xref: /netbsd-src/sbin/resize_ffs/resize_ffs.c (revision ba65fde2d7fefa7d39838fa5fa855e62bd606b5e)
1 /*	$NetBSD: resize_ffs.c,v 1.34 2013/01/22 09:39:13 dholland Exp $	*/
2 /* From sources sent on February 17, 2003 */
3 /*-
4  * As its sole author, I explicitly place this code in the public
5  *  domain.  Anyone may use it for any purpose (though I would
6  *  appreciate credit where it is due).
7  *
8  *					der Mouse
9  *
10  *			       mouse@rodents.montreal.qc.ca
11  *		     7D C8 61 52 5D E7 2D 39  4E F1 31 3E E8 B3 27 4B
12  */
13 /*
14  * resize_ffs:
15  *
16  * Resize a file system.  Is capable of both growing and shrinking.
17  *
18  * Usage: resize_ffs [-s newsize] [-y] file_system
19  *
20  * Example: resize_ffs -s 29574 /dev/rsd1e
21  *
22  * newsize is in DEV_BSIZE units (ie, disk sectors, usually 512 bytes
23  *  each).
24  *
25  * Note: this currently requires gcc to build, since it is written
26  *  depending on gcc-specific features, notably nested function
27  *  definitions (which in at least a few cases depend on the lexical
28  *  scoping gcc provides, so they can't be trivially moved outside).
29  *
30  * Many thanks go to John Kohl <jtk@NetBSD.org> for finding bugs: the
31  *  one responsible for the "realloccgblk: can't find blk in cyl"
32  *  problem and a more minor one which left fs_dsize wrong when
33  *  shrinking.  (These actually indicate bugs in fsck too - it should
34  *  have caught and fixed them.)
35  *
36  */
37 
38 #include <sys/cdefs.h>
39 __RCSID("$NetBSD: resize_ffs.c,v 1.34 2013/01/22 09:39:13 dholland Exp $");
40 
41 #include <sys/disk.h>
42 #include <sys/disklabel.h>
43 #include <sys/dkio.h>
44 #include <sys/ioctl.h>
45 #include <sys/stat.h>
46 #include <sys/mman.h>
47 #include <sys/param.h>		/* MAXFRAG */
48 #include <ufs/ffs/fs.h>
49 #include <ufs/ffs/ffs_extern.h>
50 #include <ufs/ufs/dir.h>
51 #include <ufs/ufs/dinode.h>
52 #include <ufs/ufs/ufs_bswap.h>	/* ufs_rw32 */
53 
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdio.h>
58 #include <stdlib.h>
59 #include <strings.h>
60 #include <unistd.h>
61 
62 /* new size of file system, in sectors */
63 static int64_t newsize;
64 
65 /* fd open onto disk device or file */
66 static int fd;
67 
68 /* must we break up big I/O operations - see checksmallio() */
69 static int smallio;
70 
71 /* size of a cg, in bytes, rounded up to a frag boundary */
72 static int cgblksz;
73 
74 /* possible superblock localtions */
75 static int search[] = SBLOCKSEARCH;
76 /* location of the superblock */
77 static off_t where;
78 
79 /* Superblocks. */
80 static struct fs *oldsb;	/* before we started */
81 static struct fs *newsb;	/* copy to work with */
82 /* Buffer to hold the above.  Make sure it's aligned correctly. */
83 static char sbbuf[2 * SBLOCKSIZE]
84 	__attribute__((__aligned__(__alignof__(struct fs))));
85 
86 union dinode {
87 	struct ufs1_dinode dp1;
88 	struct ufs2_dinode dp2;
89 };
90 #define DIP(dp, field)							      \
91 	((is_ufs2) ?							      \
92 	    (dp)->dp2.field : (dp)->dp1.field)
93 
94 #define DIP_ASSIGN(dp, field, value)					      \
95 	do {								      \
96 		if (is_ufs2)						      \
97 			(dp)->dp2.field = (value);			      \
98 		else							      \
99 			(dp)->dp1.field = (value);			      \
100 	} while (0)
101 
102 /* a cg's worth of brand new squeaky-clean inodes */
103 static struct ufs1_dinode *zinodes;
104 
105 /* pointers to the in-core cgs, read off disk and possibly modified */
106 static struct cg **cgs;
107 
108 /* pointer to csum array - the stuff pointed to on-disk by fs_csaddr */
109 static struct csum *csums;
110 
111 /* per-cg flags, indexed by cg number */
112 static unsigned char *cgflags;
113 #define CGF_DIRTY   0x01	/* needs to be written to disk */
114 #define CGF_BLKMAPS 0x02	/* block bitmaps need rebuilding */
115 #define CGF_INOMAPS 0x04	/* inode bitmaps need rebuilding */
116 
117 /* when shrinking, these two arrays record how we want blocks to move.	 */
118 /*  if blkmove[i] is j, the frag that started out as frag #i should end	 */
119 /*  up as frag #j.  inomove[i]=j means, similarly, that the inode that	 */
120 /*  started out as inode i should end up as inode j.			 */
121 static unsigned int *blkmove;
122 static unsigned int *inomove;
123 
124 /* in-core copies of all inodes in the fs, indexed by inumber */
125 union dinode *inodes;
126 
127 void *ibuf;	/* ptr to fs block-sized buffer for reading/writing inodes */
128 
129 /* byteswapped inodes */
130 union dinode *sinodes;
131 
132 /* per-inode flags, indexed by inumber */
133 static unsigned char *iflags;
134 #define IF_DIRTY  0x01		/* needs to be written to disk */
135 #define IF_BDIRTY 0x02		/* like DIRTY, but is set on first inode in a
136 				 * block of inodes, and applies to the whole
137 				 * block. */
138 
139 /* resize_ffs works directly on dinodes, adapt blksize() */
140 #define dblksize(fs, dip, lbn, filesize) \
141 	(((lbn) >= UFS_NDADDR || (uint64_t)(filesize) >= lblktosize(fs, (lbn) + 1)) \
142 	    ? (fs)->fs_bsize						       \
143 	    : (fragroundup(fs, blkoff(fs, (filesize)))))
144 
145 
146 /*
147  * Number of disk sectors per block/fragment
148  */
149 #define NSPB(fs)	(fsbtodb((fs),1) << (fs)->fs_fragshift)
150 #define NSPF(fs)	(fsbtodb((fs),1))
151 
152 /* global flags */
153 int is_ufs2 = 0;
154 int needswap = 0;
155 
156 static void usage(void) __dead;
157 
158 /*
159  * See if we need to break up large I/O operations.  This should never
160  *  be needed, but under at least one <version,platform> combination,
161  *  large enough disk transfers to the raw device hang.  So if we're
162  *  talking to a character special device, play it safe; in this case,
163  *  readat() and writeat() break everything up into pieces no larger
164  *  than 8K, doing multiple syscalls for larger operations.
165  */
166 static void
167 checksmallio(void)
168 {
169 	struct stat stb;
170 
171 	fstat(fd, &stb);
172 	smallio = ((stb.st_mode & S_IFMT) == S_IFCHR);
173 }
174 
175 static int
176 isplainfile(void)
177 {
178 	struct stat stb;
179 
180 	fstat(fd, &stb);
181 	return S_ISREG(stb.st_mode);
182 }
183 /*
184  * Read size bytes starting at blkno into buf.  blkno is in DEV_BSIZE
185  *  units, ie, after fsbtodb(); size is in bytes.
186  */
187 static void
188 readat(off_t blkno, void *buf, int size)
189 {
190 	/* Seek to the correct place. */
191 	if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
192 		err(EXIT_FAILURE, "lseek failed");
193 
194 	/* See if we have to break up the transfer... */
195 	if (smallio) {
196 		char *bp;	/* pointer into buf */
197 		int left;	/* bytes left to go */
198 		int n;		/* number to do this time around */
199 		int rv;		/* syscall return value */
200 		bp = buf;
201 		left = size;
202 		while (left > 0) {
203 			n = (left > 8192) ? 8192 : left;
204 			rv = read(fd, bp, n);
205 			if (rv < 0)
206 				err(EXIT_FAILURE, "read failed");
207 			if (rv != n)
208 				errx(EXIT_FAILURE,
209 				    "read: wanted %d, got %d", n, rv);
210 			bp += n;
211 			left -= n;
212 		}
213 	} else {
214 		int rv;
215 		rv = read(fd, buf, size);
216 		if (rv < 0)
217 			err(EXIT_FAILURE, "read failed");
218 		if (rv != size)
219 			errx(EXIT_FAILURE, "read: wanted %d, got %d",
220 			    size, rv);
221 	}
222 }
223 /*
224  * Write size bytes from buf starting at blkno.  blkno is in DEV_BSIZE
225  *  units, ie, after fsbtodb(); size is in bytes.
226  */
227 static void
228 writeat(off_t blkno, const void *buf, int size)
229 {
230 	/* Seek to the correct place. */
231 	if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
232 		err(EXIT_FAILURE, "lseek failed");
233 	/* See if we have to break up the transfer... */
234 	if (smallio) {
235 		const char *bp;	/* pointer into buf */
236 		int left;	/* bytes left to go */
237 		int n;		/* number to do this time around */
238 		int rv;		/* syscall return value */
239 		bp = buf;
240 		left = size;
241 		while (left > 0) {
242 			n = (left > 8192) ? 8192 : left;
243 			rv = write(fd, bp, n);
244 			if (rv < 0)
245 				err(EXIT_FAILURE, "write failed");
246 			if (rv != n)
247 				errx(EXIT_FAILURE,
248 				    "write: wanted %d, got %d", n, rv);
249 			bp += n;
250 			left -= n;
251 		}
252 	} else {
253 		int rv;
254 		rv = write(fd, buf, size);
255 		if (rv < 0)
256 			err(EXIT_FAILURE, "write failed");
257 		if (rv != size)
258 			errx(EXIT_FAILURE,
259 			    "write: wanted %d, got %d", size, rv);
260 	}
261 }
262 /*
263  * Never-fail versions of malloc() and realloc(), and an allocation
264  *  routine (which also never fails) for allocating memory that will
265  *  never be freed until exit.
266  */
267 
268 /*
269  * Never-fail malloc.
270  */
271 static void *
272 nfmalloc(size_t nb, const char *tag)
273 {
274 	void *rv;
275 
276 	rv = malloc(nb);
277 	if (rv)
278 		return (rv);
279 	err(EXIT_FAILURE, "Can't allocate %lu bytes for %s",
280 	    (unsigned long int) nb, tag);
281 }
282 /*
283  * Never-fail realloc.
284  */
285 static void *
286 nfrealloc(void *blk, size_t nb, const char *tag)
287 {
288 	void *rv;
289 
290 	rv = realloc(blk, nb);
291 	if (rv)
292 		return (rv);
293 	err(EXIT_FAILURE, "Can't re-allocate %lu bytes for %s",
294 	    (unsigned long int) nb, tag);
295 }
296 /*
297  * Allocate memory that will never be freed or reallocated.  Arguably
298  *  this routine should handle small allocations by chopping up pages,
299  *  but that's not worth the bother; it's not called more than a
300  *  handful of times per run, and if the allocations are that small the
301  *  waste in giving each one its own page is ignorable.
302  */
303 static void *
304 alloconce(size_t nb, const char *tag)
305 {
306 	void *rv;
307 
308 	rv = mmap(0, nb, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
309 	if (rv != MAP_FAILED)
310 		return (rv);
311 	err(EXIT_FAILURE, "Can't map %lu bytes for %s",
312 	    (unsigned long int) nb, tag);
313 }
314 /*
315  * Load the cgs and csums off disk.  Also allocates the space to load
316  *  them into and initializes the per-cg flags.
