got %d", size, rv); 267 } 268 } 269 /* 270 * Never-fail versions of malloc() and realloc(), and an allocation 271 * routine (which also never fails) for allocating memory that will 272 * never be freed until exit. 273 */ 274 275 /* 276 * Never-fail malloc. 277 */ 278 static void * 279 nfmalloc(size_t nb, const char *tag) 280 { 281 void *rv; 282 283 rv = malloc(nb); 284 if (rv) 285 return (rv); 286 err(EXIT_FAILURE, "Can't allocate %lu bytes for %s", 287 (unsigned long int) nb, tag); 288 } 289 /* 290 * Never-fail realloc. 291 */ 292 static void * 293 nfrealloc(void *blk, size_t nb, const char *tag) 294 { 295 void *rv; 296 297 rv = realloc(blk, nb); 298 if (rv) 299 return (rv); 300 err(EXIT_FAILURE, "Can't re-allocate %lu bytes for %s", 301 (unsigned long int) nb, tag); 302 } 303 /* 304 * Allocate memory that will never be freed or reallocated. Arguably 305 * this routine should handle small allocations by chopping up pages, 306 * but that's not worth the bother; it's not called more than a 307 * handful of times per run, and if the allocations are that small the 308 * waste in giving each one its own page is ignorable. 309 */ 310 static void * 311 alloconce(size_t nb, const char *tag) 312 { 313 void *rv; 314 315 rv = mmap(0, nb, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0); 316 if (rv != MAP_FAILED) 317 return (rv); 318 err(EXIT_FAILURE, "Can't map %lu bytes for %s", 319 (unsigned long int) nb, tag); 320 } 321 /* 322 * Load the cgs and csums off disk. Also allocates the space to load 323 * them into and initializes the per-cg flags. 324 */ 325 static void 326 loadcgs(void) 327 { 328 int cg; 329 char *cgp; 330 331 cgblksz = roundup(oldsb->fs_cgsize, oldsb->fs_fsize); 332 cgs = nfmalloc(oldsb->fs_ncg * sizeof(*cgs), "cg pointers"); 333 cgp = alloconce(oldsb->fs_ncg * cgblksz, "cgs"); 334 cgflags = nfmalloc(oldsb->fs_ncg, "cg flags"); 335 csums = nfmalloc(oldsb->fs_cssize, "cg summary"); 336 for (cg = 0; cg < oldsb->fs_ncg; cg++) { 337 cgs[cg] = (struct cg *) cgp; 338 readat(FFS_FSBTODB(oldsb, cgtod(oldsb, cg)), cgp, cgblksz); 339 if (needswap) 340 ffs_cg_swap(cgs[cg],cgs[cg],oldsb); 341 cgflags[cg] = 0; 342 cgp += cgblksz; 343 } 344 readat(FFS_FSBTODB(oldsb, oldsb->fs_csaddr), csums, oldsb->fs_cssize); 345 if (needswap) 346 ffs_csum_swap(csums,csums,oldsb->fs_cssize); 347 } 348 /* 349 * Set n bits, starting with bit #base, in the bitmap pointed to by 350 * bitvec (which is assumed to be large enough to include bits base 351 * through base+n-1). 352 */ 353 static void 354 set_bits(unsigned char *bitvec, unsigned int base, unsigned int n) 355 { 356 if (n < 1) 357 return; /* nothing to do */ 358 if (base & 7) { /* partial byte at beginning */ 359 if (n <= 8 - (base & 7)) { /* entirely within one byte */ 360 bitvec[base >> 3] |= (~((~0U) << n)) << (base & 7); 361 return; 362 } 363 bitvec[base >> 3] |= (~0U) << (base & 7); 364 n -= 8 - (base & 7); 365 base = (base & ~7) + 8; 366 } 367 if (n >= 8) { /* do full bytes */ 368 memset(bitvec + (base >> 3), 0xff, n >> 3); 369 base += n & ~7; 370 n &= 7; 371 } 372 if (n) { /* partial byte at end */ 373 bitvec[base >> 3] |= ~((~0U) << n); 374 } 375 } 376 /* 377 * Clear n bits, starting with bit #base, in the bitmap pointed to by 378 * bitvec (which is assumed to be large enough to include bits base 379 * through base+n-1). Code parallels set_bits(). 380 */ 381 static void 382 clr_bits(unsigned char *bitvec, int base, int n) 383 { 384 if (n < 1) 385 return; 386 if (base & 7) { 387 if (n <= 8 - (base & 7)) { 388 bitvec[base >> 3] &= ~((~((~0U) << n)) << (base & 7)); 389 return; 390 } 391 bitvec[base >> 3] &= ~((~0U) << (base & 7)); 392 n -= 8 - (base & 7); 393 base = (base & ~7) + 8; 394 } 395 if (n >= 8) { 396 memset(bitvec + (base >> 3), 0, n >> 3); 397 base += n & ~7; 398 n &= 7; 399 } 400 if (n) { 401 bitvec[base >> 3] &= (~0U) << n; 402 } 403 } 404 /* 405 * Test whether bit #bit is set in the bitmap pointed to by bitvec. 406 */ 407 static int 408 bit_is_set(unsigned char *bitvec, int bit) 409 { 410 return (bitvec[bit >> 3] & (1 << (bit & 7))); 411 } 412 /* 413 * Test whether bit #bit is clear in the bitmap pointed to by bitvec. 414 */ 415 static int 416 bit_is_clr(unsigned char *bitvec, int bit) 417 { 418 return (!bit_is_set(bitvec, bit)); 419 } 420 /* 421 * Test whether a whole block of bits is set in a bitmap. This is 422 * designed for testing (aligned) disk blocks in a bit-per-frag 423 * bitmap; it has assumptions wired into it based on that, essentially 424 * that the entire block fits into a single byte. This returns true 425 * iff _all_ the bits are set; it is not just the complement of 426 * blk_is_clr on the same arguments (unless blkfrags==1). 427 */ 428 static int 429 blk_is_set(unsigned char *bitvec, int blkbase, int blkfrags) 430 { 431 unsigned int mask; 432 433 mask = (~((~0U) << blkfrags)) << (blkbase & 7); 434 return ((bitvec[blkbase >> 3] & mask) == mask); 435 } 436 /* 437 * Test whether a whole block of bits is clear in a bitmap. See 438 * blk_is_set (above) for assumptions. This returns true iff _all_ 439 * the bits are clear; it is not just the complement of blk_is_set on 440 * the same arguments (unless blkfrags==1). 441 */ 442 static int 443 blk_is_clr(unsigned char *bitvec, int blkbase, int blkfrags) 444 { 445 unsigned int mask; 446 447 mask = (~((~0U) << blkfrags)) << (blkbase & 7); 448 return ((bitvec[blkbase >> 3] & mask) == 0); 449 } 450 /* 451 * Initialize a new cg. Called when growing. Assumes memory has been 452 * allocated but not otherwise set up. This code sets the fields of 453 * the cg, initializes the bitmaps (and cluster summaries, if 454 * applicable), updates both per-cylinder summary info and the global 455 * summary info in newsb; it also writes out new inodes for the cg. 456 * 457 * This code knows it can never be called for cg 0, which makes it a 458 * bit simpler than it would otherwise be. 459 */ 460 static void 461 initcg(int cgn) 462 { 463 struct cg *cg; /* The in-core cg, of course */ 464 int base; /* Disk address of cg base */ 465 int dlow; /* Size of pre-cg data area */ 466 int dhigh; /* Offset of post-inode data area, from base */ 467 int dmax; /* Offset of end of post-inode data area */ 468 int i; /* Generic loop index */ 469 int n; /* Generic count */ 470 int start; /* start of cg maps */ 471 472 cg = cgs[cgn]; 473 /* Place the data areas */ 474 base = cgbase(newsb, cgn); 475 dlow = cgsblock(newsb, cgn) - base; 476 dhigh = cgdmin(newsb, cgn) - base; 477 dmax = newsb->fs_size - base; 478 if (dmax > newsb->fs_fpg) 479 dmax = newsb->fs_fpg; 480 start = &cg->cg_space[0] - (unsigned char *) cg; 481 /* 482 * Clear out the cg - assumes all-0-bytes is the correct way 483 * to initialize fields we don't otherwise touch, which is 484 * perhaps not the right thing to do, but it's what fsck and 485 * mkfs do. 486 */ 487 memset(cg, 0, newsb->fs_cgsize); 488 if (newsb->fs_old_flags & FS_FLAGS_UPDATED) 489 cg->cg_time = newsb->fs_time; 490 cg->cg_magic = CG_MAGIC; 491 cg->cg_cgx = cgn; 492 cg->cg_niblk = newsb->fs_ipg; 493 cg->cg_ndblk = dmax; 494 495 if (is_ufs2) { 496 cg->cg_time = newsb->fs_time; 497 cg->cg_initediblk = newsb->fs_ipg < 2 * FFS_INOPB(newsb) ? 498 newsb->fs_ipg : 2 * FFS_INOPB(newsb); 499 cg->cg_iusedoff = start; 500 } else { 501 cg->cg_old_time = newsb->fs_time; 502 cg->cg_old_niblk = cg->cg_niblk; 503 cg->cg_niblk = 0; 504 cg->cg_initediblk = 0; 505 506 507 cg->cg_old_ncyl = newsb->fs_old_cpg; 508 /* Update the cg_old_ncyl value for the last cylinder. */ 509 if (cgn == newsb->fs_ncg - 1) { 510 if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) 511 cg->cg_old_ncyl = newsb->fs_old_ncyl % 512 newsb->fs_old_cpg; 513 } 514 515 /* Set up the bitmap pointers. We have to be careful 516 * to lay out the cg _exactly_ the way mkfs and fsck 517 * do it, since fsck compares the _entire_ cg against 518 * a recomputed cg, and whines if there is any 519 * mismatch, including the bitmap offsets. */ 520 /* XXX update this comment when fsck is fixed */ 521 cg->cg_old_btotoff = start; 522 cg->cg_old_boff = cg->cg_old_btotoff 523 + (newsb->fs_old_cpg * sizeof(int32_t)); 524 cg->cg_iusedoff = cg->cg_old_boff + 525 (newsb->fs_old_cpg * newsb->fs_old_nrpos * sizeof(int16_t)); 526 } 527 cg->cg_freeoff = cg->cg_iusedoff + howmany(newsb->fs_ipg, NBBY); 528 if (newsb->fs_contigsumsize > 0) { 529 cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag; 530 cg->cg_clustersumoff = cg->cg_freeoff + 531 howmany(newsb->fs_fpg, NBBY) - sizeof(int32_t); 532 cg->cg_clustersumoff = 533 roundup(cg->cg_clustersumoff, sizeof(int32_t)); 534 cg->cg_clusteroff = cg->cg_clustersumoff + 535 ((newsb->fs_contigsumsize + 1) * sizeof(int32_t)); 536 cg->cg_nextfreeoff = cg->cg_clusteroff + 537 howmany(ffs_fragstoblks(newsb,newsb->fs_fpg), NBBY); 538 n = dlow / newsb->fs_frag; 539 if (n > 0) { 540 set_bits(cg_clustersfree(cg, 0), 0, n); 541 cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ? 542 newsb->fs_contigsumsize : n]++; 543 } 544 } else { 545 cg->cg_nextfreeoff = cg->cg_freeoff + 546 howmany(newsb->fs_fpg, NBBY); 547 } 548 /* Mark the data areas as free; everything else is marked busy by the 549 * memset() up at the top. */ 550 set_bits(cg_blksfree(cg, 0), 0, dlow); 551 set_bits(cg_blksfree(cg, 0), dhigh, dmax - dhigh); 552 /* Initialize summary info */ 553 cg->cg_cs.cs_ndir = 0; 554 cg->cg_cs.cs_nifree = newsb->fs_ipg; 555 cg->cg_cs.cs_nbfree = dlow / newsb->fs_frag; 556 cg->cg_cs.cs_nffree = 0; 557 558 /* This is the simplest way of doing this; we perhaps could 559 * compute the correct cg_blktot()[] and cg_blks()[] values 560 * other ways, but it would be complicated and hardly seems 561 * worth the effort. (The reason there isn't 562 * frag-at-beginning and frag-at-end code here, like the code 563 * below for the post-inode data area, is that the pre-sb data 564 * area always starts at 0, and thus is block-aligned, and 565 * always ends at the sb, which is block-aligned.) */ 566 if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) 567 for (i = 0; i < dlow; i += newsb->fs_frag) { 568 old_cg_blktot(cg, 0)[old_cbtocylno(newsb, i)]++; 569 old_cg_blks(newsb, cg, 570 old_cbtocylno(newsb, i), 571 0)[old_cbtorpos(newsb, i)]++; 572 } 573 574 /* Deal with a partial block at the beginning of the post-inode area. 575 * I'm not convinced this can happen - I think the inodes are always 576 * block-aligned and always an integral number of blocks - but it's 577 * cheap to do the right thing just in case. */ 578 if (dhigh % newsb->fs_frag) { 579 n = newsb->fs_frag - (dhigh % newsb->fs_frag); 580 cg->cg_frsum[n]++; 581 cg->cg_cs.cs_nffree += n; 582 dhigh += n; 583 } 584 n = (dmax - dhigh) / newsb->fs_frag; 585 /* We have n full-size blocks in the post-inode data area. */ 586 if (n > 0) { 587 cg->cg_cs.cs_nbfree += n; 588 if (newsb->fs_contigsumsize > 0) { 589 i = dhigh / newsb->fs_frag; 590 set_bits(cg_clustersfree(cg, 0), i, n); 591 cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ? 592 newsb->fs_contigsumsize : n]++; 593 } 594 if (is_ufs2 == 0) 595 for (i = n; i > 0; i--) { 596 old_cg_blktot(cg, 0)[old_cbtocylno(newsb, 597 dhigh)]++; 598 old_cg_blks(newsb, cg, 599 old_cbtocylno(newsb, dhigh), 600 0)[old_cbtorpos(newsb, 601 dhigh)]++; 602 dhigh += newsb->fs_frag; 603 } 604 } 605 if (is_ufs2 == 0) { 606 /* Deal with any leftover frag at the end of the cg. */ 607 i = dmax - dhigh; 608 if (i) { 609 cg->cg_frsum[i]++; 610 cg->cg_cs.cs_nffree += i; 611 } 612 } 613 /* Update the csum info. */ 614 csums[cgn] = cg->cg_cs; 615 newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree; 616 newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree; 617 newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree; 618 if (is_ufs2 == 0) 619 /* Write out the cleared inodes. */ 620 writeat(FFS_FSBTODB(newsb, cgimin(newsb, cgn)), zinodes, 621 newsb->fs_ipg * sizeof(*zinodes)); 622 /* Dirty the cg. */ 623 cgflags[cgn] |= CGF_DIRTY; 624 } 625 /* 626 * Find free space, at least nfrags consecutive frags of it. Pays no 627 * attention to block boundaries, but refuses to straddle cg 628 * boundaries, even if the disk blocks involved are in fact 629 * consecutive. Return value is the frag number of the first frag of 630 * the block, or -1 if no space was found. Uses newsb for sb values, 631 * and assumes the cgs[] structures correctly describe the area to be 632 * searched. 633 * 634 * XXX is there a bug lurking in the ignoring of block boundaries by 635 * the routine used by fragmove() in evict_data()? Can an end-of-file 636 * frag legally straddle a block boundary? If not, this should be 637 * cloned and fixed to stop at block boundaries for that use. The 638 * current one may still be needed for csum info motion, in case that 639 * takes up more than a whole block (is the csum info allowed to begin 640 * partway through a block and continue into the following block?). 641 * 642 * If we wrap off the end of the file system back to the beginning, we 643 * can end up searching the end of the file system twice. I ignore 644 * this inefficiency, since if that happens we're going to croak with 645 * a no-space error anyway, so it happens at most once. 646 */ 647 static int 648 find_freespace(unsigned int nfrags) 649 { 650 static int hand = 0; /* hand rotates through all frags in the fs */ 651 int cgsize; /* size of the cg hand currently points into */ 652 int cgn; /* number of cg hand currently points into */ 653 int fwc; /* frag-within-cg number of frag hand points 654 * to */ 655 unsigned int run; /* length of run of free frags seen so far */ 656 int secondpass; /* have we wrapped from end of fs to 657 * beginning? */ 658 unsigned char *bits; /* cg_blksfree()[] for cg hand points into */ 659 660 cgn = dtog(newsb, hand); 661 fwc = dtogd(newsb, hand); 662 secondpass = (hand == 0); 663 run = 0; 664 bits = cg_blksfree(cgs[cgn], 0); 665 cgsize = cgs[cgn]->cg_ndblk; 666 while (1) { 667 if (bit_is_set(bits, fwc)) { 668 run++; 669 if (run >= nfrags) 670 return (hand + 1 - run); 671 } else { 672 run = 0; 673 } 674 hand++; 675 fwc++; 676 if (fwc >= cgsize) { 677 fwc = 0; 678 cgn++; 679 if (cgn >= newsb->fs_ncg) { 680 hand = 0; 681 if (secondpass) 682 return (-1); 683 secondpass = 1; 684 cgn = 0; 685 } 686 bits = cg_blksfree(cgs[cgn], 0); 687 cgsize = cgs[cgn]->cg_ndblk; 688 run = 0; 689 } 690 } 691 } 692 /* 693 * Find a free block of disk space. Finds an entire block of frags, 694 * all of which are free. Return value is the frag number of the 695 * first frag of the block, or -1 if no space was found. Uses newsb 696 * for sb values, and assumes the cgs[] structures correctly describe 697 * the area to be searched. 698 * 699 * See find_freespace(), above, for remarks about hand wrapping around. 700 */ 701 static int 702 find_freeblock(void) 703 { 704 static int hand = 0; /* hand rotates through all frags in fs */ 705 int cgn; /* cg number of cg hand points into */ 706 int fwc; /* frag-within-cg number of frag hand points 707 * to */ 708 int cgsize; /* size of cg hand points into */ 709 int secondpass; /* have we wrapped from end to beginning? */ 710 unsigned char *bits; /* cg_blksfree()[] for cg hand points into */ 711 712 cgn = dtog(newsb, hand); 713 fwc = dtogd(newsb, hand); 714 secondpass = (hand == 0); 715 bits = cg_blksfree(cgs[cgn], 0); 716 cgsize = ffs_blknum(newsb, cgs[cgn]->cg_ndblk); 717 while (1) { 718 if (blk_is_set(bits, fwc, newsb->fs_frag)) 719 return (hand); 720 fwc += newsb->fs_frag; 721 hand += newsb->fs_frag; 722 if (fwc >= cgsize) { 723 fwc = 0; 724 cgn++; 725 if (cgn >= newsb->fs_ncg) { 726 hand = 0; 727 if (secondpass) 728 return (-1); 729 secondpass = 1; 730 cgn = 0; 731 } 732 bits = cg_blksfree(cgs[cgn], 0); 733 cgsize = ffs_blknum(newsb, cgs[cgn]->cg_ndblk); 734 } 735 } 736 } 737 /* 738 * Find a free inode, returning its inumber or -1 if none was found. 739 * Uses newsb for sb values, and assumes the cgs[] structures 740 * correctly describe the area to be searched. 