317  */
318 static void
319 loadcgs(void)
320 {
321 	int cg;
322 	char *cgp;
323 
324 	cgblksz = roundup(oldsb->fs_cgsize, oldsb->fs_fsize);
325 	cgs = nfmalloc(oldsb->fs_ncg * sizeof(*cgs), "cg pointers");
326 	cgp = alloconce(oldsb->fs_ncg * cgblksz, "cgs");
327 	cgflags = nfmalloc(oldsb->fs_ncg, "cg flags");
328 	csums = nfmalloc(oldsb->fs_cssize, "cg summary");
329 	for (cg = 0; cg < oldsb->fs_ncg; cg++) {
330 		cgs[cg] = (struct cg *) cgp;
331 		readat(fsbtodb(oldsb, cgtod(oldsb, cg)), cgp, cgblksz);
332 		if (needswap)
333 			ffs_cg_swap(cgs[cg],cgs[cg],oldsb);
334 		cgflags[cg] = 0;
335 		cgp += cgblksz;
336 	}
337 	readat(fsbtodb(oldsb, oldsb->fs_csaddr), csums, oldsb->fs_cssize);
338 	if (needswap)
339 		ffs_csum_swap(csums,csums,oldsb->fs_cssize);
340 }
341 /*
342  * Set n bits, starting with bit #base, in the bitmap pointed to by
343  *  bitvec (which is assumed to be large enough to include bits base
344  *  through base+n-1).
345  */
346 static void
347 set_bits(unsigned char *bitvec, unsigned int base, unsigned int n)
348 {
349 	if (n < 1)
350 		return;		/* nothing to do */
351 	if (base & 7) {		/* partial byte at beginning */
352 		if (n <= 8 - (base & 7)) {	/* entirely within one byte */
353 			bitvec[base >> 3] |= (~((~0U) << n)) << (base & 7);
354 			return;
355 		}
356 		bitvec[base >> 3] |= (~0U) << (base & 7);
357 		n -= 8 - (base & 7);
358 		base = (base & ~7) + 8;
359 	}
360 	if (n >= 8) {		/* do full bytes */
361 		memset(bitvec + (base >> 3), 0xff, n >> 3);
362 		base += n & ~7;
363 		n &= 7;
364 	}
365 	if (n) {		/* partial byte at end */
366 		bitvec[base >> 3] |= ~((~0U) << n);
367 	}
368 }
369 /*
370  * Clear n bits, starting with bit #base, in the bitmap pointed to by
371  *  bitvec (which is assumed to be large enough to include bits base
372  *  through base+n-1).  Code parallels set_bits().
373  */
374 static void
375 clr_bits(unsigned char *bitvec, int base, int n)
376 {
377 	if (n < 1)
378 		return;
379 	if (base & 7) {
380 		if (n <= 8 - (base & 7)) {
381 			bitvec[base >> 3] &= ~((~((~0U) << n)) << (base & 7));
382 			return;
383 		}
384 		bitvec[base >> 3] &= ~((~0U) << (base & 7));
385 		n -= 8 - (base & 7);
386 		base = (base & ~7) + 8;
387 	}
388 	if (n >= 8) {
389 		memset(bitvec + (base >> 3), 0, n >> 3);
390 		base += n & ~7;
391 		n &= 7;
392 	}
393 	if (n) {
394 		bitvec[base >> 3] &= (~0U) << n;
395 	}
396 }
397 /*
398  * Test whether bit #bit is set in the bitmap pointed to by bitvec.
399  */
400 static int
401 bit_is_set(unsigned char *bitvec, int bit)
402 {
403 	return (bitvec[bit >> 3] & (1 << (bit & 7)));
404 }
405 /*
406  * Test whether bit #bit is clear in the bitmap pointed to by bitvec.
407  */
408 static int
409 bit_is_clr(unsigned char *bitvec, int bit)
410 {
411 	return (!bit_is_set(bitvec, bit));
412 }
413 /*
414  * Test whether a whole block of bits is set in a bitmap.  This is
415  *  designed for testing (aligned) disk blocks in a bit-per-frag
416  *  bitmap; it has assumptions wired into it based on that, essentially
417  *  that the entire block fits into a single byte.  This returns true
418  *  iff _all_ the bits are set; it is not just the complement of
419  *  blk_is_clr on the same arguments (unless blkfrags==1).
420  */
421 static int
422 blk_is_set(unsigned char *bitvec, int blkbase, int blkfrags)
423 {
424 	unsigned int mask;
425 
426 	mask = (~((~0U) << blkfrags)) << (blkbase & 7);
427 	return ((bitvec[blkbase >> 3] & mask) == mask);
428 }
429 /*
430  * Test whether a whole block of bits is clear in a bitmap.  See
431  *  blk_is_set (above) for assumptions.  This returns true iff _all_
432  *  the bits are clear; it is not just the complement of blk_is_set on
433  *  the same arguments (unless blkfrags==1).
434  */
435 static int
436 blk_is_clr(unsigned char *bitvec, int blkbase, int blkfrags)
437 {
438 	unsigned int mask;
439 
440 	mask = (~((~0U) << blkfrags)) << (blkbase & 7);
441 	return ((bitvec[blkbase >> 3] & mask) == 0);
442 }
443 /*
444  * Initialize a new cg.  Called when growing.  Assumes memory has been
445  *  allocated but not otherwise set up.  This code sets the fields of
446  *  the cg, initializes the bitmaps (and cluster summaries, if
447  *  applicable), updates both per-cylinder summary info and the global
448  *  summary info in newsb; it also writes out new inodes for the cg.
449  *
450  * This code knows it can never be called for cg 0, which makes it a
451  *  bit simpler than it would otherwise be.
452  */
453 static void
454 initcg(int cgn)
455 {
456 	struct cg *cg;		/* The in-core cg, of course */
457 	int base;		/* Disk address of cg base */
458 	int dlow;		/* Size of pre-cg data area */
459 	int dhigh;		/* Offset of post-inode data area, from base */
460 	int dmax;		/* Offset of end of post-inode data area */
461 	int i;			/* Generic loop index */
462 	int n;			/* Generic count */
463 	int start;		/* start of cg maps */
464 
465 	cg = cgs[cgn];
466 	/* Place the data areas */
467 	base = cgbase(newsb, cgn);
468 	dlow = cgsblock(newsb, cgn) - base;
469 	dhigh = cgdmin(newsb, cgn) - base;
470 	dmax = newsb->fs_size - base;
471 	if (dmax > newsb->fs_fpg)
472 		dmax = newsb->fs_fpg;
473 	start = &cg->cg_space[0] - (unsigned char *) cg;
474 	/*
475          * Clear out the cg - assumes all-0-bytes is the correct way
476          * to initialize fields we don't otherwise touch, which is
477          * perhaps not the right thing to do, but it's what fsck and
478          * mkfs do.
479          */
480 	memset(cg, 0, newsb->fs_cgsize);
481 	if (newsb->fs_old_flags & FS_FLAGS_UPDATED)
482 		cg->cg_time = newsb->fs_time;
483 	cg->cg_magic = CG_MAGIC;
484 	cg->cg_cgx = cgn;
485 	cg->cg_niblk = newsb->fs_ipg;
486 	cg->cg_ndblk = dmax;
487 
488 	if (is_ufs2) {
489 		cg->cg_time = newsb->fs_time;
490 		cg->cg_initediblk = newsb->fs_ipg < 2 * INOPB(newsb) ?
491 		    newsb->fs_ipg : 2 * INOPB(newsb);
492 		cg->cg_iusedoff = start;
493 	} else {
494 		cg->cg_old_time = newsb->fs_time;
495 		cg->cg_old_niblk = cg->cg_niblk;
496 		cg->cg_niblk = 0;
497 		cg->cg_initediblk = 0;
498 
499 
500 		cg->cg_old_ncyl = newsb->fs_old_cpg;
501 		/* Update the cg_old_ncyl value for the last cylinder. */
502 		if (cgn == newsb->fs_ncg - 1) {
503 			if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
504 				cg->cg_old_ncyl = newsb->fs_old_ncyl %
505 				    newsb->fs_old_cpg;
506 		}
507 
508 		/* Set up the bitmap pointers.  We have to be careful
509 		 * to lay out the cg _exactly_ the way mkfs and fsck
510 		 * do it, since fsck compares the _entire_ cg against
511 		 * a recomputed cg, and whines if there is any
512 		 * mismatch, including the bitmap offsets. */
513 		/* XXX update this comment when fsck is fixed */
514 		cg->cg_old_btotoff = start;
515 		cg->cg_old_boff = cg->cg_old_btotoff
516 		    + (newsb->fs_old_cpg * sizeof(int32_t));
517 		cg->cg_iusedoff = cg->cg_old_boff +
518 		    (newsb->fs_old_cpg * newsb->fs_old_nrpos * sizeof(int16_t));
519 	}
520 	cg->cg_freeoff = cg->cg_iusedoff + howmany(newsb->fs_ipg, NBBY);
521 	if (newsb->fs_contigsumsize > 0) {
522 		cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
523 		cg->cg_clustersumoff = cg->cg_freeoff +
524 		    howmany(newsb->fs_fpg, NBBY) - sizeof(int32_t);
525 		cg->cg_clustersumoff =
526 		    roundup(cg->cg_clustersumoff, sizeof(int32_t));
527 		cg->cg_clusteroff = cg->cg_clustersumoff +
528 		    ((newsb->fs_contigsumsize + 1) * sizeof(int32_t));
529 		cg->cg_nextfreeoff = cg->cg_clusteroff +
530 		    howmany(fragstoblks(newsb,newsb->fs_fpg), NBBY);
531 		n = dlow / newsb->fs_frag;
532 		if (n > 0) {
533 			set_bits(cg_clustersfree(cg, 0), 0, n);
534 			cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
535 			    newsb->fs_contigsumsize : n]++;
536 		}
537 	} else {
538 		cg->cg_nextfreeoff = cg->cg_freeoff +
539 		    howmany(newsb->fs_fpg, NBBY);
540 	}
541 	/* Mark the data areas as free; everything else is marked busy by the
542 	 * memset() up at the top. */
543 	set_bits(cg_blksfree(cg, 0), 0, dlow);
544 	set_bits(cg_blksfree(cg, 0), dhigh, dmax - dhigh);
545 	/* Initialize summary info */
546 	cg->cg_cs.cs_ndir = 0;
547 	cg->cg_cs.cs_nifree = newsb->fs_ipg;
548 	cg->cg_cs.cs_nbfree = dlow / newsb->fs_frag;
549 	cg->cg_cs.cs_nffree = 0;
550 
551 	/* This is the simplest way of doing this; we perhaps could
552 	 * compute the correct cg_blktot()[] and cg_blks()[] values
553 	 * other ways, but it would be complicated and hardly seems
554 	 * worth the effort.  (The reason there isn't
555 	 * frag-at-beginning and frag-at-end code here, like the code
556 	 * below for the post-inode data area, is that the pre-sb data
557 	 * area always starts at 0, and thus is block-aligned, and
558 	 * always ends at the sb, which is block-aligned.) */
559 	if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
560 		for (i = 0; i < dlow; i += newsb->fs_frag) {
561 			old_cg_blktot(cg, 0)[old_cbtocylno(newsb, i)]++;
562 			old_cg_blks(newsb, cg,
563 			    old_cbtocylno(newsb, i),
564 			    0)[old_cbtorpos(newsb, i)]++;
565 		}
566 
567 	/* Deal with a partial block at the beginning of the post-inode area.