741 * 742 * See find_freespace(), above, for remarks about hand wrapping around. 743 */ 744 static int 745 find_freeinode(void) 746 { 747 static int hand = 0; /* hand rotates through all inodes in fs */ 748 int cgn; /* cg number of cg hand points into */ 749 int iwc; /* inode-within-cg number of inode hand points 750 * to */ 751 int secondpass; /* have we wrapped from end to beginning? */ 752 unsigned char *bits; /* cg_inosused()[] for cg hand points into */ 753 754 cgn = hand / newsb->fs_ipg; 755 iwc = hand % newsb->fs_ipg; 756 secondpass = (hand == 0); 757 bits = cg_inosused(cgs[cgn], 0); 758 while (1) { 759 if (bit_is_clr(bits, iwc)) 760 return (hand); 761 hand++; 762 iwc++; 763 if (iwc >= newsb->fs_ipg) { 764 iwc = 0; 765 cgn++; 766 if (cgn >= newsb->fs_ncg) { 767 hand = 0; 768 if (secondpass) 769 return (-1); 770 secondpass = 1; 771 cgn = 0; 772 } 773 bits = cg_inosused(cgs[cgn], 0); 774 } 775 } 776 } 777 /* 778 * Mark a frag as free. Sets the frag's bit in the cg_blksfree bitmap 779 * for the appropriate cg, and marks the cg as dirty. 780 */ 781 static void 782 free_frag(int fno) 783 { 784 int cgn; 785 786 cgn = dtog(newsb, fno); 787 set_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1); 788 cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS; 789 } 790 /* 791 * Allocate a frag. Clears the frag's bit in the cg_blksfree bitmap 792 * for the appropriate cg, and marks the cg as dirty. 793 */ 794 static void 795 alloc_frag(int fno) 796 { 797 int cgn; 798 799 cgn = dtog(newsb, fno); 800 clr_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1); 801 cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS; 802 } 803 /* 804 * Fix up the csum array. If shrinking, this involves freeing zero or 805 * more frags; if growing, it involves allocating them, or if the 806 * frags being grown into aren't free, finding space elsewhere for the 807 * csum info. (If the number of occupied frags doesn't change, 808 * nothing happens here.) 809 */ 810 static void 811 csum_fixup(void) 812 { 813 int nold; /* # frags in old csum info */ 814 int ntot; /* # frags in new csum info */ 815 int nnew; /* ntot-nold */ 816 int newloc; /* new location for csum info, if necessary */ 817 int i; /* generic loop index */ 818 int j; /* generic loop index */ 819 int f; /* "from" frag number, if moving */ 820 int t; /* "to" frag number, if moving */ 821 int cgn; /* cg number, used when shrinking */ 822 823 ntot = howmany(newsb->fs_cssize, newsb->fs_fsize); 824 nold = howmany(oldsb->fs_cssize, newsb->fs_fsize); 825 nnew = ntot - nold; 826 /* First, if there's no change in frag counts, it's easy. */ 827 if (nnew == 0) 828 return; 829 /* Next, if we're shrinking, it's almost as easy. Just free up any 830 * frags in the old area we no longer need. */ 831 if (nnew < 0) { 832 for ((i = newsb->fs_csaddr + ntot - 1), (j = nnew); 833 j < 0; 834 i--, j++) { 835 free_frag(i); 836 } 837 return; 838 } 839 /* We must be growing. Check to see that the new csum area fits 840 * within the file system. I think this can never happen, since for 841 * the csum area to grow, we must be adding at least one cg, so the 842 * old csum area can't be this close to the end of the new file system. 843 * But it's a cheap check. */ 844 /* XXX what if csum info is at end of cg and grows into next cg, what 845 * if it spills over onto the next cg's backup superblock? Can this 846 * happen? */ 847 if (newsb->fs_csaddr + ntot <= newsb->fs_size) { 848 /* Okay, it fits - now, see if the space we want is free. */ 849 for ((i = newsb->fs_csaddr + nold), (j = nnew); 850 j > 0; 851 i++, j--) { 852 cgn = dtog(newsb, i); 853 if (bit_is_clr(cg_blksfree(cgs[cgn], 0), 854 dtogd(newsb, i))) 855 break; 856 } 857 if (j <= 0) { 858 /* Win win - all the frags we want are free. Allocate 859 * 'em and we're all done. */ 860 for ((i = newsb->fs_csaddr + ntot - nnew), 861 (j = nnew); j > 0; i++, j--) { 862 alloc_frag(i); 863 } 864 return; 865 } 866 } 867 /* We have to move the csum info, sigh. Look for new space, free old 868 * space, and allocate new. Update fs_csaddr. We don't copy anything 869 * on disk at this point; the csum info will be written to the 870 * then-current fs_csaddr as part of the final flush. */ 871 newloc = find_freespace(ntot); 872 if (newloc < 0) 873 errx(EXIT_FAILURE, "Sorry, no space available for new csums"); 874 for (i = 0, f = newsb->fs_csaddr, t = newloc; i < ntot; i++, f++, t++) { 875 if (i < nold) { 876 free_frag(f); 877 } 878 alloc_frag(t); 879 } 880 newsb->fs_csaddr = newloc; 881 } 882 /* 883 * Recompute newsb->fs_dsize. Just scans all cgs, adding the number of 884 * data blocks in that cg to the total. 885 */ 886 static void 887 recompute_fs_dsize(void) 888 { 889 int i; 890 891 newsb->fs_dsize = 0; 892 for (i = 0; i < newsb->fs_ncg; i++) { 893 int dlow; /* size of before-sb data area */ 894 int dhigh; /* offset of post-inode data area */ 895 int dmax; /* total size of cg */ 896 int base; /* base of cg, since cgsblock() etc add it in */ 897 base = cgbase(newsb, i); 898 dlow = cgsblock(newsb, i) - base; 899 dhigh = cgdmin(newsb, i) - base; 900 dmax = newsb->fs_size - base; 901 if (dmax > newsb->fs_fpg) 902 dmax = newsb->fs_fpg; 903 newsb->fs_dsize += dlow + dmax - dhigh; 904 } 905 /* Space in cg 0 before cgsblock is boot area, not free space! */ 906 newsb->fs_dsize -= cgsblock(newsb, 0) - cgbase(newsb, 0); 907 /* And of course the csum info takes up space. */ 908 newsb->fs_dsize -= howmany(newsb->fs_cssize, newsb->fs_fsize); 909 } 910 /* 911 * Return the current time. We call this and assign, rather than 912 * calling time() directly, as insulation against OSes where fs_time 913 * is not a time_t. 914 */ 915 static time_t 916 timestamp(void) 917 { 918 time_t t; 919 920 time(&t); 921 return (t); 922 } 923 924 /* 925 * Calculate new filesystem geometry 926 * return 0 if geometry actually changed 927 */ 928 static int 929 makegeometry(int chatter) 930 { 931 932 /* Update the size. */ 933 newsb->fs_size = FFS_DBTOFSB(newsb, newsize); 934 if (is_ufs2) 935 newsb->fs_ncg = howmany(newsb->fs_size, newsb->fs_fpg); 936 else { 937 /* Update fs_old_ncyl and fs_ncg. */ 938 newsb->fs_old_ncyl = howmany(newsb->fs_size * NSPF(newsb), 939 newsb->fs_old_spc); 940 newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg); 941 } 942 943 /* Does the last cg end before the end of its inode area? There is no 944 * reason why this couldn't be handled, but it would complicate a lot 945 * of code (in all file system code - fsck, kernel, etc) because of the 946 * potential partial inode area, and the gain in space would be 947 * minimal, at most the pre-sb data area. */ 948 if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) { 949 newsb->fs_ncg--; 950 if (is_ufs2) 951 newsb->fs_size = newsb->fs_ncg * newsb->fs_fpg; 952 else { 953 newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg; 954 newsb->fs_size = (newsb->fs_old_ncyl * 955 newsb->fs_old_spc) / NSPF(newsb); 956 } 957 if (chatter || verbose) { 958 printf("Warning: last cylinder group is too small;\n"); 959 printf(" dropping it. New size = %lu.\n", 960 (unsigned long int) FFS_FSBTODB(newsb, newsb->fs_size)); 961 } 962 } 963 964 /* Did we actually not grow? (This can happen if newsize is less than 965 * a frag larger than the old size - unlikely, but no excuse to 966 * misbehave if it happens.) */ 967 if (newsb->fs_size == oldsb->fs_size) 968 return 1; 969 970 return 0; 971 } 972 973 974 /* 975 * Grow the file system. 976 */ 977 static void 978 grow(void) 979 { 980 int i; 981 982 if (makegeometry(1)) { 983 printf("New fs size %"PRIu64" = old fs size %"PRIu64 984 ", not growing.\n", newsb->fs_size, oldsb->fs_size); 985 return; 986 } 987 988 if (verbose) { 989 printf("Growing fs from %"PRIu64" blocks to %"PRIu64 990 " blocks.