568 	 * I'm not convinced this can happen - I think the inodes are always
569 	 * block-aligned and always an integral number of blocks - but it's
570 	 * cheap to do the right thing just in case. */
571 	if (dhigh % newsb->fs_frag) {
572 		n = newsb->fs_frag - (dhigh % newsb->fs_frag);
573 		cg->cg_frsum[n]++;
574 		cg->cg_cs.cs_nffree += n;
575 		dhigh += n;
576 	}
577 	n = (dmax - dhigh) / newsb->fs_frag;
578 	/* We have n full-size blocks in the post-inode data area. */
579 	if (n > 0) {
580 		cg->cg_cs.cs_nbfree += n;
581 		if (newsb->fs_contigsumsize > 0) {
582 			i = dhigh / newsb->fs_frag;
583 			set_bits(cg_clustersfree(cg, 0), i, n);
584 			cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
585 			    newsb->fs_contigsumsize : n]++;
586 		}
587 		if (is_ufs2 == 0)
588 			for (i = n; i > 0; i--) {
589 				old_cg_blktot(cg, 0)[old_cbtocylno(newsb,
590 					    dhigh)]++;
591 				old_cg_blks(newsb, cg,
592 				    old_cbtocylno(newsb, dhigh),
593 				    0)[old_cbtorpos(newsb,
594 					    dhigh)]++;
595 				dhigh += newsb->fs_frag;
596 			}
597 	}
598 	if (is_ufs2 == 0) {
599 		/* Deal with any leftover frag at the end of the cg. */
600 		i = dmax - dhigh;
601 		if (i) {
602 			cg->cg_frsum[i]++;
603 			cg->cg_cs.cs_nffree += i;
604 		}
605 	}
606 	/* Update the csum info. */
607 	csums[cgn] = cg->cg_cs;
608 	newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
609 	newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
610 	newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
611 	if (is_ufs2 == 0)
612 		/* Write out the cleared inodes. */
613 		writeat(fsbtodb(newsb, cgimin(newsb, cgn)), zinodes,
614 		    newsb->fs_ipg * sizeof(*zinodes));
615 	/* Dirty the cg. */
616 	cgflags[cgn] |= CGF_DIRTY;
617 }
618 /*
619  * Find free space, at least nfrags consecutive frags of it.  Pays no
620  *  attention to block boundaries, but refuses to straddle cg
621  *  boundaries, even if the disk blocks involved are in fact
622  *  consecutive.  Return value is the frag number of the first frag of
623  *  the block, or -1 if no space was found.  Uses newsb for sb values,
624  *  and assumes the cgs[] structures correctly describe the area to be
625  *  searched.
626  *
627  * XXX is there a bug lurking in the ignoring of block boundaries by
628  *  the routine used by fragmove() in evict_data()?  Can an end-of-file
629  *  frag legally straddle a block boundary?  If not, this should be
630  *  cloned and fixed to stop at block boundaries for that use.  The
631  *  current one may still be needed for csum info motion, in case that
632  *  takes up more than a whole block (is the csum info allowed to begin
633  *  partway through a block and continue into the following block?).
634  *
635  * If we wrap off the end of the file system back to the beginning, we
636  *  can end up searching the end of the file system twice.  I ignore
637  *  this inefficiency, since if that happens we're going to croak with
638  *  a no-space error anyway, so it happens at most once.
639  */
640 static int
641 find_freespace(unsigned int nfrags)
642 {
643 	static int hand = 0;	/* hand rotates through all frags in the fs */
644 	int cgsize;		/* size of the cg hand currently points into */
645 	int cgn;		/* number of cg hand currently points into */
646 	int fwc;		/* frag-within-cg number of frag hand points
647 				 * to */
648 	unsigned int run;	/* length of run of free frags seen so far */
649 	int secondpass;		/* have we wrapped from end of fs to
650 				 * beginning? */
651 	unsigned char *bits;	/* cg_blksfree()[] for cg hand points into */
652 
653 	cgn = dtog(newsb, hand);
654 	fwc = dtogd(newsb, hand);
655 	secondpass = (hand == 0);
656 	run = 0;
657 	bits = cg_blksfree(cgs[cgn], 0);
658 	cgsize = cgs[cgn]->cg_ndblk;
659 	while (1) {
660 		if (bit_is_set(bits, fwc)) {
661 			run++;
662 			if (run >= nfrags)
663 				return (hand + 1 - run);
664 		} else {
665 			run = 0;
666 		}
667 		hand++;
668 		fwc++;
669 		if (fwc >= cgsize) {
670 			fwc = 0;
671 			cgn++;
672 			if (cgn >= newsb->fs_ncg) {
673 				hand = 0;
674 				if (secondpass)
675 					return (-1);
676 				secondpass = 1;
677 				cgn = 0;
678 			}
679 			bits = cg_blksfree(cgs[cgn], 0);
680 			cgsize = cgs[cgn]->cg_ndblk;
681 			run = 0;
682 		}
683 	}
684 }
685 /*
686  * Find a free block of disk space.  Finds an entire block of frags,
687  *  all of which are free.  Return value is the frag number of the
688  *  first frag of the block, or -1 if no space was found.  Uses newsb
689  *  for sb values, and assumes the cgs[] structures correctly describe
690  *  the area to be searched.
691  *
692  * See find_freespace(), above, for remarks about hand wrapping around.
693  */
694 static int
695 find_freeblock(void)
696 {
697 	static int hand = 0;	/* hand rotates through all frags in fs */
698 	int cgn;		/* cg number of cg hand points into */
699 	int fwc;		/* frag-within-cg number of frag hand points
700 				 * to */
701 	int cgsize;		/* size of cg hand points into */
702 	int secondpass;		/* have we wrapped from end to beginning? */
703 	unsigned char *bits;	/* cg_blksfree()[] for cg hand points into */
704 
705 	cgn = dtog(newsb, hand);
706 	fwc = dtogd(newsb, hand);
707 	secondpass = (hand == 0);
708 	bits = cg_blksfree(cgs[cgn], 0);
709 	cgsize = blknum(newsb, cgs[cgn]->cg_ndblk);
710 	while (1) {
711 		if (blk_is_set(bits, fwc, newsb->fs_frag))
712 			return (hand);
713 		fwc += newsb->fs_frag;
714 		hand += newsb->fs_frag;
715 		if (fwc >= cgsize) {
716 			fwc = 0;
717 			cgn++;
718 			if (cgn >= newsb->fs_ncg) {
719 				hand = 0;
720 				if (secondpass)
721 					return (-1);
722 				secondpass = 1;
723 				cgn = 0;
724 			}
725 			bits = cg_blksfree(cgs[cgn], 0);
726 			cgsize = blknum(newsb, cgs[cgn]->cg_ndblk);
727 		}
728 	}
729 }
730 /*
731  * Find a free inode, returning its inumber or -1 if none was found.
732  *  Uses newsb for sb values, and assumes the cgs[] structures
733  *  correctly describe the area to be searched.
734  *
735  * See find_freespace(), above, for remarks about hand wrapping around.
736  */
737 static int
738 find_freeinode(void)
739 {
740 	static int hand = 0;	/* hand rotates through all inodes in fs */
741 	int cgn;		/* cg number of cg hand points into */
742 	int iwc;		/* inode-within-cg number of inode hand points
743 				 * to */
744 	int secondpass;		/* have we wrapped from end to beginning? */
745 	unsigned char *bits;	/* cg_inosused()[] for cg hand points into */
746 
747 	cgn = hand / newsb->fs_ipg;
748 	iwc = hand % newsb->fs_ipg;
749 	secondpass = (hand == 0);
750 	bits = cg_inosused(cgs[cgn], 0);
751 	while (1) {
752 		if (bit_is_clr(bits, iwc))
753 			return (hand);
754 		hand++;
755 		iwc++;
756 		if (iwc >= newsb->fs_ipg) {
757 			iwc = 0;
758 			cgn++;
759 			if (cgn >= newsb->fs_ncg) {
760 				hand = 0;
761 				if (secondpass)
762 					return (-1);
763 				secondpass = 1;
764 				cgn = 0;
765 			}
766 			bits = cg_inosused(cgs[cgn], 0);
767 		}
768 	}
769 }
770 /*
771  * Mark a frag as free.  Sets the frag's bit in the cg_blksfree bitmap
772  *  for the appropriate cg, and marks the cg as dirty.
773  */
774 static void
775 free_frag(int fno)
776 {
777 	int cgn;
778 
779 	cgn = dtog(newsb, fno);
780 	set_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
781 	cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
782 }
783 /*
784  * Allocate a frag.  Clears the frag's bit in the cg_blksfree bitmap
785  *  for the appropriate cg, and marks the cg as dirty.
786  */
787 static void
788 alloc_frag(int fno)
789 {
790 	int cgn;
791 
792 	cgn = dtog(newsb, fno);
793 	clr_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
794 	cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
795 }
796 /*
797  * Fix up the csum array.  If shrinking, this involves freeing zero or
798  *  more frags; if growing, it involves allocating them, or if the
799  *  frags being grown into aren't free, finding space elsewhere for the
800  *  csum info.  (If the number of occupied frags doesn't change,
801  *  nothing happens here.)
802  */
803 static void
804 csum_fixup(void)
805 {
806 	int nold;		/* # frags in old csum info */
807 	int ntot;		/* # frags in new csum info */
808 	int nnew;		/* ntot-nold */
809 	int newloc;		/* new location for csum info, if necessary */
810 	int i;			/* generic loop index */
811 	int j;			/* generic loop index */
812 	int f;			/* "from" frag number, if moving */
813 	int t;			/* "to" frag number, if moving */
814 	int cgn;		/* cg number, used when shrinking */
815 
816 	ntot = howmany(newsb->fs_cssize, newsb->fs_fsize);
817 	nold = howmany(oldsb->fs_cssize, newsb->fs_fsize);
818 	nnew = ntot - nold;
819 	/* First, if there's no change in frag counts, it's easy. */
820 	if (nnew == 0)
821 		return;
822 	/* Next, if we're shrinking, it's almost as easy.  Just free up any
823 	 * frags in the old area we no longer need. */
824 	if (nnew < 0) {
825 		for ((i = newsb->fs_csaddr + ntot - 1), (j = nnew);
826 		    j < 0;
827 		    i--, j++) {
828 			free_frag(i);
829 		}
830 		return;
831 	}
832 	/* We must be growing.  Check to see that the new csum area fits
833 	 * within the file system.  I think this can never happen, since for
834 	 * the csum area to grow, we must be adding at least one cg, so the
835 	 * old csum area can't be this close to the end of the new file system.