\n", oldsb->fs_size, newsb->fs_size); 991 } 992 993 /* Update the timestamp. */ 994 newsb->fs_time = timestamp(); 995 /* Allocate and clear the new-inode area, in case we add any cgs. */ 996 zinodes = alloconce(newsb->fs_ipg * sizeof(*zinodes), "zeroed inodes"); 997 memset(zinodes, 0, newsb->fs_ipg * sizeof(*zinodes)); 998 999 /* Check that the new last sector (frag, actually) is writable. Since 1000 * it's at least one frag larger than it used to be, we know we aren't 1001 * overwriting anything important by this. (The choice of sbbuf as 1002 * what to write is irrelevant; it's just something handy that's known 1003 * to be at least one frag in size.) */ 1004 writeat(FFS_FSBTODB(newsb,newsb->fs_size - 1), &sbbuf, newsb->fs_fsize); 1005 1006 /* Find out how big the csum area is, and realloc csums if bigger. */ 1007 newsb->fs_cssize = ffs_fragroundup(newsb, 1008 newsb->fs_ncg * sizeof(struct csum)); 1009 if (newsb->fs_cssize > oldsb->fs_cssize) 1010 csums = nfrealloc(csums, newsb->fs_cssize, "new cg summary"); 1011 /* If we're adding any cgs, realloc structures and set up the new 1012 cgs. */ 1013 if (newsb->fs_ncg > oldsb->fs_ncg) { 1014 char *cgp; 1015 cgs = nfrealloc(cgs, newsb->fs_ncg * sizeof(*cgs), 1016 "cg pointers"); 1017 cgflags = nfrealloc(cgflags, newsb->fs_ncg, "cg flags"); 1018 memset(cgflags + oldsb->fs_ncg, 0, 1019 newsb->fs_ncg - oldsb->fs_ncg); 1020 cgp = alloconce((newsb->fs_ncg - oldsb->fs_ncg) * cgblksz, 1021 "cgs"); 1022 for (i = oldsb->fs_ncg; i < newsb->fs_ncg; i++) { 1023 cgs[i] = (struct cg *) cgp; 1024 progress_bar(special, "grow cg", 1025 i - oldsb->fs_ncg, newsb->fs_ncg - oldsb->fs_ncg); 1026 initcg(i); 1027 cgp += cgblksz; 1028 } 1029 cgs[oldsb->fs_ncg - 1]->cg_old_ncyl = oldsb->fs_old_cpg; 1030 cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY; 1031 } 1032 /* If the old fs ended partway through a cg, we have to update the old 1033 * last cg (though possibly not to a full cg!). */ 1034 if (oldsb->fs_size % oldsb->fs_fpg) { 1035 struct cg *cg; 1036 int newcgsize; 1037 int prevcgtop; 1038 int oldcgsize; 1039 cg = cgs[oldsb->fs_ncg - 1]; 1040 cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY | CGF_BLKMAPS; 1041 prevcgtop = oldsb->fs_fpg * (oldsb->fs_ncg - 1); 1042 newcgsize = newsb->fs_size - prevcgtop; 1043 if (newcgsize > newsb->fs_fpg) 1044 newcgsize = newsb->fs_fpg; 1045 oldcgsize = oldsb->fs_size % oldsb->fs_fpg; 1046 set_bits(cg_blksfree(cg, 0), oldcgsize, newcgsize - oldcgsize); 1047 cg->cg_old_ncyl = oldsb->fs_old_cpg; 1048 cg->cg_ndblk = newcgsize; 1049 } 1050 /* Fix up the csum info, if necessary. */ 1051 csum_fixup(); 1052 /* Make fs_dsize match the new reality. */ 1053 recompute_fs_dsize(); 1054 1055 progress_done(); 1056 } 1057 /* 1058 * Call (*fn)() for each inode, passing the inode and its inumber. The 1059 * number of cylinder groups is pased in, so this can be used to map 1060 * over either the old or the new file system's set of inodes. 1061 */ 1062 static void 1063 map_inodes(void (*fn) (union dinode * di, unsigned int, void *arg), 1064 int ncg, void *cbarg) { 1065 int i; 1066 int ni; 1067 1068 ni = oldsb->fs_ipg * ncg; 1069 for (i = 0; i < ni; i++) 1070 (*fn) (inodes + i, i, cbarg); 1071 } 1072 /* Values for the third argument to the map function for 1073 * map_inode_data_blocks. MDB_DATA indicates the block is contains 1074 * file data; MDB_INDIR_PRE and MDB_INDIR_POST indicate that it's an 1075 * indirect block. The MDB_INDIR_PRE call is made before the indirect 1076 * block pointers are followed and the pointed-to blocks scanned, 1077 * MDB_INDIR_POST after. 1078 */ 1079 #define MDB_DATA 1 1080 #define MDB_INDIR_PRE 2 1081 #define MDB_INDIR_POST 3 1082 1083 typedef void (*mark_callback_t) (off_t blocknum, unsigned int nfrags, 1084 unsigned int blksize, int opcode); 1085 1086 /* Helper function - handles a data block. Calls the callback 1087 * function and returns number of bytes occupied in file (actually, 1088 * rounded up to a frag boundary). The name is historical. */ 1089 static int 1090 markblk(mark_callback_t fn, union dinode * di, off_t bn, off_t o) 1091 { 1092 int sz; 1093 int nb; 1094 off_t filesize; 1095 1096 filesize = DIP(di,di_size); 1097 if (o >= filesize) 1098 return (0); 1099 sz = dblksize(newsb, di, ffs_lblkno(newsb, o), filesize); 1100 nb = (sz > filesize - o) ? filesize - o : sz; 1101 if (bn) 1102 (*fn) (bn, ffs_numfrags(newsb, sz), nb, MDB_DATA); 1103 return (sz); 1104 } 1105 /* Helper function - handles an indirect block. Makes the 1106 * MDB_INDIR_PRE callback for the indirect block, loops over the 1107 * pointers and recurses, and makes the MDB_INDIR_POST callback. 1108 * Returns the number of bytes occupied in file, as does markblk(). 1109 * For the sake of update_for_data_move(), we read the indirect block 1110 * _after_ making the _PRE callback. The name is historical. */ 1111 static int 1112 markiblk(mark_callback_t fn, union dinode * di, off_t bn, off_t o, int lev) 1113 { 1114 int i; 1115 int j; 1116 unsigned k; 1117 int tot; 1118 static int32_t indirblk1[howmany(MAXBSIZE, sizeof(int32_t))]; 1119 static int32_t indirblk2[howmany(MAXBSIZE, sizeof(int32_t))]; 1120 static int32_t indirblk3[howmany(MAXBSIZE, sizeof(int32_t))]; 1121 static int32_t *indirblks[3] = { 1122 &indirblk1[0], &indirblk2[0], &indirblk3[0] 1123 }; 1124 1125 if (lev < 0) 1126 return (markblk(fn, di, bn, o)); 1127 if (bn == 0) { 1128 for (i = newsb->fs_bsize; 1129 lev >= 0; 1130 i *= FFS_NINDIR(newsb), lev--); 1131 return (i); 1132 } 1133 (*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_PRE); 1134 readat(FFS_FSBTODB(newsb, bn), indirblks[lev], newsb->fs_bsize); 1135 if (needswap) 1136 for (k = 0; k < howmany(MAXBSIZE, sizeof(int32_t)); k++) 1137 indirblks[lev][k] = bswap32(indirblks[lev][k]); 1138 tot = 0; 1139 for (i = 0; i < FFS_NINDIR(newsb); i++) { 1140 j = markiblk(fn, di, indirblks[lev][i], o, lev - 1); 1141 if (j == 0) 1142 break; 1143 o += j; 1144 tot += j; 1145 } 1146 (*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_POST); 1147 return (tot); 1148 } 1149 1150 1151 /* 1152 * Call (*fn)() for each data block for an inode. This routine assumes 1153 * the inode is known to be of a type that has data blocks (file, 1154 * directory, or non-fast symlink). The called function is: 1155 * 1156 * (*fn)(unsigned int blkno, unsigned int nf, unsigned int nb, int op) 1157 * 1158 * where blkno is the frag number, nf is the number of frags starting 1159 * at blkno (always <= fs_frag), nb is the number of bytes that belong 1160 * to the file (usually nf*fs_frag, often less for the last block/frag 1161 * of a file). 1162 */ 1163 static void 1164 map_inode_data_blocks(union dinode * di, mark_callback_t fn) 1165 { 1166 off_t o; /* offset within inode */ 1167 int inc; /* increment for o - maybe should be off_t? */ 1168 int b; /* index within di_db[] and di_ib[] arrays */ 1169 1170 /* Scan the direct blocks... */ 1171 o = 0; 1172 for (b = 0; b < UFS_NDADDR; b++) { 1173 inc = markblk(fn, di, DIP(di,di_db[b]), o); 1174 if (inc == 0) 1175 break; 1176 o += inc; 1177 } 1178 /* ...and the indirect blocks. */ 1179 if (inc) { 1180 for (b = 0; b < UFS_NIADDR; b++) { 1181 inc = markiblk(fn, di, DIP(di,di_ib[b]), o, b); 1182 if (inc == 0) 1183 return; 1184 o += inc; 1185 } 1186 } 1187 } 1188 1189 static void 1190 dblk_callback(union dinode * di, unsigned int inum, void *arg) 1191 { 1192 mark_callback_t fn; 1193 off_t filesize; 1194 1195 filesize = DIP(di,di_size); 1196 fn = (mark_callback_t) arg; 1197 switch (DIP(di,di_mode) & IFMT) { 1198 case IFLNK: 1199 if (filesize <= newsb->fs_maxsymlinklen) { 1200 break; 1201 } 1202 /* FALLTHROUGH */ 1203 case IFDIR: 1204 case IFREG: 1205 map_inode_data_blocks(di, fn); 1206 break; 1207 } 1208 } 1209 /* 1210 * Make a callback call, a la map_inode_data_blocks, for all data 1211 * blocks in the entire fs. This is used only once, in 1212 * update_for_data_move, but it's out at top level because the complex 1213 * downward-funarg nesting that would otherwise result seems to give 1214 * gcc gastric distress. 1215 */ 1216 static void 1217 map_data_blocks(mark_callback_t fn, int ncg) 1218 { 1219 map_inodes(&dblk_callback, ncg, (void *) fn); 1220 } 1221 /* 1222 * Initialize the blkmove array. 