836 	 * But it's a cheap check. */
837 	/* XXX what if csum info is at end of cg and grows into next cg, what
838 	 * if it spills over onto the next cg's backup superblock?  Can this
839 	 * happen? */
840 	if (newsb->fs_csaddr + ntot <= newsb->fs_size) {
841 		/* Okay, it fits - now,  see if the space we want is free. */
842 		for ((i = newsb->fs_csaddr + nold), (j = nnew);
843 		    j > 0;
844 		    i++, j--) {
845 			cgn = dtog(newsb, i);
846 			if (bit_is_clr(cg_blksfree(cgs[cgn], 0),
847 				dtogd(newsb, i)))
848 				break;
849 		}
850 		if (j <= 0) {
851 			/* Win win - all the frags we want are free. Allocate
852 			 * 'em and we're all done.  */
853 			for ((i = newsb->fs_csaddr + ntot - nnew),
854 				 (j = nnew); j > 0; i++, j--) {
855 				alloc_frag(i);
856 			}
857 			return;
858 		}
859 	}
860 	/* We have to move the csum info, sigh.  Look for new space, free old
861 	 * space, and allocate new.  Update fs_csaddr.  We don't copy anything
862 	 * on disk at this point; the csum info will be written to the
863 	 * then-current fs_csaddr as part of the final flush. */
864 	newloc = find_freespace(ntot);
865 	if (newloc < 0)
866 		errx(EXIT_FAILURE, "Sorry, no space available for new csums");
867 	for (i = 0, f = newsb->fs_csaddr, t = newloc; i < ntot; i++, f++, t++) {
868 		if (i < nold) {
869 			free_frag(f);
870 		}
871 		alloc_frag(t);
872 	}
873 	newsb->fs_csaddr = newloc;
874 }
875 /*
876  * Recompute newsb->fs_dsize.  Just scans all cgs, adding the number of
877  *  data blocks in that cg to the total.
878  */
879 static void
880 recompute_fs_dsize(void)
881 {
882 	int i;
883 
884 	newsb->fs_dsize = 0;
885 	for (i = 0; i < newsb->fs_ncg; i++) {
886 		int dlow;	/* size of before-sb data area */
887 		int dhigh;	/* offset of post-inode data area */
888 		int dmax;	/* total size of cg */
889 		int base;	/* base of cg, since cgsblock() etc add it in */
890 		base = cgbase(newsb, i);
891 		dlow = cgsblock(newsb, i) - base;
892 		dhigh = cgdmin(newsb, i) - base;
893 		dmax = newsb->fs_size - base;
894 		if (dmax > newsb->fs_fpg)
895 			dmax = newsb->fs_fpg;
896 		newsb->fs_dsize += dlow + dmax - dhigh;
897 	}
898 	/* Space in cg 0 before cgsblock is boot area, not free space! */
899 	newsb->fs_dsize -= cgsblock(newsb, 0) - cgbase(newsb, 0);
900 	/* And of course the csum info takes up space. */
901 	newsb->fs_dsize -= howmany(newsb->fs_cssize, newsb->fs_fsize);
902 }
903 /*
904  * Return the current time.  We call this and assign, rather than
905  *  calling time() directly, as insulation against OSes where fs_time
906  *  is not a time_t.
907  */
908 static time_t
909 timestamp(void)
910 {
911 	time_t t;
912 
913 	time(&t);
914 	return (t);
915 }
916 /*
917  * Grow the file system.
918  */
919 static void
920 grow(void)
921 {
922 	int i;
923 
924 	/* Update the timestamp. */
925 	newsb->fs_time = timestamp();
926 	/* Allocate and clear the new-inode area, in case we add any cgs. */
927 	zinodes = alloconce(newsb->fs_ipg * sizeof(*zinodes), "zeroed inodes");
928 	memset(zinodes, 0, newsb->fs_ipg * sizeof(*zinodes));
929 	/* Update the size. */
930 	newsb->fs_size = dbtofsb(newsb, newsize);
931 	/* Did we actually not grow?  (This can happen if newsize is less than
932 	 * a frag larger than the old size - unlikely, but no excuse to
933 	 * misbehave if it happens.) */
934 	if (newsb->fs_size == oldsb->fs_size) {
935 		printf("New fs size %"PRIu64" = old fs size %"PRIu64
936 		    ", not growing.\n", newsb->fs_size, oldsb->fs_size);
937 		return;
938 	}
939 	/* Check that the new last sector (frag, actually) is writable.  Since
940 	 * it's at least one frag larger than it used to be, we know we aren't
941 	 * overwriting anything important by this.  (The choice of sbbuf as
942 	 * what to write is irrelevant; it's just something handy that's known
943 	 * to be at least one frag in size.) */
944 	writeat(fsbtodb(newsb,newsb->fs_size - 1), &sbbuf, newsb->fs_fsize);
945 	if (is_ufs2)
946 		newsb->fs_ncg = howmany(newsb->fs_size, newsb->fs_fpg);
947 	else {
948 		/* Update fs_old_ncyl and fs_ncg. */
949 		newsb->fs_old_ncyl = howmany(newsb->fs_size * NSPF(newsb),
950 		    newsb->fs_old_spc);
951 		newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg);
952 	}
953 
954 	/* Does the last cg end before the end of its inode area? There is no
955 	 * reason why this couldn't be handled, but it would complicate a lot
956 	 * of code (in all file system code - fsck, kernel, etc) because of the
957 	 * potential partial inode area, and the gain in space would be
958 	 * minimal, at most the pre-sb data area. */
959 	if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
960 		newsb->fs_ncg--;
961 		newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg;
962 		newsb->fs_size = (newsb->fs_old_ncyl * newsb->fs_old_spc)
963 		    / NSPF(newsb);
964 		printf("Warning: last cylinder group is too small;\n");
965 		printf("    dropping it.  New size = %lu.\n",
966 		    (unsigned long int) fsbtodb(newsb, newsb->fs_size));
967 	}
968 	/* Find out how big the csum area is, and realloc csums if bigger. */
969 	newsb->fs_cssize = fragroundup(newsb,
970 	    newsb->fs_ncg * sizeof(struct csum));
971 	if (newsb->fs_cssize > oldsb->fs_cssize)
972 		csums = nfrealloc(csums, newsb->fs_cssize, "new cg summary");
973 	/* If we're adding any cgs, realloc structures and set up the new
974 	   cgs. */
975 	if (newsb->fs_ncg > oldsb->fs_ncg) {
976 		char *cgp;
977 		cgs = nfrealloc(cgs, newsb->fs_ncg * sizeof(*cgs),
978                                 "cg pointers");
979 		cgflags = nfrealloc(cgflags, newsb->fs_ncg, "cg flags");
980 		memset(cgflags + oldsb->fs_ncg, 0,
981 		    newsb->fs_ncg - oldsb->fs_ncg);
982 		cgp = alloconce((newsb->fs_ncg - oldsb->fs_ncg) * cgblksz,
983                                 "cgs");
984 		for (i = oldsb->fs_ncg; i < newsb->fs_ncg; i++) {
985 			cgs[i] = (struct cg *) cgp;
986 			initcg(i);
987 			cgp += cgblksz;
988 		}
989 		cgs[oldsb->fs_ncg - 1]->cg_old_ncyl = oldsb->fs_old_cpg;
990 		cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY;
991 	}
992 	/* If the old fs ended partway through a cg, we have to update the old
993 	 * last cg (though possibly not to a full cg!). */
994 	if (oldsb->fs_size % oldsb->fs_fpg) {
995 		struct cg *cg;
996 		int newcgsize;
997 		int prevcgtop;
998 		int oldcgsize;
999 		cg = cgs[oldsb->fs_ncg - 1];
1000 		cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY | CGF_BLKMAPS;
1001 		prevcgtop = oldsb->fs_fpg * (oldsb->fs_ncg - 1);
1002 		newcgsize = newsb->fs_size - prevcgtop;
1003 		if (newcgsize > newsb->fs_fpg)
1004 			newcgsize = newsb->fs_fpg;
1005 		oldcgsize = oldsb->fs_size % oldsb->fs_fpg;
1006 		set_bits(cg_blksfree(cg, 0), oldcgsize, newcgsize - oldcgsize);
1007 		cg->cg_old_ncyl = oldsb->fs_old_cpg;
1008 		cg->cg_ndblk = newcgsize;
1009 	}
1010 	/* Fix up the csum info, if necessary. */
1011 	csum_fixup();
1012 	/* Make fs_dsize match the new reality. */
1013 	recompute_fs_dsize();
1014 }
1015 /*
1016  * Call (*fn)() for each inode, passing the inode and its inumber.  The
1017  *  number of cylinder groups is pased in, so this can be used to map
1018  *  over either the old or the new file system's set of inodes.
1019  */
1020 static void
1021 map_inodes(void (*fn) (union dinode * di, unsigned int, void *arg),
1022 	   int ncg, void *cbarg) {
1023 	int i;
1024 	int ni;
1025 
1026 	ni = oldsb->fs_ipg * ncg;
1027 	for (i = 0; i < ni; i++)
1028 		(*fn) (inodes + i, i, cbarg);
1029 }
1030 /* Values for the third argument to the map function for
1031  * map_inode_data_blocks.  MDB_DATA indicates the block is contains
1032  * file data; MDB_INDIR_PRE and MDB_INDIR_POST indicate that it's an
1033  * indirect block.  The MDB_INDIR_PRE call is made before the indirect
1034  * block pointers are followed and the pointed-to blocks scanned,
1035  * MDB_INDIR_POST after.
1036  */
1037 #define MDB_DATA       1
1038 #define MDB_INDIR_PRE  2
1039 #define MDB_INDIR_POST 3
1040 
1041 typedef void (*mark_callback_t) (off_t blocknum, unsigned int nfrags,
1042 				 unsigned int blksize, int opcode);
1043 
1044 /* Helper function - handles a data block.  Calls the callback
1045  * function and returns number of bytes occupied in file (actually,
1046  * rounded up to a frag boundary).  The name is historical.  */
1047 static int
1048 markblk(mark_callback_t fn, union dinode * di, off_t bn, off_t o)
1049 {
1050 	int sz;
1051 	int nb;
1052 	off_t filesize;
1053 
1054 	filesize = DIP(di,di_size);
1055 	if (o >= filesize)
1056 		return (0);
1057 	sz = dblksize(newsb, di, lblkno(newsb, o), filesize);
1058 	nb = (sz > filesize - o) ? filesize - o : sz;
1059 	if (bn)
1060 		(*fn) (bn, numfrags(newsb, sz), nb, MDB_DATA);
1061 	return (sz);
1062 }
1063 /* Helper function - handles an indirect block.  Makes the
1064  * MDB_INDIR_PRE callback for the indirect block, loops over the
1065  * pointers and recurses, and makes the MDB_INDIR_POST callback.
1066  * Returns the number of bytes occupied in file, as does markblk().
1067  * For the sake of update_for_data_move(), we read the indirect block
1068  * _after_ making the _PRE callback.  The name is historical.  */
1069 static int
1070 markiblk(mark_callback_t fn, union dinode * di, off_t bn, off_t o, int lev)
1071 {
1072 	int i;
1073 	int j;
1074 	unsigned k;
1075 	int tot;
1076 	static int32_t indirblk1[howmany(MAXBSIZE, sizeof(int32_t))];
1077 	static int32_t indirblk2[howmany(MAXBSIZE, sizeof(int32_t))];
1078 	static int32_t indirblk3[howmany(MAXBSIZE, sizeof(int32_t))];
1079 	static int32_t *indirblks[3] = {
1080 		&indirblk1[0], &indirblk2[0], &indirblk3[0]
1081 	};
1082 
1083 	if (lev < 0)
1084 		return (markblk(fn, di, bn, o));
1085 	if (bn == 0) {
1086 		for (i = newsb->fs_bsize;
1087 		    lev >= 0;
1088 		    i *= NINDIR(newsb), lev--);
1089 		return (i);
1090 	}
1091 	(*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_PRE);
1092 	readat(fsbtodb(newsb, bn), indirblks[lev], newsb->fs_bsize);
1093 	if (needswap)
1094 		for (k = 0; k < howmany(MAXBSIZE, sizeof(int32_t)); k++)
1095 			indirblks[lev][k] = bswap32(indirblks[lev][k]);
1096 	tot = 0;
1097 	for (i = 0; i < NINDIR(newsb); i++) {
1098 		j = markiblk(fn, di, indirblks[lev][i], o, lev - 1);
1099 		if (j == 0)
1100 			break;
1101 		o += j;
1102 		tot += j;
1103 	}
1104 	(*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_POST);
1105 	return (tot);
1106 }
1107 
1108 
1109 /*
1110  * Call (*fn)() for each data block for an inode.  This routine assumes
1111  *  the inode is known to be of a type that has data blocks (file,
1112  *  directory, or non-fast symlink).  The called function is:
1113  *
1114  * (*fn)(unsigned int blkno, unsigned int nf, unsigned int nb, int op)
1115  *
1116  *  where blkno is the frag number, nf is the number of frags starting
1117  *  at blkno (always <= fs_frag), nb is the number of bytes that belong
1118  *  to the file (usually nf*fs_frag, often less for the last block/frag
1119  *  of a file).
1120  */
1121 static void
1122 map_inode_data_blocks(union dinode * di, mark_callback_t fn)
1123 {
1124 	off_t o;		/* offset within  inode */
1125 	int inc;		/* increment for o - maybe should be off_t? */
1126 	int b;			/* index within di_db[] and di_ib[] arrays */
1127 
1128 	/* Scan the direct blocks... */
1129 	o = 0;
1130 	for (b = 0; b < UFS_NDADDR; b++) {
1131 		inc = markblk(fn, di, DIP(di,di_db[b]), o);
1132 		if (inc == 0)
1133 			break;
1134 		o += inc;
1135 	}
1136 	/* ...and the indirect blocks. */
1137 	if (inc) {
1138 		for (b = 0; b < UFS_NIADDR; b++) {
1139 			inc = markiblk(fn, di, DIP(di,di_ib[b]), o, b);
1140 			if (inc == 0)
1141 				return;
1142 			o += inc;
1143 		}
1144 	}
1145 }
1146 
1147 static void
1148 dblk_callback(union dinode * di, unsigned int inum, void *arg)
1149 {
1150 	mark_callback_t fn;
1151 	off_t filesize;
1152 
1153 	filesize = DIP(di,di_size);
1154 	fn = (mark_callback_t) arg;
1155 	switch (DIP(di,di_mode) & IFMT) {
1156 	case IFLNK:
1157 		if (filesize <= newsb->fs_maxsymlinklen) {
1158 			break;
1159 		}
1160 		/* FALLTHROUGH */
1161 	case IFDIR:
1162 	case IFREG:
1163 		map_inode_data_blocks(di, fn);
1164 		break;
1165 	}
1166 }
1167 /*
1168  * Make a callback call, a la map_inode_data_blocks, for all data
1169  *  blocks in the entire fs.  This is used only once, in
1170  *  update_for_data_move, but it's out at top level because the complex
1171  *  downward-funarg nesting that would otherwise result seems to give
1172  *  gcc gastric distress.
1173  */
1174 static void
1175 map_data_blocks(mark_callback_t fn, int ncg)
1176 {
1177 	map_inodes(&dblk_callback, ncg, (void *) fn);
1178 }
1179 /*
1180  * Initialize the blkmove array.
1181  */
1182 static void
1183 blkmove_init(void)
1184 {
1185 	int i;
1186 
1187 	blkmove = alloconce(oldsb->fs_size * sizeof(*blkmove), "blkmove");
1188 	for (i = 0; i < oldsb->fs_size; i++)
1189 		blkmove[i] = i;
1190 }
1191 /*
1192  * Load the inodes off disk.  Allocates the structures and initializes
1193  *  them - the inodes from disk, the flags to zero.
1194  */
1195 static void
1196 loadinodes(void)
1197 {
1198 	int imax, ino, i, j;
1199 	struct ufs1_dinode *dp1 = NULL;
1200 	struct ufs2_dinode *dp2 = NULL;
1201 
1202 	/* read inodes one fs block at a time and copy them */
1203 
1204 	inodes = alloconce(oldsb->fs_ncg * oldsb->fs_ipg *
1205 	    sizeof(union dinode), "inodes");
1206 	iflags = alloconce(oldsb->fs_ncg * oldsb->fs_ipg, "inode flags");
1207 	memset(iflags, 0, oldsb->fs_ncg * oldsb->fs_ipg);
1208 
1209 	ibuf = nfmalloc(oldsb->fs_bsize,"inode block buf");
1210 	if (is_ufs2)
1211 		dp2 = (struct ufs2_dinode *)ibuf;
1212 	else
1213 		dp1 = (struct ufs1_dinode *)ibuf;
1214 
1215 	for (ino = 0,imax = oldsb->fs_ipg * oldsb->fs_ncg; ino < imax; ) {
1216 		readat(fsbtodb(oldsb, ino_to_fsba(oldsb, ino)), ibuf,
1217 		    oldsb->fs_bsize);
1218 
1219 		for (i = 0; i < oldsb->fs_inopb; i++) {
1220 			if (is_ufs2) {
1221 				if (needswap) {
1222 					ffs_dinode2_swap(&(dp2[i]), &(dp2[i]));
1223 					for (j = 0; j < UFS_NDADDR + UFS_NIADDR; j++)
1224 						dp2[i].di_db[j] =
1225 						    bswap32(dp2[i].di_db[j]);
1226 				}
1227 				memcpy(&inodes[ino].dp2, &dp2[i],
1228 				    sizeof(inodes[ino].dp2));
1229 			} else {
1230 				if (needswap) {
1231 					ffs_dinode1_swap(&(dp1[i]), &(dp1[i]));
1232 					for (j = 0; j < UFS_NDADDR + UFS_NIADDR; j++)
1233 						dp1[i].di_db[j] =
1234 						    bswap32(dp1[i].di_db[j]);
1235 				}
1236 				memcpy(&inodes[ino].dp1, &dp1[i],
1237 				    sizeof(inodes[ino].dp1));
1238 			}
1239 			    if (++ino > imax)
1240 				    errx(EXIT_FAILURE,
1241 					"Exceeded number of inodes");
1242 		}
1243 
1244 	}
1245 }
1246 /*
1247  * Report a file-system-too-full problem.
1248  */
1249 __dead static void
1250 toofull(void)
1251 {
1252 	errx(EXIT_FAILURE, "Sorry, would run out of data blocks");
1253 }
1254 /*
1255  * Record a desire to move "n" frags from "from" to "to".
1256  */
1257 static void
1258 mark_move(unsigned int from, unsigned int to, unsigned int n)
1259 {
1260 	for (; n > 0; n--)
1261 		blkmove[from++] = to++;
1262 }
1263 /* Helper function - evict n frags, starting with start (cg-relative).
1264  * The free bitmap is scanned, unallocated frags are ignored, and
1265  * each block of consecutive allocated frags is moved as a unit.
1266  */
1267 static void
1268 fragmove(struct cg * cg, int base, unsigned int start, unsigned int n)
1269 {
1270 	unsigned int i;
1271 	int run;
1272 
1273 	run = 0;
1274 	for (i = 0; i <= n; i++) {
1275 		if ((i < n) && bit_is_clr(cg_blksfree(cg, 0), start + i)) {
1276 			run++;
1277 		} else {
1278 			if (run > 0) {
1279 				int off;
1280 				off = find_freespace(run);
1281 				if (off < 0)
1282 					toofull();
1283 				mark_move(base + start + i - run, off, run);
1284 				set_bits(cg_blksfree(cg, 0), start + i - run,
1285 				    run);
1286 				clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
1287 				    dtogd(oldsb, off), run);
1288 			}
1289 			run = 0;
1290 		}
1291 	}
1292 }
1293 /*
1294  * Evict all data blocks from the given cg, starting at minfrag (based
1295  *  at the beginning of the cg), for length nfrag.  The eviction is
1296  *  assumed to be entirely data-area; this should not be called with a
1297  *  range overlapping the metadata structures in the cg.  It also
1298  *  assumes minfrag points into the given cg; it will misbehave if this
1299  *  is not true.
1300  *
1301  * See the comment header on find_freespace() for one possible bug
1302  *  lurking here.
1303  */
1304 static void
1305 evict_data(struct cg * cg, unsigned int minfrag, int nfrag)
1306 {
1307 	int base;	/* base of cg (in frags from beginning of fs) */
1308 
1309 	base = cgbase(oldsb, cg->cg_cgx);
1310 	/* Does the boundary fall in the middle of a block?  To avoid
1311 	 * breaking between frags allocated as consecutive, we always
1312 	 * evict the whole block in this case, though one could argue
1313 	 * we should check to see if the frag before or after the
1314 	 * break is unallocated. */
1315 	if (minfrag % oldsb->fs_frag) {
1316 		int n;
1317 		n = minfrag % oldsb->fs_frag;
1318 		minfrag -= n;
1319 		nfrag += n;
1320 	}
1321 	/* Do whole blocks.  If a block is wholly free, skip it; if
1322 	 * wholly allocated, move it in toto.  If neither, call
1323 	 * fragmove() to move the frags to new locations. */
1324 	while (nfrag >= oldsb->fs_frag) {
1325 		if (!blk_is_set(cg_blksfree(cg, 0), minfrag, oldsb->fs_frag)) {
1326 			if (blk_is_clr(cg_blksfree(cg, 0), minfrag,
1327 				oldsb->fs_frag)) {
1328 				int off;
1329 				off = find_freeblock();
1330 				if (off < 0)
1331 					toofull();
1332 				mark_move(base + minfrag, off, oldsb->fs_frag);
1333 				set_bits(cg_blksfree(cg, 0), minfrag,
1334 				    oldsb->fs_frag);
1335 				clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
1336 				    dtogd(oldsb, off), oldsb->fs_frag);
1337 			} else {
1338 				fragmove(cg, base, minfrag, oldsb->fs_frag);
1339 			}
1340 		}
1341 		minfrag += oldsb->fs_frag;
1342 		nfrag -= oldsb->fs_frag;
1343 	}
1344 	/* Clean up any sub-block amount left over. */
1345 	if (nfrag) {
1346 		fragmove(cg, base, minfrag, nfrag);
1347 	}
1348 }
1349 /*
1350  * Move all data blocks according to blkmove.  We have to be careful,
1351  *  because we may be updating indirect blocks that will themselves be
1352  *  getting moved, or inode int32_t arrays that point to indirect
1353  *  blocks that will be moved.  We call this before
1354  *  update_for_data_move, and update_for_data_move does inodes first,
1355  *  then indirect blocks in preorder, so as to make sure that the
1356  *  file system is self-consistent at all points, for better crash
1357  *  tolerance.  (We can get away with this only because all the writes
1358  *  done by perform_data_move() are writing into space that's not used
1359  *  by the old file system.)  If we crash, some things may point to the
1360  *  old data and some to the new, but both copies are the same.  The
1361  *  only wrong things should be csum info and free bitmaps, which fsck
1362  *  is entirely capable of cleaning up.
1363  *
1364  * Since blkmove_init() initializes all blocks to move to their current
1365  *  locations, we can have two blocks marked as wanting to move to the
1366  *  same location, but only two and only when one of them is the one
1367  *  that was already there.  So if blkmove[i]==i, we ignore that entry
1368  *  entirely - for unallocated blocks, we don't want it (and may be
1369  *  putting something else there), and for allocated blocks, we don't
1370  *  want to copy it anywhere.