1223 */ 1224 static void 1225 blkmove_init(void) 1226 { 1227 int i; 1228 1229 blkmove = alloconce(oldsb->fs_size * sizeof(*blkmove), "blkmove"); 1230 for (i = 0; i < oldsb->fs_size; i++) 1231 blkmove[i] = i; 1232 } 1233 /* 1234 * Load the inodes off disk. Allocates the structures and initializes 1235 * them - the inodes from disk, the flags to zero. 1236 */ 1237 static void 1238 loadinodes(void) 1239 { 1240 int imax, ino, i, j; 1241 struct ufs1_dinode *dp1 = NULL; 1242 struct ufs2_dinode *dp2 = NULL; 1243 1244 /* read inodes one fs block at a time and copy them */ 1245 1246 inodes = alloconce(oldsb->fs_ncg * oldsb->fs_ipg * 1247 sizeof(union dinode), "inodes"); 1248 iflags = alloconce(oldsb->fs_ncg * oldsb->fs_ipg, "inode flags"); 1249 memset(iflags, 0, oldsb->fs_ncg * oldsb->fs_ipg); 1250 1251 ibuf = nfmalloc(oldsb->fs_bsize,"inode block buf"); 1252 if (is_ufs2) 1253 dp2 = (struct ufs2_dinode *)ibuf; 1254 else 1255 dp1 = (struct ufs1_dinode *)ibuf; 1256 1257 for (ino = 0,imax = oldsb->fs_ipg * oldsb->fs_ncg; ino < imax; ) { 1258 readat(FFS_FSBTODB(oldsb, ino_to_fsba(oldsb, ino)), ibuf, 1259 oldsb->fs_bsize); 1260 1261 for (i = 0; i < oldsb->fs_inopb; i++) { 1262 if (is_ufs2) { 1263 if (needswap) { 1264 ffs_dinode2_swap(&(dp2[i]), &(dp2[i])); 1265 for (j = 0; j < UFS_NDADDR; j++) 1266 dp2[i].di_db[j] = 1267 bswap32(dp2[i].di_db[j]); 1268 for (j = 0; j < UFS_NIADDR; j++) 1269 dp2[i].di_ib[j] = 1270 bswap32(dp2[i].di_ib[j]); 1271 } 1272 memcpy(&inodes[ino].dp2, &dp2[i], 1273 sizeof(inodes[ino].dp2)); 1274 } else { 1275 if (needswap) { 1276 ffs_dinode1_swap(&(dp1[i]), &(dp1[i])); 1277 for (j = 0; j < UFS_NDADDR; j++) 1278 dp1[i].di_db[j] = 1279 bswap32(dp1[i].di_db[j]); 1280 for (j = 0; j < UFS_NIADDR; j++) 1281 dp1[i].di_ib[j] = 1282 bswap32(dp1[i].di_ib[j]); 1283 } 1284 memcpy(&inodes[ino].dp1, &dp1[i], 1285 sizeof(inodes[ino].dp1)); 1286 } 1287 if (++ino > imax) 1288 errx(EXIT_FAILURE, 1289 "Exceeded number of inodes"); 1290 } 1291 1292 } 1293 } 1294 /* 1295 * Report a file-system-too-full problem. 1296 */ 1297 __dead static void 1298 toofull(void) 1299 { 1300 errx(EXIT_FAILURE, "Sorry, would run out of data blocks"); 1301 } 1302 /* 1303 * Record a desire to move "n" frags from "from" to "to". 1304 */ 1305 static void 1306 mark_move(unsigned int from, unsigned int to, unsigned int n) 1307 { 1308 for (; n > 0; n--) 1309 blkmove[from++] = to++; 1310 } 1311 /* Helper function - evict n frags, starting with start (cg-relative). 1312 * The free bitmap is scanned, unallocated frags are ignored, and 1313 * each block of consecutive allocated frags is moved as a unit. 1314 */ 1315 static void 1316 fragmove(struct cg * cg, int base, unsigned int start, unsigned int n) 1317 { 1318 unsigned int i; 1319 int run; 1320 1321 run = 0; 1322 for (i = 0; i <= n; i++) { 1323 if ((i < n) && bit_is_clr(cg_blksfree(cg, 0), start + i)) { 1324 run++; 1325 } else { 1326 if (run > 0) { 1327 int off; 1328 off = find_freespace(run); 1329 if (off < 0) 1330 toofull(); 1331 mark_move(base + start + i - run, off, run); 1332 set_bits(cg_blksfree(cg, 0), start + i - run, 1333 run); 1334 clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0), 1335 dtogd(oldsb, off), run); 1336 } 1337 run = 0; 1338 } 1339 } 1340 } 1341 /* 1342 * Evict all data blocks from the given cg, starting at minfrag (based 1343 * at the beginning of the cg), for length nfrag. The eviction is 1344 * assumed to be entirely data-area; this should not be called with a 1345 * range overlapping the metadata structures in the cg. It also 1346 * assumes minfrag points into the given cg; it will misbehave if this 1347 * is not true. 1348 * 1349 * See the comment header on find_freespace() for one possible bug 1350 * lurking here. 1351 */ 1352 static void 1353 evict_data(struct cg * cg, unsigned int minfrag, int nfrag) 1354 { 1355 int base; /* base of cg (in frags from beginning of fs) */ 1356 1357 base = cgbase(oldsb, cg->cg_cgx); 1358 /* Does the boundary fall in the middle of a block? To avoid 1359 * breaking between frags allocated as consecutive, we always 1360 * evict the whole block in this case, though one could argue 1361 * we should check to see if the frag before or after the 1362 * break is unallocated. */ 1363 if (minfrag % oldsb->fs_frag) { 1364 int n; 1365 n = minfrag % oldsb->fs_frag; 1366 minfrag -= n; 1367 nfrag += n; 1368 } 1369 /* Do whole blocks. If a block is wholly free, skip it; if 1370 * wholly allocated, move it in toto. If neither, call 1371 * fragmove() to move the frags to new locations. */ 1372 while (nfrag >= oldsb->fs_frag) { 1373 if (!blk_is_set(cg_blksfree(cg, 0), minfrag, oldsb->fs_frag)) { 1374 if (blk_is_clr(cg_blksfree(cg, 0), minfrag, 1375 oldsb->fs_frag)) { 1376 int off; 1377 off = find_freeblock(); 1378 if (off < 0) 1379 toofull(); 1380 mark_move(base + minfrag, off, oldsb->fs_frag); 1381 set_bits(cg_blksfree(cg, 0), minfrag, 1382 oldsb->fs_frag); 1383 clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0), 1384 dtogd(oldsb, off), oldsb->fs_frag); 1385 } else { 1386 fragmove(cg, base, minfrag, oldsb->fs_frag); 1387 } 1388 } 1389 minfrag += oldsb->fs_frag; 1390 nfrag -= oldsb->fs_frag; 1391 } 1392 /* Clean up any sub-block amount left over. */ 1393 if (nfrag) { 1394 fragmove(cg, base, minfrag, nfrag); 1395 } 1396 } 1397 /* 1398 * Move all data blocks according to blkmove. We have to be careful, 1399 * because we may be updating indirect blocks that will themselves be 1400 * getting moved, or inode int32_t arrays that point to indirect 1401 * blocks that will be moved. We call this before 1402 * update_for_data_move, and update_for_data_move does inodes first, 1403 * then indirect blocks in preorder, so as to make sure that the 1404 * file system is self-consistent at all points, for better crash 1405 * tolerance. (We can get away with this only because all the writes 1406 * done by perform_data_move() are writing into space that's not used 1407 * by the old file system.) If we crash, some things may point to the 1408 * old data and some to the new, but both copies are the same. The 1409 * only wrong things should be csum info and free bitmaps, which fsck 1410 * is entirely capable of cleaning up. 1411 * 1412 * Since blkmove_init() initializes all blocks to move to their current 1413 * locations, we can have two blocks marked as wanting to move to the 1414 * same location, but only two and only when one of them is the one 1415 * that was already there. So if blkmove[i]==i, we ignore that entry 1416 * entirely - for unallocated blocks, we don't want it (and may be 1417 * putting something else there), and for allocated blocks, we don't 1418 * want to copy it anywhere. 1419 */ 1420 static void 1421 perform_data_move(void) 1422 { 1423 int i; 1424 int run; 1425 int maxrun; 1426 char buf[65536]; 1427 1428 maxrun = sizeof(buf) / newsb->fs_fsize; 1429 run = 0; 1430 for (i = 0; i < oldsb->fs_size; i++) { 1431 if ((blkmove[i] == (unsigned)i /*XXX cast*/) || 1432 (run >= maxrun) || 1433 ((run > 0) && 1434 (blkmove[i] != blkmove[i - 1] + 1))) { 1435 if (run > 0) { 1436 readat(FFS_FSBTODB(oldsb, i - run), &buf[0], 1437 run << oldsb->fs_fshift); 1438 writeat(FFS_FSBTODB(oldsb, blkmove[i - run]), 1439 &buf[0], run << oldsb->fs_fshift); 1440 } 1441 run = 0; 1442 } 1443 if (blkmove[i] != (unsigned)i /*XXX cast*/) 1444 run++; 1445 } 1446 if (run > 0) { 1447 readat(FFS_FSBTODB(oldsb, i - run), &buf[0], 1448 run << oldsb->fs_fshift); 1449 writeat(FFS_FSBTODB(oldsb, blkmove[i - run]), &buf[0], 1450 run << oldsb->fs_fshift); 1451 } 1452 } 1453 /* 1454 * This modifies an array of int32_t, according to blkmove. This is 1455 * used to update inode block arrays and indirect blocks to point to 1456 * the new locations of data blocks. 1457 * 1458 * Return value is the number of int32_ts that needed updating; in 1459 * particular, the return value is zero iff nothing was modified. 