1371  */
1372 static void
1373 perform_data_move(void)
1374 {
1375 	int i;
1376 	int run;
1377 	int maxrun;
1378 	char buf[65536];
1379 
1380 	maxrun = sizeof(buf) / newsb->fs_fsize;
1381 	run = 0;
1382 	for (i = 0; i < oldsb->fs_size; i++) {
1383 		if ((blkmove[i] == (unsigned)i /*XXX cast*/) ||
1384 		    (run >= maxrun) ||
1385 		    ((run > 0) &&
1386 			(blkmove[i] != blkmove[i - 1] + 1))) {
1387 			if (run > 0) {
1388 				readat(fsbtodb(oldsb, i - run), &buf[0],
1389 				    run << oldsb->fs_fshift);
1390 				writeat(fsbtodb(oldsb, blkmove[i - run]),
1391 				    &buf[0], run << oldsb->fs_fshift);
1392 			}
1393 			run = 0;
1394 		}
1395 		if (blkmove[i] != (unsigned)i /*XXX cast*/)
1396 			run++;
1397 	}
1398 	if (run > 0) {
1399 		readat(fsbtodb(oldsb, i - run), &buf[0],
1400 		    run << oldsb->fs_fshift);
1401 		writeat(fsbtodb(oldsb, blkmove[i - run]), &buf[0],
1402 		    run << oldsb->fs_fshift);
1403 	}
1404 }
1405 /*
1406  * This modifies an array of int32_t, according to blkmove.  This is
1407  *  used to update inode block arrays and indirect blocks to point to
1408  *  the new locations of data blocks.
1409  *
1410  * Return value is the number of int32_ts that needed updating; in
1411  *  particular, the return value is zero iff nothing was modified.
1412  */
1413 static int
1414 movemap_blocks(int32_t * vec, int n)
1415 {
1416 	int rv;
1417 
1418 	rv = 0;
1419 	for (; n > 0; n--, vec++) {
1420 		if (blkmove[*vec] != (unsigned)*vec /*XXX cast*/) {
1421 			*vec = blkmove[*vec];
1422 			rv++;
1423 		}
1424 	}
1425 	return (rv);
1426 }
1427 static void
1428 moveblocks_callback(union dinode * di, unsigned int inum, void *arg)
1429 {
1430 	int32_t *dblkptr, *iblkptr;
1431 
1432 	switch (DIP(di,di_mode) & IFMT) {
1433 	case IFLNK:
1434 		if ((off_t)DIP(di,di_size) <= oldsb->fs_maxsymlinklen) {
1435 			break;
1436 		}
1437 		/* FALLTHROUGH */
1438 	case IFDIR:
1439 	case IFREG:
1440 		if (is_ufs2) {
1441 			/* XXX these are not int32_t and this is WRONG! */
1442 			dblkptr = (void *) &(di->dp2.di_db[0]);
1443 			iblkptr = (void *) &(di->dp2.di_ib[0]);
1444 		} else {
1445 			dblkptr = &(di->dp1.di_db[0]);
1446 			iblkptr = &(di->dp1.di_ib[0]);
1447 		}
1448 		/*
1449 		 * Don't || these two calls; we need their
1450 		 * side-effects.
1451 		 */
1452 		if (movemap_blocks(dblkptr, UFS_NDADDR)) {
1453 			iflags[inum] |= IF_DIRTY;
1454 		}
1455 		if (movemap_blocks(iblkptr, UFS_NIADDR)) {
1456 			iflags[inum] |= IF_DIRTY;
1457 		}
1458 		break;
1459 	}
1460 }
1461 
1462 static void
1463 moveindir_callback(off_t off, unsigned int nfrag, unsigned int nbytes,
1464 		   int kind)
1465 {
1466 	unsigned int i;
1467 
1468 	if (kind == MDB_INDIR_PRE) {
1469 		int32_t blk[howmany(MAXBSIZE, sizeof(int32_t))];
1470 		readat(fsbtodb(oldsb, off), &blk[0], oldsb->fs_bsize);
1471 		if (needswap)
1472 			for (i = 0; i < howmany(MAXBSIZE, sizeof(int32_t)); i++)
1473 				blk[i] = bswap32(blk[i]);
1474 		if (movemap_blocks(&blk[0], NINDIR(oldsb))) {
1475 			if (needswap)
1476 				for (i = 0; i < howmany(MAXBSIZE,
1477 					sizeof(int32_t)); i++)
1478 					blk[i] = bswap32(blk[i]);
1479 			writeat(fsbtodb(oldsb, off), &blk[0], oldsb->fs_bsize);
1480 		}
1481 	}
1482 }
1483 /*
1484  * Update all inode data arrays and indirect blocks to point to the new
1485  *  locations of data blocks.  See the comment header on
1486  *  perform_data_move for some ordering considerations.
1487  */
1488 static void
1489 update_for_data_move(void)
1490 {
1491 	map_inodes(&moveblocks_callback, oldsb->fs_ncg, NULL);
1492 	map_data_blocks(&moveindir_callback, oldsb->fs_ncg);
1493 }
1494 /*
1495  * Initialize the inomove array.
1496  */
1497 static void
1498 inomove_init(void)
1499 {
1500 	int i;
1501 
1502 	inomove = alloconce(oldsb->fs_ipg * oldsb->fs_ncg * sizeof(*inomove),
1503                             "inomove");
1504 	for (i = (oldsb->fs_ipg * oldsb->fs_ncg) - 1; i >= 0; i--)
1505 		inomove[i] = i;
1506 }
1507 /*
1508  * Flush all dirtied inodes to disk.  Scans the inode flags array; for
1509  *  each dirty inode, it sets the BDIRTY bit on the first inode in the
1510  *  block containing the dirty inode.  Then it scans by blocks, and for
1511  *  each marked block, writes it.
1512  */
1513 static void
1514 flush_inodes(void)
1515 {
1516 	int i, j, k, na, ni, m;
1517 	struct ufs1_dinode *dp1 = NULL;
1518 	struct ufs2_dinode *dp2 = NULL;
1519 
1520 	na = UFS_NDADDR + UFS_NIADDR;
1521 	ni = newsb->fs_ipg * newsb->fs_ncg;
1522 	m = INOPB(newsb) - 1;
1523 	for (i = 0; i < ni; i++) {
1524 		if (iflags[i] & IF_DIRTY) {
1525 			iflags[i & ~m] |= IF_BDIRTY;
1526 		}
1527 	}
1528 	m++;
1529 
1530 	if (is_ufs2)
1531 		dp2 = (struct ufs2_dinode *)ibuf;
1532 	else
1533 		dp1 = (struct ufs1_dinode *)ibuf;
1534 
1535 	for (i = 0; i < ni; i += m) {
1536 		if (iflags[i] & IF_BDIRTY) {
1537 			if (is_ufs2)
1538 				for (j = 0; j < m; j++) {
1539 					dp2[j] = inodes[i + j].dp2;
1540 					if (needswap) {
1541 						for (k = 0; k < na; k++)
1542 							dp2[j].di_db[k]=
1543 							    bswap32(dp2[j].di_db[k]);
1544 						ffs_dinode2_swap(&dp2[j],
1545 						    &dp2[j]);
1546 					}
1547 				}
1548 			else
1549 				for (j = 0; j < m; j++) {
1550 					dp1[j] = inodes[i + j].dp1;
1551 					if (needswap) {
1552 						for (k = 0; k < na; k++)
1553 							dp1[j].di_db[k]=
1554 							    bswap32(dp1[j].di_db[k]);
1555 						ffs_dinode1_swap(&dp1[j],
1556 						    &dp1[j]);
1557 					}
1558 				}
1559 
1560 			writeat(fsbtodb(newsb, ino_to_fsba(newsb, i)),
1561 			    ibuf, newsb->fs_bsize);
1562 		}
1563 	}
1564 }
1565 /*
1566  * Evict all inodes from the specified cg.  shrink() already checked
1567  *  that there were enough free inodes, so the no-free-inodes check is
1568  *  a can't-happen.  If it does trip, the file system should be in good
1569  *  enough shape for fsck to fix; see the comment on perform_data_move
1570  *  for the considerations in question.
1571  */
1572 static void
1573 evict_inodes(struct cg * cg)
1574 {
1575 	int inum;
1576 	int i;
1577 	int fi;
1578 
1579 	inum = newsb->fs_ipg * cg->cg_cgx;
1580 	for (i = 0; i < newsb->fs_ipg; i++, inum++) {
1581 		if (DIP(inodes + inum,di_mode) != 0) {
1582 			fi = find_freeinode();
1583 			if (fi < 0)
1584 				errx(EXIT_FAILURE, "Sorry, inodes evaporated - "
1585 				    "file system probably needs fsck");
1586 			inomove[inum] = fi;
1587 			clr_bits(cg_inosused(cg, 0), i, 1);
1588 			set_bits(cg_inosused(cgs[ino_to_cg(newsb, fi)], 0),
1589 			    fi % newsb->fs_ipg, 1);
1590 		}
1591 	}
1592 }
1593 /*
1594  * Move inodes from old locations to new.  Does not actually write
1595  *  anything to disk; just copies in-core and sets dirty bits.
1596  *
1597  * We have to be careful here for reasons similar to those mentioned in
1598  *  the comment header on perform_data_move, above: for the sake of
1599  *  crash tolerance, we want to make sure everything is present at both
1600  *  old and new locations before we update pointers.  So we call this
1601  *  first, then flush_inodes() to get them out on disk, then update
1602  *  directories to match.
1603  */
1604 static void
1605 perform_inode_move(void)
1606 {
1607 	unsigned int i;
1608 	unsigned int ni;
1609 
1610 	ni = oldsb->fs_ipg * oldsb->fs_ncg;
1611 	for (i = 0; i < ni; i++) {
1612 		if (inomove[i] != i) {
1613 			inodes[inomove[i]] = inodes[i];
1614 			iflags[inomove[i]] = iflags[i] | IF_DIRTY;
1615 		}
1616 	}
1617 }
1618 /*
1619  * Update the directory contained in the nb bytes at buf, to point to
1620  *  inodes' new locations.
1621  */
1622 static int
1623 update_dirents(char *buf, int nb)
1624 {
1625 	int rv;
1626 #define d ((struct direct *)buf)
1627 #define s32(x) (needswap?bswap32((x)):(x))
1628 #define s16(x) (needswap?bswap16((x)):(x))
1629 
1630 	rv = 0;
1631 	while (nb > 0) {
1632 		if (inomove[s32(d->d_ino)] != s32(d->d_ino)) {
1633 			rv++;
1634 			d->d_ino = s32(inomove[s32(d->d_ino)]);
1635 		}
1636 		nb -= s16(d->d_reclen);
1637 		buf += s16(d->d_reclen);
1638 	}
1639 	return (rv);
1640 #undef d
1641 #undef s32
1642 #undef s16
1643 }
1644 /*
1645  * Callback function for map_inode_data_blocks, for updating a
1646  *  directory to point to new inode locations.
1647  */
1648 static void
1649 update_dir_data(off_t bn, unsigned int size, unsigned int nb, int kind)
1650 {
1651 	if (kind == MDB_DATA) {
1652 		union {
1653 			struct direct d;
1654 			char ch[MAXBSIZE];
1655 		}     buf;
1656 		readat(fsbtodb(oldsb, bn), &buf, size << oldsb->fs_fshift);
1657 		if (update_dirents((char *) &buf, nb)) {
1658 			writeat(fsbtodb(oldsb, bn), &buf,
1659 			    size << oldsb->fs_fshift);
1660 		}
1661 	}
1662 }
1663 static void
1664 dirmove_callback(union dinode * di, unsigned int inum, void *arg)
1665 {
1666 	switch (DIP(di,di_mode) & IFMT) {
1667 	case IFDIR:
1668 		map_inode_data_blocks(di, &update_dir_data);
1669 		break;
1670 	}
1671 }
1672 /*
1673  * Update directory entries to point to new inode locations.