1460 */ 1461 static int 1462 movemap_blocks(int32_t * vec, int n) 1463 { 1464 int rv; 1465 1466 rv = 0; 1467 for (; n > 0; n--, vec++) { 1468 if (blkmove[*vec] != (unsigned)*vec /*XXX cast*/) { 1469 *vec = blkmove[*vec]; 1470 rv++; 1471 } 1472 } 1473 return (rv); 1474 } 1475 static void 1476 moveblocks_callback(union dinode * di, unsigned int inum, void *arg) 1477 { 1478 int32_t *dblkptr, *iblkptr; 1479 1480 switch (DIP(di,di_mode) & IFMT) { 1481 case IFLNK: 1482 if ((off_t)DIP(di,di_size) <= oldsb->fs_maxsymlinklen) { 1483 break; 1484 } 1485 /* FALLTHROUGH */ 1486 case IFDIR: 1487 case IFREG: 1488 if (is_ufs2) { 1489 /* XXX these are not int32_t and this is WRONG! */ 1490 dblkptr = (void *) &(di->dp2.di_db[0]); 1491 iblkptr = (void *) &(di->dp2.di_ib[0]); 1492 } else { 1493 dblkptr = &(di->dp1.di_db[0]); 1494 iblkptr = &(di->dp1.di_ib[0]); 1495 } 1496 /* 1497 * Don't || these two calls; we need their 1498 * side-effects. 1499 */ 1500 if (movemap_blocks(dblkptr, UFS_NDADDR)) { 1501 iflags[inum] |= IF_DIRTY; 1502 } 1503 if (movemap_blocks(iblkptr, UFS_NIADDR)) { 1504 iflags[inum] |= IF_DIRTY; 1505 } 1506 break; 1507 } 1508 } 1509 1510 static void 1511 moveindir_callback(off_t off, unsigned int nfrag, unsigned int nbytes, 1512 int kind) 1513 { 1514 unsigned int i; 1515 1516 if (kind == MDB_INDIR_PRE) { 1517 int32_t blk[howmany(MAXBSIZE, sizeof(int32_t))]; 1518 readat(FFS_FSBTODB(oldsb, off), &blk[0], oldsb->fs_bsize); 1519 if (needswap) 1520 for (i = 0; i < howmany(MAXBSIZE, sizeof(int32_t)); i++) 1521 blk[i] = bswap32(blk[i]); 1522 if (movemap_blocks(&blk[0], FFS_NINDIR(oldsb))) { 1523 if (needswap) 1524 for (i = 0; i < howmany(MAXBSIZE, 1525 sizeof(int32_t)); i++) 1526 blk[i] = bswap32(blk[i]); 1527 writeat(FFS_FSBTODB(oldsb, off), &blk[0], oldsb->fs_bsize); 1528 } 1529 } 1530 } 1531 /* 1532 * Update all inode data arrays and indirect blocks to point to the new 1533 * locations of data blocks. See the comment header on 1534 * perform_data_move for some ordering considerations. 1535 */ 1536 static void 1537 update_for_data_move(void) 1538 { 1539 map_inodes(&moveblocks_callback, oldsb->fs_ncg, NULL); 1540 map_data_blocks(&moveindir_callback, oldsb->fs_ncg); 1541 } 1542 /* 1543 * Initialize the inomove array. 1544 */ 1545 static void 1546 inomove_init(void) 1547 { 1548 int i; 1549 1550 inomove = alloconce(oldsb->fs_ipg * oldsb->fs_ncg * sizeof(*inomove), 1551 "inomove"); 1552 for (i = (oldsb->fs_ipg * oldsb->fs_ncg) - 1; i >= 0; i--) 1553 inomove[i] = i; 1554 } 1555 /* 1556 * Flush all dirtied inodes to disk. Scans the inode flags array; for 1557 * each dirty inode, it sets the BDIRTY bit on the first inode in the 1558 * block containing the dirty inode. Then it scans by blocks, and for 1559 * each marked block, writes it. 1560 */ 1561 static void 1562 flush_inodes(void) 1563 { 1564 int i, j, k, ni, m; 1565 struct ufs1_dinode *dp1 = NULL; 1566 struct ufs2_dinode *dp2 = NULL; 1567 1568 ni = newsb->fs_ipg * newsb->fs_ncg; 1569 m = FFS_INOPB(newsb) - 1; 1570 for (i = 0; i < ni; i++) { 1571 if (iflags[i] & IF_DIRTY) { 1572 iflags[i & ~m] |= IF_BDIRTY; 1573 } 1574 } 1575 m++; 1576 1577 if (is_ufs2) 1578 dp2 = (struct ufs2_dinode *)ibuf; 1579 else 1580 dp1 = (struct ufs1_dinode *)ibuf; 1581 1582 for (i = 0; i < ni; i += m) { 1583 if ((iflags[i] & IF_BDIRTY) == 0) 1584 continue; 1585 if (is_ufs2) 1586 for (j = 0; j < m; j++) { 1587 dp2[j] = inodes[i + j].dp2; 1588 if (needswap) { 1589 for (k = 0; k < UFS_NDADDR; k++) 1590 dp2[j].di_db[k] = 1591 bswap32(dp2[j].di_db[k]); 1592 for (k = 0; k < UFS_NIADDR; k++) 1593 dp2[j].di_ib[k] = 1594 bswap32(dp2[j].di_ib[k]); 1595 ffs_dinode2_swap(&dp2[j], 1596 &dp2[j]); 1597 } 1598 } 1599 else 1600 for (j = 0; j < m; j++) { 1601 dp1[j] = inodes[i + j].dp1; 1602 if (needswap) { 1603 for (k = 0; k < UFS_NDADDR; k++) 1604 dp1[j].di_db[k]= 1605 bswap32(dp1[j].di_db[k]); 1606 for (k = 0; k < UFS_NIADDR; k++) 1607 dp1[j].di_ib[k]= 1608 bswap32(dp1[j].di_ib[k]); 1609 ffs_dinode1_swap(&dp1[j], 1610 &dp1[j]); 1611 } 1612 } 1613 1614 writeat(FFS_FSBTODB(newsb, ino_to_fsba(newsb, i)), 1615 ibuf, newsb->fs_bsize); 1616 } 1617 } 1618 /* 1619 * Evict all inodes from the specified cg. shrink() already checked 1620 * that there were enough free inodes, so the no-free-inodes check is 1621 * a can't-happen. If it does trip, the file system should be in good 1622 * enough shape for fsck to fix; see the comment on perform_data_move 1623 * for the considerations in question. 1624 */ 1625 static void 1626 evict_inodes(struct cg * cg) 1627 { 1628 int inum; 1629 int i; 1630 int fi; 1631 1632 inum = newsb->fs_ipg * cg->cg_cgx; 1633 for (i = 0; i < newsb->fs_ipg; i++, inum++) { 1634 if (DIP(inodes + inum,di_mode) != 0) { 1635 fi = find_freeinode(); 1636 if (fi < 0) 1637 errx(EXIT_FAILURE, "Sorry, inodes evaporated - " 1638 "file system probably needs fsck"); 1639 inomove[inum] = fi; 1640 clr_bits(cg_inosused(cg, 0), i, 1); 1641 set_bits(cg_inosused(cgs[ino_to_cg(newsb, fi)], 0), 1642 fi % newsb->fs_ipg, 1); 1643 } 1644 } 1645 } 1646 /* 1647 * Move inodes from old locations to new. Does not actually write 1648 * anything to disk; just copies in-core and sets dirty bits. 1649 * 1650 * We have to be careful here for reasons similar to those mentioned in 1651 * the comment header on perform_data_move, above: for the sake of 1652 * crash tolerance, we want to make sure everything is present at both 1653 * old and new locations before we update pointers. So we call this 1654 * first, then flush_inodes() to get them out on disk, then update 1655 * directories to match. 1656 */ 1657 static void 1658 perform_inode_move(void) 1659 { 1660 unsigned int i; 1661 unsigned int ni; 1662 1663 ni = oldsb->fs_ipg * oldsb->fs_ncg; 1664 for (i = 0; i < ni; i++) { 1665 if (inomove[i] != i) { 1666 inodes[inomove[i]] = inodes[i]; 1667 iflags[inomove[i]] = iflags[i] | IF_DIRTY; 1668 } 1669 } 1670 } 1671 /* 1672 * Update the directory contained in the nb bytes at buf, to point to 1673 * inodes' new locations. 1674 */ 1675 static int 1676 update_dirents(char *buf, int nb) 1677 { 1678 int rv; 1679 #define d ((struct direct *)buf) 1680 #define s32(x) (needswap?bswap32((x)):(x)) 1681 #define s16(x) (needswap?bswap16((x)):(x)) 1682 1683 rv = 0; 1684 while (nb > 0) { 1685 if (inomove[s32(d->d_ino)] != s32(d->d_ino)) { 1686 rv++; 1687 d->d_ino = s32(inomove[s32(d->d_ino)]); 1688 } 1689 nb -= s16(d->d_reclen); 1690 buf += s16(d->d_reclen); 1691 } 1692 return (rv); 1693 #undef d 1694 #undef s32 1695 #undef s16 1696 } 1697 /* 1698 * Callback function for map_inode_data_blocks, for updating a 1699 * directory to point to new inode locations. 1700 */ 1701 static void 1702 update_dir_data(off_t bn, unsigned int size, unsigned int nb, int kind) 1703 { 1704 if (kind == MDB_DATA) { 1705 union { 1706 struct direct d; 1707 char ch[MAXBSIZE]; 1708 } buf; 1709 readat(FFS_FSBTODB(oldsb, bn), &buf, size << oldsb->fs_fshift); 1710 if (update_dirents((char *) &buf, nb)) { 1711 writeat(FFS_FSBTODB(oldsb, bn), &buf, 1712 size << oldsb->fs_fshift); 1713 } 1714 } 1715 } 1716 static void 1717 dirmove_callback(union dinode * di, unsigned int inum, void *arg) 1718 { 1719 switch (DIP(di,di_mode) & IFMT) { 1720 case IFDIR: 1721 map_inode_data_blocks(di, &update_dir_data); 1722 break; 1723 } 1724 } 1725 /* 1726 * Update directory entries to point to new inode locations. 1727 */ 1728 static void 1729 update_for_inode_move(void) 1730 { 1731 map_inodes(&dirmove_callback, newsb->fs_ncg, NULL); 1732 } 1733 /* 1734 * Shrink the file system. 1735 */ 1736 static void 1737 shrink(void) 1738 { 1739 int i; 1740 1741 if (makegeometry(1)) { 1742 printf("New fs size %"PRIu64" = old fs size %"PRIu64 1743 ", not shrinking.\n", newsb->fs_size, oldsb->fs_size); 1744 return; 1745 } 1746 1747 /* Let's make sure we're not being shrunk into oblivion. */ 1748 if (newsb->fs_ncg < 1) 1749 errx(EXIT_FAILURE, "Size too small - file system would " 1750 "have no cylinders"); 1751 1752 if (verbose) { 1753 printf("Shrinking fs from %"PRIu64" blocks to %"PRIu64 1754 " blocks.\n", oldsb->fs_size, newsb->fs_size); 1755 } 1756 1757 /* Load the inodes off disk - we'll need 'em. */ 1758 loadinodes(); 1759 1760 /* Update the timestamp. */ 1761 newsb->fs_time = timestamp(); 1762 1763 /* Initialize for block motion. */ 1764 blkmove_init(); 1765 /* Update csum size, then fix up for the new size */ 1766 newsb->fs_cssize = ffs_fragroundup(newsb, 1767 newsb->fs_ncg * sizeof(struct csum)); 1768 csum_fixup(); 1769 /* Evict data from any cgs being wholly eliminated */ 1770 for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++) { 1771 int base; 1772 int dlow; 1773 int dhigh; 1774 int dmax; 1775 base = cgbase(oldsb, i); 1776 dlow = cgsblock(oldsb, i) - base; 1777 dhigh = cgdmin(oldsb, i) - base; 1778 dmax = oldsb->fs_size - base; 1779 if (dmax > cgs[i]->cg_ndblk) 1780 dmax = cgs[i]->cg_ndblk; 1781 evict_data(cgs[i], 0, dlow); 1782 evict_data(cgs[i], dhigh, dmax - dhigh); 1783 newsb->fs_cstotal.cs_ndir -= cgs[i]->cg_cs.cs_ndir; 1784 newsb->fs_cstotal.cs_nifree -= cgs[i]->cg_cs.cs_nifree; 1785 newsb->fs_cstotal.cs_nffree -= cgs[i]->cg_cs.cs_nffree; 1786 newsb->fs_cstotal.cs_nbfree -= cgs[i]->cg_cs.cs_nbfree; 1787 } 1788 /* Update the new last cg. */ 1789 cgs[newsb->fs_ncg - 1]->cg_ndblk = newsb->fs_size - 1790 ((newsb->fs_ncg - 1) * newsb->fs_fpg); 1791 /* Is the new last cg partial? If so, evict any data from the part 1792 * being shrunken away. */ 1793 if (newsb->fs_size % newsb->fs_fpg) { 1794 struct cg *cg; 1795 int oldcgsize; 1796 int newcgsize; 1797 cg = cgs[newsb->fs_ncg - 1]; 1798 newcgsize = newsb->fs_size % newsb->fs_fpg; 1799 oldcgsize = oldsb->fs_size - ((newsb->fs_ncg - 1) & 1800 oldsb->fs_fpg); 1801 if (oldcgsize > oldsb->fs_fpg) 1802 oldcgsize = oldsb->fs_fpg; 1803 evict_data(cg, newcgsize, oldcgsize - newcgsize); 1804 clr_bits(cg_blksfree(cg, 0), newcgsize, oldcgsize - newcgsize); 1805 } 1806 /* Find out whether we would run out of inodes. (Note we 1807 * haven't actually done anything to the file system yet; all 1808 * those evict_data calls just update blkmove.) */ 1809 { 1810 int slop; 1811 slop = 0; 1812 for (i = 0; i < newsb->fs_ncg; i++) 1813 slop += cgs[i]->cg_cs.cs_nifree; 1814 for (; i < oldsb->fs_ncg; i++) 1815 slop -= oldsb->fs_ipg - cgs[i]->cg_cs.cs_nifree; 1816 if (slop < 0) 1817 errx(EXIT_FAILURE, "Sorry, would run out of inodes"); 1818 } 1819 /* Copy data, then update pointers to data. See the comment 1820 * header on perform_data_move for ordering considerations. */ 1821 perform_data_move(); 1822 update_for_data_move(); 1823 /* Now do inodes. Initialize, evict, move, update - see the 1824 * comment header on perform_inode_move. */ 1825 inomove_init(); 1826 for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++) 1827 evict_inodes(cgs[i]); 1828 perform_inode_move(); 1829 flush_inodes(); 1830 update_for_inode_move(); 1831 /* Recompute all the bitmaps; most of them probably need it anyway, 1832 * the rest are just paranoia and not wanting to have to bother 1833 * keeping track of exactly which ones require it. */ 1834 for (i = 0; i < newsb->fs_ncg; i++) 1835 cgflags[i] |= CGF_DIRTY | CGF_BLKMAPS | CGF_INOMAPS; 1836 /* Update the cg_old_ncyl value for the last cylinder. */ 1837 if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) 1838 cgs[newsb->fs_ncg - 1]->cg_old_ncyl = 1839 newsb->fs_old_ncyl % newsb->fs_old_cpg; 1840 /* Make fs_dsize match the new reality. */ 1841 recompute_fs_dsize(); 1842 } 1843 /* 1844 * Recompute the block totals, block cluster summaries, and rotational 1845 * position summaries, for a given cg (specified by number), based on 1846 * its free-frag bitmap (cg_blksfree()[]). 1847 */ 1848 static void 1849 rescan_blkmaps(int cgn) 1850 { 1851 struct cg *cg; 1852 int f; 1853 int b; 1854 int blkfree; 1855 int blkrun; 1856 int fragrun; 1857 int fwb; 1858 1859 cg = cgs[cgn]; 1860 /* Subtract off the current totals from the sb's summary info */ 1861 newsb->fs_cstotal.cs_nffree -= cg->cg_cs.cs_nffree; 1862 newsb->fs_cstotal.cs_nbfree -= cg->cg_cs.cs_nbfree; 1863 /* Clear counters and bitmaps. */ 1864 cg->cg_cs.cs_nffree = 0; 1865 cg->cg_cs.cs_nbfree = 0; 1866 memset(&cg->cg_frsum[0], 0, MAXFRAG * sizeof(cg->cg_frsum[0])); 1867 memset(&old_cg_blktot(cg, 0)[0], 0, 1868 newsb->fs_old_cpg * sizeof(old_cg_blktot(cg, 0)[0])); 1869 memset(&old_cg_blks(newsb, cg, 0, 0)[0], 0, 1870 newsb->fs_old_cpg * newsb->fs_old_nrpos * 1871 sizeof(old_cg_blks(newsb, cg, 0, 0)[0])); 1872 if (newsb->fs_contigsumsize > 0) { 1873 cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag; 1874 memset(&cg_clustersum(cg, 0)[1], 0, 1875 newsb->fs_contigsumsize * 1876 sizeof(cg_clustersum(cg, 0)[1])); 1877 if (is_ufs2) 1878 memset(&cg_clustersfree(cg, 0)[0], 0, 1879 howmany(newsb->fs_fpg / NSPB(newsb), NBBY)); 1880 else 1881 memset(&cg_clustersfree(cg, 0)[0], 0, 1882 howmany((newsb->fs_old_cpg * newsb->fs_old_spc) / 1883 NSPB(newsb), NBBY)); 1884 } 1885 /* Scan the free-frag bitmap. Runs of free frags are kept 1886 * track of with fragrun, and recorded into cg_frsum[] and 1887 * cg_cs.cs_nffree; on each block boundary, entire free blocks 1888 * are recorded as well. */ 1889 blkfree = 1; 1890 blkrun = 0; 1891 fragrun = 0; 1892 f = 0; 1893 b = 0; 1894 fwb = 0; 1895 while (f < cg->cg_ndblk) { 1896 if (bit_is_set(cg_blksfree(cg, 0), f)) { 1897 fragrun++; 1898 } else { 1899 blkfree = 0; 1900 if (fragrun > 0) { 1901 cg->cg_frsum[fragrun]++; 1902 cg->cg_cs.cs_nffree += fragrun; 1903 } 1904 fragrun = 0; 1905 } 1906 f++; 1907 fwb++; 1908 if (fwb >= newsb->fs_frag) { 1909 if (blkfree) { 1910 cg->cg_cs.cs_nbfree++; 1911 if (newsb->fs_contigsumsize > 0) 1912 set_bits(cg_clustersfree(cg, 0), b, 1); 1913 if (is_ufs2 == 0) { 1914 old_cg_blktot(cg, 0)[ 1915 old_cbtocylno(newsb, 1916 f - newsb->fs_frag)]++; 1917 old_cg_blks(newsb, cg, 1918 old_cbtocylno(newsb, 1919 f - newsb->fs_frag), 1920 0)[old_cbtorpos(newsb, 1921 f - newsb->fs_frag)]++; 1922 } 1923 blkrun++; 1924 } else { 1925 if (fragrun > 0) { 1926 cg->cg_frsum[fragrun]++; 1927 cg->cg_cs.cs_nffree += fragrun; 1928 } 1929 if (newsb->fs_contigsumsize > 0) { 1930 if (blkrun > 0) { 1931 cg_clustersum(cg, 0)[(blkrun 1932 > newsb->fs_contigsumsize) 1933 ? newsb->fs_contigsumsize 1934 : blkrun]++; 1935 } 1936 } 1937 blkrun = 0; 1938 } 1939 fwb = 0; 1940 b++; 1941 blkfree = 1; 1942 fragrun = 0; 1943 } 1944 } 1945 if (fragrun > 0) { 1946 cg->cg_frsum[fragrun]++; 1947 cg->cg_cs.cs_nffree += fragrun; 1948 } 1949 if ((blkrun > 0) && (newsb->fs_contigsumsize > 0)) { 1950 cg_clustersum(cg, 0)[(blkrun > newsb->fs_contigsumsize) ? 1951 newsb->fs_contigsumsize : blkrun]++; 1952 } 1953 /* 1954 * Put the updated summary info back into csums, and add it 1955 * back into the sb's summary info. Then mark the cg dirty. 1956 */ 1957 csums[cgn] = cg->cg_cs; 1958 newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree; 1959 newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree; 1960 cgflags[cgn] |= CGF_DIRTY; 1961 } 1962 /* 1963 * Recompute the cg_inosused()[] bitmap, and the cs_nifree and cs_ndir 1964 * values, for a cg, based on the in-core inodes for that cg. 1965 */ 1966 static void 1967 rescan_inomaps(int cgn) 1968 { 1969 struct cg *cg; 1970 int inum; 1971 int iwc; 1972 1973 cg = cgs[cgn]; 1974 newsb->fs_cstotal.cs_ndir -= cg->cg_cs.cs_ndir; 1975 newsb->fs_cstotal.cs_nifree -= cg->cg_cs.cs_nifree; 1976 cg->cg_cs.cs_ndir = 0; 1977 cg->cg_cs.cs_nifree = 0; 1978 memset(&cg_inosused(cg, 0)[0], 0, howmany(newsb->fs_ipg, NBBY)); 1979 inum = cgn * newsb->fs_ipg; 1980 if (cgn == 0) { 1981 set_bits(cg_inosused(cg, 0), 0, 2); 1982 iwc = 2; 1983 inum += 2; 1984 } else { 1985 iwc = 0; 1986 } 1987 for (; iwc < newsb->fs_ipg; iwc++, inum++) { 1988 switch (DIP(inodes + inum, di_mode) & IFMT) { 1989 case 0: 1990 cg->cg_cs.cs_nifree++; 1991 break; 1992 case IFDIR: 1993 cg->cg_cs.cs_ndir++; 1994 /* FALLTHROUGH */ 1995 default: 1996 set_bits(cg_inosused(cg, 0), iwc, 1); 1997 break; 1998 } 1999 } 2000 csums[cgn] = cg->cg_cs; 2001 newsb->fs_cstotal.cs_ndir += cg->cg_cs.cs_ndir; 2002 newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree; 2003 cgflags[cgn] |= CGF_DIRTY; 2004 } 2005 /* 2006 * Flush cgs to disk, recomputing anything they're marked as needing. 