1674  */
1675 static void
1676 update_for_inode_move(void)
1677 {
1678 	map_inodes(&dirmove_callback, newsb->fs_ncg, NULL);
1679 }
1680 /*
1681  * Shrink the file system.
1682  */
1683 static void
1684 shrink(void)
1685 {
1686 	int i;
1687 
1688 	/* Load the inodes off disk - we'll need 'em. */
1689 	loadinodes();
1690 	/* Update the timestamp. */
1691 	newsb->fs_time = timestamp();
1692 	/* Update the size figures. */
1693 	newsb->fs_size = dbtofsb(newsb, newsize);
1694 	if (is_ufs2)
1695 		newsb->fs_ncg = howmany(newsb->fs_size, newsb->fs_fpg);
1696 	else {
1697 		newsb->fs_old_ncyl = howmany(newsb->fs_size * NSPF(newsb),
1698 		    newsb->fs_old_spc);
1699 		newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg);
1700 	}
1701 	/* Does the (new) last cg end before the end of its inode area?  See
1702 	 * the similar code in grow() for more on this. */
1703 	if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
1704 		newsb->fs_ncg--;
1705 		if (is_ufs2 == 0) {
1706 			newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg;
1707 			newsb->fs_size = (newsb->fs_old_ncyl *
1708 			    newsb->fs_old_spc) / NSPF(newsb);
1709 		} else
1710 			newsb->fs_size = newsb->fs_ncg * newsb->fs_fpg;
1711 
1712 		printf("Warning: last cylinder group is too small;\n");
1713 		printf("    dropping it.  New size = %lu.\n",
1714 		    (unsigned long int) fsbtodb(newsb, newsb->fs_size));
1715 	}
1716 	/* Let's make sure we're not being shrunk into oblivion. */
1717 	if (newsb->fs_ncg < 1)
1718 		errx(EXIT_FAILURE, "Size too small - file system would "
1719 		    "have no cylinders");
1720 	/* Initialize for block motion. */
1721 	blkmove_init();
1722 	/* Update csum size, then fix up for the new size */
1723 	newsb->fs_cssize = fragroundup(newsb,
1724 	    newsb->fs_ncg * sizeof(struct csum));
1725 	csum_fixup();
1726 	/* Evict data from any cgs being wholly eliminated */
1727 	for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++) {
1728 		int base;
1729 		int dlow;
1730 		int dhigh;
1731 		int dmax;
1732 		base = cgbase(oldsb, i);
1733 		dlow = cgsblock(oldsb, i) - base;
1734 		dhigh = cgdmin(oldsb, i) - base;
1735 		dmax = oldsb->fs_size - base;
1736 		if (dmax > cgs[i]->cg_ndblk)
1737 			dmax = cgs[i]->cg_ndblk;
1738 		evict_data(cgs[i], 0, dlow);
1739 		evict_data(cgs[i], dhigh, dmax - dhigh);
1740 		newsb->fs_cstotal.cs_ndir -= cgs[i]->cg_cs.cs_ndir;
1741 		newsb->fs_cstotal.cs_nifree -= cgs[i]->cg_cs.cs_nifree;
1742 		newsb->fs_cstotal.cs_nffree -= cgs[i]->cg_cs.cs_nffree;
1743 		newsb->fs_cstotal.cs_nbfree -= cgs[i]->cg_cs.cs_nbfree;
1744 	}
1745 	/* Update the new last cg. */
1746 	cgs[newsb->fs_ncg - 1]->cg_ndblk = newsb->fs_size -
1747 	    ((newsb->fs_ncg - 1) * newsb->fs_fpg);
1748 	/* Is the new last cg partial?  If so, evict any data from the part
1749 	 * being shrunken away. */
1750 	if (newsb->fs_size % newsb->fs_fpg) {
1751 		struct cg *cg;
1752 		int oldcgsize;
1753 		int newcgsize;
1754 		cg = cgs[newsb->fs_ncg - 1];
1755 		newcgsize = newsb->fs_size % newsb->fs_fpg;
1756 		oldcgsize = oldsb->fs_size - ((newsb->fs_ncg - 1) &
1757 		    oldsb->fs_fpg);
1758 		if (oldcgsize > oldsb->fs_fpg)
1759 			oldcgsize = oldsb->fs_fpg;
1760 		evict_data(cg, newcgsize, oldcgsize - newcgsize);
1761 		clr_bits(cg_blksfree(cg, 0), newcgsize, oldcgsize - newcgsize);
1762 	}
1763 	/* Find out whether we would run out of inodes.  (Note we
1764 	 * haven't actually done anything to the file system yet; all
1765 	 * those evict_data calls just update blkmove.) */
1766 	{
1767 		int slop;
1768 		slop = 0;
1769 		for (i = 0; i < newsb->fs_ncg; i++)
1770 			slop += cgs[i]->cg_cs.cs_nifree;
1771 		for (; i < oldsb->fs_ncg; i++)
1772 			slop -= oldsb->fs_ipg - cgs[i]->cg_cs.cs_nifree;
1773 		if (slop < 0)
1774 			errx(EXIT_FAILURE, "Sorry, would run out of inodes");
1775 	}
1776 	/* Copy data, then update pointers to data.  See the comment
1777 	 * header on perform_data_move for ordering considerations. */
1778 	perform_data_move();
1779 	update_for_data_move();
1780 	/* Now do inodes.  Initialize, evict, move, update - see the
1781 	 * comment header on perform_inode_move. */
1782 	inomove_init();
1783 	for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++)
1784 		evict_inodes(cgs[i]);
1785 	perform_inode_move();
1786 	flush_inodes();
1787 	update_for_inode_move();
1788 	/* Recompute all the bitmaps; most of them probably need it anyway,
1789 	 * the rest are just paranoia and not wanting to have to bother
1790 	 * keeping track of exactly which ones require it. */
1791 	for (i = 0; i < newsb->fs_ncg; i++)
1792 		cgflags[i] |= CGF_DIRTY | CGF_BLKMAPS | CGF_INOMAPS;
1793 	/* Update the cg_old_ncyl value for the last cylinder. */
1794 	if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
1795 		cgs[newsb->fs_ncg - 1]->cg_old_ncyl =
1796 		    newsb->fs_old_ncyl % newsb->fs_old_cpg;
1797 	/* Make fs_dsize match the new reality. */
1798 	recompute_fs_dsize();
1799 }
1800 /*
1801  * Recompute the block totals, block cluster summaries, and rotational
1802  *  position summaries, for a given cg (specified by number), based on
1803  *  its free-frag bitmap (cg_blksfree()[]).
1804  */
1805 static void
1806 rescan_blkmaps(int cgn)
1807 {
1808 	struct cg *cg;
1809 	int f;
1810 	int b;
1811 	int blkfree;
1812 	int blkrun;
1813 	int fragrun;
1814 	int fwb;
1815 
1816 	cg = cgs[cgn];
1817 	/* Subtract off the current totals from the sb's summary info */
1818 	newsb->fs_cstotal.cs_nffree -= cg->cg_cs.cs_nffree;
1819 	newsb->fs_cstotal.cs_nbfree -= cg->cg_cs.cs_nbfree;
1820 	/* Clear counters and bitmaps. */
1821 	cg->cg_cs.cs_nffree = 0;
1822 	cg->cg_cs.cs_nbfree = 0;
1823 	memset(&cg->cg_frsum[0], 0, MAXFRAG * sizeof(cg->cg_frsum[0]));
1824 	memset(&old_cg_blktot(cg, 0)[0], 0,
1825 	    newsb->fs_old_cpg * sizeof(old_cg_blktot(cg, 0)[0]));
1826 	memset(&old_cg_blks(newsb, cg, 0, 0)[0], 0,
1827 	    newsb->fs_old_cpg * newsb->fs_old_nrpos *
1828 	    sizeof(old_cg_blks(newsb, cg, 0, 0)[0]));
1829 	if (newsb->fs_contigsumsize > 0) {
1830 		cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
1831 		memset(&cg_clustersum(cg, 0)[1], 0,
1832 		    newsb->fs_contigsumsize *
1833 		    sizeof(cg_clustersum(cg, 0)[1]));
1834 		if (is_ufs2)
1835 			memset(&cg_clustersfree(cg, 0)[0], 0,
1836 			    howmany(newsb->fs_fpg / NSPB(newsb), NBBY));
1837 		else
1838 			memset(&cg_clustersfree(cg, 0)[0], 0,
1839 			    howmany((newsb->fs_old_cpg * newsb->fs_old_spc) /
1840 				NSPB(newsb), NBBY));
1841 	}
1842 	/* Scan the free-frag bitmap.  Runs of free frags are kept
1843 	 * track of with fragrun, and recorded into cg_frsum[] and
1844 	 * cg_cs.cs_nffree; on each block boundary, entire free blocks
1845 	 * are recorded as well. */
1846 	blkfree = 1;
1847 	blkrun = 0;
1848 	fragrun = 0;
1849 	f = 0;
1850 	b = 0;
1851 	fwb = 0;
1852 	while (f < cg->cg_ndblk) {
1853 		if (bit_is_set(cg_blksfree(cg, 0), f)) {
1854 			fragrun++;
1855 		} else {
1856 			blkfree = 0;
1857 			if (fragrun > 0) {
1858 				cg->cg_frsum[fragrun]++;
1859 				cg->cg_cs.cs_nffree += fragrun;
1860 			}
1861 			fragrun = 0;
1862 		}
1863 		f++;
1864 		fwb++;
1865 		if (fwb >= newsb->fs_frag) {
1866 			if (blkfree) {
1867 				cg->cg_cs.cs_nbfree++;
1868 				if (newsb->fs_contigsumsize > 0)
1869 					set_bits(cg_clustersfree(cg, 0), b, 1);
1870 				if (is_ufs2 == 0) {
1871 					old_cg_blktot(cg, 0)[
1872 						old_cbtocylno(newsb,
1873 						    f - newsb->fs_frag)]++;
1874 					old_cg_blks(newsb, cg,
1875 					    old_cbtocylno(newsb,
1876 						f - newsb->fs_frag),
1877 					    0)[old_cbtorpos(newsb,
1878 						    f - newsb->fs_frag)]++;
1879 				}
1880 				blkrun++;
1881 			} else {
1882 				if (fragrun > 0) {
1883 					cg->cg_frsum[fragrun]++;
1884 					cg->cg_cs.cs_nffree += fragrun;
1885 				}
1886 				if (newsb->fs_contigsumsize > 0) {
1887 					if (blkrun > 0) {
1888 						cg_clustersum(cg, 0)[(blkrun
1889 						    > newsb->fs_contigsumsize)
1890 						    ? newsb->fs_contigsumsize
1891 						    : blkrun]++;
1892 					}
1893 				}
1894 				blkrun = 0;
1895 			}
1896 			fwb = 0;
1897 			b++;
1898 			blkfree = 1;
1899 			fragrun = 0;
1900 		}
1901 	}
1902 	if (fragrun > 0) {
1903 		cg->cg_frsum[fragrun]++;
1904 		cg->cg_cs.cs_nffree += fragrun;
1905 	}
1906 	if ((blkrun > 0) && (newsb->fs_contigsumsize > 0)) {
1907 		cg_clustersum(cg, 0)[(blkrun > newsb->fs_contigsumsize) ?
1908 		    newsb->fs_contigsumsize : blkrun]++;
1909 	}
1910 	/*
1911          * Put the updated summary info back into csums, and add it
1912          * back into the sb's summary info.  Then mark the cg dirty.