2007 */ 2008 static void 2009 flush_cgs(void) 2010 { 2011 int i; 2012 2013 for (i = 0; i < newsb->fs_ncg; i++) { 2014 progress_bar(special, "flush cg", 2015 i, newsb->fs_ncg - 1); 2016 if (cgflags[i] & CGF_BLKMAPS) { 2017 rescan_blkmaps(i); 2018 } 2019 if (cgflags[i] & CGF_INOMAPS) { 2020 rescan_inomaps(i); 2021 } 2022 if (cgflags[i] & CGF_DIRTY) { 2023 cgs[i]->cg_rotor = 0; 2024 cgs[i]->cg_frotor = 0; 2025 cgs[i]->cg_irotor = 0; 2026 if (needswap) 2027 ffs_cg_swap(cgs[i],cgs[i],newsb); 2028 writeat(FFS_FSBTODB(newsb, cgtod(newsb, i)), cgs[i], 2029 cgblksz); 2030 } 2031 } 2032 if (needswap) 2033 ffs_csum_swap(csums,csums,newsb->fs_cssize); 2034 writeat(FFS_FSBTODB(newsb, newsb->fs_csaddr), csums, newsb->fs_cssize); 2035 2036 progress_done(); 2037 } 2038 /* 2039 * Write the superblock, both to the main superblock and to each cg's 2040 * alternative superblock. 2041 */ 2042 static void 2043 write_sbs(void) 2044 { 2045 int i; 2046 2047 if (newsb->fs_magic == FS_UFS1_MAGIC && 2048 (newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) { 2049 newsb->fs_old_time = newsb->fs_time; 2050 newsb->fs_old_size = newsb->fs_size; 2051 /* we don't update fs_csaddr */ 2052 newsb->fs_old_dsize = newsb->fs_dsize; 2053 newsb->fs_old_cstotal.cs_ndir = newsb->fs_cstotal.cs_ndir; 2054 newsb->fs_old_cstotal.cs_nbfree = newsb->fs_cstotal.cs_nbfree; 2055 newsb->fs_old_cstotal.cs_nifree = newsb->fs_cstotal.cs_nifree; 2056 newsb->fs_old_cstotal.cs_nffree = newsb->fs_cstotal.cs_nffree; 2057 /* fill fs_old_postbl_start with 256 bytes of 0xff? */ 2058 } 2059 /* copy newsb back to oldsb, so we can use it for offsets if 2060 newsb has been swapped for writing to disk */ 2061 memcpy(oldsb, newsb, SBLOCKSIZE); 2062 if (needswap) 2063 ffs_sb_swap(newsb,newsb); 2064 writeat(where / DEV_BSIZE, newsb, SBLOCKSIZE); 2065 for (i = 0; i < oldsb->fs_ncg; i++) { 2066 progress_bar(special, "write sb", 2067 i, oldsb->fs_ncg - 1); 2068 writeat(FFS_FSBTODB(oldsb, cgsblock(oldsb, i)), newsb, SBLOCKSIZE); 2069 } 2070 2071 progress_done(); 2072 } 2073 2074 /* 2075 * Check to see wether new size changes the filesystem 2076 * return exit code 2077 */ 2078 static int 2079 checkonly(void) 2080 { 2081 if (makegeometry(0)) { 2082 if (verbose) { 2083 printf("Wouldn't change: already %" PRId64 2084 " blocks\n", (int64_t)oldsb->fs_size); 2085 } 2086 return 1; 2087 } 2088 2089 if (verbose) { 2090 printf("Would change: newsize: %" PRId64 " oldsize: %" 2091 PRId64 " fsdb: %" PRId64 "\n", FFS_DBTOFSB(oldsb, newsize), 2092 (int64_t)oldsb->fs_size, 2093 (int64_t)oldsb->fs_fsbtodb); 2094 } 2095 return 0; 2096 } 2097 2098 static off_t 2099 get_dev_size(char *dev_name) 2100 { 2101 struct dkwedge_info dkw; 2102 struct partition *pp; 2103 struct disklabel lp; 2104 struct stat st; 2105 size_t ptn; 2106 2107 /* Get info about partition/wedge */ 2108 if (ioctl(fd, DIOCGWEDGEINFO, &dkw) != -1) 2109 return dkw.dkw_size; 2110 if (ioctl(fd, DIOCGDINFO, &lp) != -1) { 2111 ptn = strchr(dev_name, '\0')[-1] - 'a'; 2112 if (ptn >= lp.d_npartitions) 2113 return 0; 2114 pp = &lp.d_partitions[ptn]; 2115 return pp->p_size; 2116 } 2117 if (fstat(fd, &st) != -1 && S_ISREG(st.st_mode)) 2118 return st.st_size / DEV_BSIZE; 2119 2120 return 0; 2121 } 2122 2123 /* 2124 * main(). 2125 */ 2126 int 2127 main(int argc, char **argv) 2128 { 2129 int ch; 2130 int CheckOnlyFlag; 2131 int ExpertFlag; 2132 int SFlag; 2133 size_t i; 2134 2135 char reply[5]; 2136 2137 newsize = 0; 2138 ExpertFlag = 0; 2139 SFlag = 0; 2140 CheckOnlyFlag = 0; 2141 2142 while ((ch = getopt(argc, argv, "cps:vy")) != -1) { 2143 switch (ch) { 2144 case 'c': 2145 CheckOnlyFlag = 1; 2146 break; 2147 case 'p': 2148 progress = 1; 2149 break; 2150 case 's': 2151 SFlag = 1; 2152 newsize = strtoll(optarg, NULL, 10); 2153 if(newsize < 1) { 2154 usage(); 2155 } 2156 break; 2157 case 'v': 2158 verbose = 1; 2159 break; 2160 case 'y': 2161 ExpertFlag = 1; 2162 break; 2163 case '?': 2164 /* FALLTHROUGH */ 2165 default: 2166 usage(); 2167 } 2168 } 2169 argc -= optind; 2170 argv += optind; 2171 2172 if (argc != 1) { 2173 usage(); 2174 } 2175 2176 special = *argv; 2177 2178 if (ExpertFlag == 0 && CheckOnlyFlag == 0) { 2179 printf("It's required to manually run fsck on file system " 2180 "before you can resize it\n\n" 2181 " Did you run fsck on your disk (Yes/No) ? "); 2182 fgets(reply, (int)sizeof(reply), stdin); 2183 if (strcasecmp(reply, "Yes\n")) { 2184 printf("\n Nothing done \n"); 2185 exit(EXIT_SUCCESS); 2186 } 2187 } 2188 2189 fd = open(special, O_RDWR, 0); 2190 if (fd < 0) 2191 err(EXIT_FAILURE, "Can't open `%s'", special); 2192 checksmallio(); 2193 2194 if (SFlag == 0) { 2195 newsize = get_dev_size(special); 2196 if (newsize == 0) 2197 err(EXIT_FAILURE, 2198 "Can't resize file system, newsize not known."); 2199 } 2200 2201 oldsb = (struct fs *) & sbbuf; 2202 newsb = (struct fs *) (SBLOCKSIZE + (char *) &sbbuf); 2203 for (where = search[i = 0]; search[i] != -1; where = search[++i]) { 2204 readat(where / DEV_BSIZE, oldsb, SBLOCKSIZE); 2205 switch (oldsb->fs_magic) { 2206 case FS_UFS2_MAGIC: 2207 is_ufs2 = 1; 2208 /* FALLTHROUGH */ 2209 case FS_UFS1_MAGIC: 2210 needswap = 0; 2211 break; 2212 case FS_UFS2_MAGIC_SWAPPED: 2213 is_ufs2 = 1; 2214 /* FALLTHROUGH */ 2215 case FS_UFS1_MAGIC_SWAPPED: 2216 needswap = 1; 2217 break; 2218 default: 2219 continue; 2220 } 2221 if (!is_ufs2 && where == SBLOCK_UFS2) 2222 continue; 2223 break; 2224 } 2225 if (where == (off_t)-1) 2226 errx(EXIT_FAILURE, "Bad magic number"); 2227 if (needswap) 2228 ffs_sb_swap(oldsb,oldsb); 2229 if (oldsb->fs_magic == FS_UFS1_MAGIC && 2230 (oldsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) { 2231 oldsb->fs_csaddr = oldsb->fs_old_csaddr; 2232 oldsb->fs_size = oldsb->fs_old_size; 2233 oldsb->fs_dsize = oldsb->fs_old_dsize; 2234 oldsb->fs_cstotal.cs_ndir = oldsb->fs_old_cstotal.cs_ndir; 2235 oldsb->fs_cstotal.cs_nbfree = oldsb->fs_old_cstotal.cs_nbfree; 2236 oldsb->fs_cstotal.cs_nifree = oldsb->fs_old_cstotal.cs_nifree; 2237 oldsb->fs_cstotal.cs_nffree = oldsb->fs_old_cstotal.cs_nffree; 2238 /* any others? */ 2239 printf("Resizing with ffsv1 superblock\n"); 2240 } 2241 2242 oldsb->fs_qbmask = ~(int64_t) oldsb->fs_bmask; 2243 oldsb->fs_qfmask = ~(int64_t) oldsb->fs_fmask; 2244 if (oldsb->fs_ipg % FFS_INOPB(oldsb)) 2245 errx(EXIT_FAILURE, "ipg[%d] %% FFS_INOPB[%d] != 0", 2246 (int) oldsb->fs_ipg, (int) FFS_INOPB(oldsb)); 2247 /* The superblock is bigger than struct fs (there are trailing 2248 * tables, of non-fixed size); make sure we copy the whole 2249 * thing. SBLOCKSIZE may be an over-estimate, but we do this 2250 * just once, so being generous is cheap. */ 2251 memcpy(newsb, oldsb, SBLOCKSIZE); 2252 2253 if (progress) { 2254 progress_ttywidth(0); 2255 signal(SIGWINCH, progress_ttywidth); 2256 } 2257 2258 loadcgs(); 2259 2260 if (progress && !CheckOnlyFlag) { 2261 progress_switch(progress); 2262 progress_init(); 2263 } 2264 2265 if (newsize > FFS_FSBTODB(oldsb, oldsb->fs_size)) { 2266 if (CheckOnlyFlag) 2267 exit(checkonly()); 2268 grow(); 2269 } else if (newsize < FFS_FSBTODB(oldsb, oldsb->fs_size)) { 2270 if (is_ufs2) 2271 errx(EXIT_FAILURE,"shrinking not supported for ufs2"); 2272 if (CheckOnlyFlag) 2273 exit(checkonly()); 2274 shrink(); 2275 } else { 2276 if (CheckOnlyFlag) 2277 exit(checkonly()); 2278 if (verbose) 2279 printf("No change requested: already %" PRId64 2280 " blocks\n", (int64_t)oldsb->fs_size); 2281 } 2282 2283 flush_cgs(); 2284 write_sbs(); 2285 if (isplainfile()) 2286 ftruncate(fd,newsize * DEV_BSIZE); 2287 return 0; 2288 } 2289 2290 static void 2291 usage(void) 2292 { 2293 2294 (void)fprintf(stderr, "usage: %s [-cvy] [-s size] special\n", 2295 getprogname()); 2296 exit(EXIT_FAILURE); 2297 } 2298