1913          */
1914 	csums[cgn] = cg->cg_cs;
1915 	newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
1916 	newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
1917 	cgflags[cgn] |= CGF_DIRTY;
1918 }
1919 /*
1920  * Recompute the cg_inosused()[] bitmap, and the cs_nifree and cs_ndir
1921  *  values, for a cg, based on the in-core inodes for that cg.
1922  */
1923 static void
1924 rescan_inomaps(int cgn)
1925 {
1926 	struct cg *cg;
1927 	int inum;
1928 	int iwc;
1929 
1930 	cg = cgs[cgn];
1931 	newsb->fs_cstotal.cs_ndir -= cg->cg_cs.cs_ndir;
1932 	newsb->fs_cstotal.cs_nifree -= cg->cg_cs.cs_nifree;
1933 	cg->cg_cs.cs_ndir = 0;
1934 	cg->cg_cs.cs_nifree = 0;
1935 	memset(&cg_inosused(cg, 0)[0], 0, howmany(newsb->fs_ipg, NBBY));
1936 	inum = cgn * newsb->fs_ipg;
1937 	if (cgn == 0) {
1938 		set_bits(cg_inosused(cg, 0), 0, 2);
1939 		iwc = 2;
1940 		inum += 2;
1941 	} else {
1942 		iwc = 0;
1943 	}
1944 	for (; iwc < newsb->fs_ipg; iwc++, inum++) {
1945 		switch (DIP(inodes + inum, di_mode) & IFMT) {
1946 		case 0:
1947 			cg->cg_cs.cs_nifree++;
1948 			break;
1949 		case IFDIR:
1950 			cg->cg_cs.cs_ndir++;
1951 			/* FALLTHROUGH */
1952 		default:
1953 			set_bits(cg_inosused(cg, 0), iwc, 1);
1954 			break;
1955 		}
1956 	}
1957 	csums[cgn] = cg->cg_cs;
1958 	newsb->fs_cstotal.cs_ndir += cg->cg_cs.cs_ndir;
1959 	newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
1960 	cgflags[cgn] |= CGF_DIRTY;
1961 }
1962 /*
1963  * Flush cgs to disk, recomputing anything they're marked as needing.
1964  */
1965 static void
1966 flush_cgs(void)
1967 {
1968 	int i;
1969 
1970 	for (i = 0; i < newsb->fs_ncg; i++) {
1971 		if (cgflags[i] & CGF_BLKMAPS) {
1972 			rescan_blkmaps(i);
1973 		}
1974 		if (cgflags[i] & CGF_INOMAPS) {
1975 			rescan_inomaps(i);
1976 		}
1977 		if (cgflags[i] & CGF_DIRTY) {
1978 			cgs[i]->cg_rotor = 0;
1979 			cgs[i]->cg_frotor = 0;
1980 			cgs[i]->cg_irotor = 0;
1981 			if (needswap)
1982 				ffs_cg_swap(cgs[i],cgs[i],newsb);
1983 			writeat(fsbtodb(newsb, cgtod(newsb, i)), cgs[i],
1984 			    cgblksz);
1985 		}
1986 	}
1987 	if (needswap)
1988 		ffs_csum_swap(csums,csums,newsb->fs_cssize);
1989 	writeat(fsbtodb(newsb, newsb->fs_csaddr), csums, newsb->fs_cssize);
1990 }
1991 /*
1992  * Write the superblock, both to the main superblock and to each cg's
1993  *  alternative superblock.
1994  */
1995 static void
1996 write_sbs(void)
1997 {
1998 	int i;
1999 
2000 	if (newsb->fs_magic == FS_UFS1_MAGIC &&
2001 	    (newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
2002 		newsb->fs_old_time = newsb->fs_time;
2003 	    	newsb->fs_old_size = newsb->fs_size;
2004 	    	/* we don't update fs_csaddr */
2005 	    	newsb->fs_old_dsize = newsb->fs_dsize;
2006 		newsb->fs_old_cstotal.cs_ndir = newsb->fs_cstotal.cs_ndir;
2007 		newsb->fs_old_cstotal.cs_nbfree = newsb->fs_cstotal.cs_nbfree;
2008 		newsb->fs_old_cstotal.cs_nifree = newsb->fs_cstotal.cs_nifree;
2009 		newsb->fs_old_cstotal.cs_nffree = newsb->fs_cstotal.cs_nffree;
2010 		/* fill fs_old_postbl_start with 256 bytes of 0xff? */
2011 	}
2012 	/* copy newsb back to oldsb, so we can use it for offsets if
2013 	   newsb has been swapped for writing to disk */
2014 	memcpy(oldsb, newsb, SBLOCKSIZE);
2015 	if (needswap)
2016 		ffs_sb_swap(newsb,newsb);
2017 	writeat(where /  DEV_BSIZE, newsb, SBLOCKSIZE);
2018 	for (i = 0; i < oldsb->fs_ncg; i++) {
2019 		writeat(fsbtodb(oldsb, cgsblock(oldsb, i)), newsb, SBLOCKSIZE);
2020 	}
2021 }
2022 
2023 static off_t
2024 get_dev_size(char *dev_name)
2025 {
2026 	struct dkwedge_info dkw;
2027 	struct partition *pp;
2028 	struct disklabel lp;
2029 	size_t ptn;
2030 
2031 	/* Get info about partition/wedge */
2032 	if (ioctl(fd, DIOCGWEDGEINFO, &dkw) == -1) {
2033 		if (ioctl(fd, DIOCGDINFO, &lp) == -1)
2034 			return 0;
2035 
2036 		ptn = strchr(dev_name, '\0')[-1] - 'a';
2037 		if (ptn >= lp.d_npartitions)
2038 			return 0;
2039 
2040 		pp = &lp.d_partitions[ptn];
2041 		return pp->p_size;
2042 	}
2043 
2044 	return dkw.dkw_size;
2045 }
2046 
2047 /*
2048  * main().
2049  */
2050 int
2051 main(int argc, char **argv)
2052 {
2053 	int ch;
2054 	int ExpertFlag;
2055 	int SFlag;
2056 	size_t i;
2057 
2058 	char *special;
2059 	char reply[5];
2060 
2061 	newsize = 0;
2062 	ExpertFlag = 0;
2063 	SFlag = 0;
2064 
2065 	while ((ch = getopt(argc, argv, "s:y")) != -1) {
2066 		switch (ch) {
2067 		case 's':
2068 			SFlag = 1;
2069 			newsize = strtoll(optarg, NULL, 10);
2070 			if(newsize < 1) {
2071 				usage();
2072 			}
2073 			break;
2074 		case 'y':
2075 			ExpertFlag = 1;
2076 			break;
2077 		case '?':
2078 			/* FALLTHROUGH */
2079 		default:
2080 			usage();
2081 		}
2082 	}
2083 	argc -= optind;
2084 	argv += optind;
2085 
2086 	if (argc != 1) {
2087 		usage();
2088 	}
2089 
2090 	special = *argv;
2091 
2092 	if (ExpertFlag == 0) {
2093 		printf("It's required to manually run fsck on file system "
2094 		    "before you can resize it\n\n"
2095 		    " Did you run fsck on your disk (Yes/No) ? ");
2096 		fgets(reply, (int)sizeof(reply), stdin);
2097 		if (strcasecmp(reply, "Yes\n")) {
2098 			printf("\n Nothing done \n");
2099 			exit(EXIT_SUCCESS);
2100 		}
2101 	}
2102 
2103 	fd = open(special, O_RDWR, 0);
2104 	if (fd < 0)
2105 		err(EXIT_FAILURE, "Can't open `%s'", special);
2106 	checksmallio();
2107 
2108 	if (SFlag == 0) {
2109 		newsize = get_dev_size(special);
2110 		if (newsize == 0)
2111 			err(EXIT_FAILURE,
2112 			    "Can't resize file system, newsize not known.");
2113 	}
2114 
2115 	oldsb = (struct fs *) & sbbuf;
2116 	newsb = (struct fs *) (SBLOCKSIZE + (char *) &sbbuf);
2117 	for (where = search[i = 0]; search[i] != -1; where = search[++i]) {
2118 		readat(where / DEV_BSIZE, oldsb, SBLOCKSIZE);
2119 		switch (oldsb->fs_magic) {
2120 		case FS_UFS2_MAGIC:
2121 			is_ufs2 = 1;
2122 			/* FALLTHROUGH */
2123 		case FS_UFS1_MAGIC:
2124 			needswap = 0;
2125 			break;
2126 		case FS_UFS2_MAGIC_SWAPPED:
2127  			is_ufs2 = 1;
2128 			/* FALLTHROUGH */
2129 		case FS_UFS1_MAGIC_SWAPPED:
2130 			needswap = 1;
2131 			break;
2132 		default:
2133 			continue;
2134 		}
2135 		if (!is_ufs2 && where == SBLOCK_UFS2)
2136 			continue;
2137 		break;
2138 	}
2139 	if (where == (off_t)-1)
2140 		errx(EXIT_FAILURE, "Bad magic number");
2141 	if (needswap)
2142 		ffs_sb_swap(oldsb,oldsb);
2143 	if (oldsb->fs_magic == FS_UFS1_MAGIC &&
2144 	    (oldsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
2145 		oldsb->fs_csaddr = oldsb->fs_old_csaddr;
2146 		oldsb->fs_size = oldsb->fs_old_size;
2147 		oldsb->fs_dsize = oldsb->fs_old_dsize;
2148 		oldsb->fs_cstotal.cs_ndir = oldsb->fs_old_cstotal.cs_ndir;
2149 		oldsb->fs_cstotal.cs_nbfree = oldsb->fs_old_cstotal.cs_nbfree;
2150 		oldsb->fs_cstotal.cs_nifree = oldsb->fs_old_cstotal.cs_nifree;
2151 		oldsb->fs_cstotal.cs_nffree = oldsb->fs_old_cstotal.cs_nffree;
2152 		/* any others? */
2153 		printf("Resizing with ffsv1 superblock\n");
2154 	}
2155 
2156 	oldsb->fs_qbmask = ~(int64_t) oldsb->fs_bmask;
2157 	oldsb->fs_qfmask = ~(int64_t) oldsb->fs_fmask;
2158 	if (oldsb->fs_ipg % INOPB(oldsb))
2159 		errx(EXIT_FAILURE, "ipg[%d] %% INOPB[%d] != 0",
2160 		    (int) oldsb->fs_ipg, (int) INOPB(oldsb));
2161 	/* The superblock is bigger than struct fs (there are trailing
2162 	 * tables, of non-fixed size); make sure we copy the whole
2163 	 * thing.  SBLOCKSIZE may be an over-estimate, but we do this
2164 	 * just once, so being generous is cheap. */
2165 	memcpy(newsb, oldsb, SBLOCKSIZE);
2166 	loadcgs();
2167 	if (newsize > fsbtodb(oldsb, oldsb->fs_size)) {
2168 		grow();
2169 	} else if (newsize < fsbtodb(oldsb, oldsb->fs_size)) {
2170 		if (is_ufs2)
2171 			errx(EXIT_FAILURE,"shrinking not supported for ufs2");
2172 		shrink();
2173 	}
2174 	flush_cgs();
2175 	write_sbs();
2176 	if (isplainfile())
2177 		ftruncate(fd,newsize * DEV_BSIZE);
2178 	return 0;
2179 }
2180 
2181 static void
2182 usage(void)
2183 {
2184 
2185 	(void)fprintf(stderr, "usage: %s [-y] [-s size] special\n",
2186 	    getprogname());
2187 	exit(EXIT_FAILURE);
2188 }
2189