1 /* $NetBSD: resize_ffs.c,v 1.12 2007/12/15 19:44:47 perry Exp $ */ 2 /* From sources sent on February 17, 2003 */ 3 /*- 4 * As its sole author, I explicitly place this code in the public 5 * domain. Anyone may use it for any purpose (though I would 6 * appreciate credit where it is due). 7 * 8 * der Mouse 9 * 10 * mouse@rodents.montreal.qc.ca 11 * 7D C8 61 52 5D E7 2D 39 4E F1 31 3E E8 B3 27 4B 12 */ 13 /* 14 * resize_ffs: 15 * 16 * Resize a filesystem. Is capable of both growing and shrinking. 17 * 18 * Usage: resize_ffs filesystem newsize 19 * 20 * Example: resize_ffs /dev/rsd1e 29574 21 * 22 * newsize is in DEV_BSIZE units (ie, disk sectors, usually 512 bytes 23 * each). 24 * 25 * Note: this currently requires gcc to build, since it is written 26 * depending on gcc-specific features, notably nested function 27 * definitions (which in at least a few cases depend on the lexical 28 * scoping gcc provides, so they can't be trivially moved outside). 29 * 30 * It will not do anything useful with filesystems in other than 31 * host-native byte order. This really should be fixed (it's largely 32 * a historical accident; the original version of this program is 33 * older than bi-endian support in FFS). 34 * 35 * Many thanks go to John Kohl <jtk@NetBSD.org> for finding bugs: the 36 * one responsible for the "realloccgblk: can't find blk in cyl" 37 * problem and a more minor one which left fs_dsize wrong when 38 * shrinking. (These actually indicate bugs in fsck too - it should 39 * have caught and fixed them.) 40 * 41 */ 42 43 #include <sys/cdefs.h> 44 #include <stdio.h> 45 #include <errno.h> 46 #include <fcntl.h> 47 #include <stdlib.h> 48 #include <unistd.h> 49 #include <strings.h> 50 #include <err.h> 51 #include <sys/stat.h> 52 #include <sys/mman.h> 53 #include <sys/param.h> /* MAXFRAG */ 54 #include <ufs/ffs/fs.h> 55 #include <ufs/ufs/dir.h> 56 #include <ufs/ufs/dinode.h> 57 #include <ufs/ufs/ufs_bswap.h> /* ufs_rw32 */ 58 59 /* Suppress warnings about unused arguments */ 60 #if defined(__GNUC__) && \ 61 ( (__GNUC__ > 2) || \ 62 ( (__GNUC__ == 2) && \ 63 defined(__GNUC_MINOR__) && \ 64 (__GNUC_MINOR__ >= 7) ) ) 65 #define UNUSED_ARG(x) x __unused 66 #define INLINE inline 67 #else 68 #define UNUSED_ARG(x) x 69 #define INLINE /**/ 70 #endif 71 72 /* new size of filesystem, in sectors */ 73 static int newsize; 74 75 /* fd open onto disk device */ 76 static int fd; 77 78 /* must we break up big I/O operations - see checksmallio() */ 79 static int smallio; 80 81 /* size of a cg, in bytes, rounded up to a frag boundary */ 82 static int cgblksz; 83 84 /* possible superblock localtions */ 85 static int search[] = SBLOCKSEARCH; 86 /* location of the superblock */ 87 static off_t where; 88 89 /* Superblocks. */ 90 static struct fs *oldsb; /* before we started */ 91 static struct fs *newsb; /* copy to work with */ 92 /* Buffer to hold the above. Make sure it's aligned correctly. */ 93 static char sbbuf[2 * SBLOCKSIZE] __attribute__((__aligned__(__alignof__(struct fs)))); 94 95 /* a cg's worth of brand new squeaky-clean inodes */ 96 static struct ufs1_dinode *zinodes; 97 98 /* pointers to the in-core cgs, read off disk and possibly modified */ 99 static struct cg **cgs; 100 101 /* pointer to csum array - the stuff pointed to on-disk by fs_csaddr */ 102 static struct csum *csums; 103 104 /* per-cg flags, indexed by cg number */ 105 static unsigned char *cgflags; 106 #define CGF_DIRTY 0x01 /* needs to be written to disk */ 107 #define CGF_BLKMAPS 0x02 /* block bitmaps need rebuilding */ 108 #define CGF_INOMAPS 0x04 /* inode bitmaps need rebuilding */ 109 110 /* when shrinking, these two arrays record how we want blocks to move. */ 111 /* if blkmove[i] is j, the frag that started out as frag #i should end */ 112 /* up as frag #j. inomove[i]=j means, similarly, that the inode that */ 113 /* started out as inode i should end up as inode j. */ 114 static unsigned int *blkmove; 115 static unsigned int *inomove; 116 117 /* in-core copies of all inodes in the fs, indexed by inumber */ 118 static struct ufs1_dinode *inodes; 119 120 /* per-inode flags, indexed by inumber */ 121 static unsigned char *iflags; 122 #define IF_DIRTY 0x01 /* needs to be written to disk */ 123 #define IF_BDIRTY 0x02 /* like DIRTY, but is set on first inode in a 124 * block of inodes, and applies to the whole 125 * block. */ 126 127 /* Old FFS1 macros */ 128 #define cg_blktot(cgp, ns) \ 129 (cg_chkmagic(cgp, ns) ? \ 130 ((int32_t *)((u_int8_t *)(cgp) + ufs_rw32((cgp)->cg_old_btotoff, (ns)))) \ 131 : (((struct ocg *)(cgp))->cg_btot)) 132 #define cg_blks(fs, cgp, cylno, ns) \ 133 (cg_chkmagic(cgp, ns) ? \ 134 ((int16_t *)((u_int8_t *)(cgp) + ufs_rw32((cgp)->cg_old_boff, (ns))) + \ 135 (cylno) * (fs)->fs_old_nrpos) \ 136 : (((struct ocg *)(cgp))->cg_b[cylno])) 137 #define cbtocylno(fs, bno) \ 138 (fsbtodb(fs, bno) / (fs)->fs_old_spc) 139 #define cbtorpos(fs, bno) \ 140 ((fs)->fs_old_nrpos <= 1 ? 0 : \ 141 (fsbtodb(fs, bno) % (fs)->fs_old_spc / \ 142 (fs)->fs_old_nsect * (fs)->fs_old_trackskew + \ 143 fsbtodb(fs, bno) % (fs)->fs_old_spc % \ 144 (fs)->fs_old_nsect * (fs)->fs_old_interleave) %\ 145 (fs)->fs_old_nsect * (fs)->fs_old_nrpos / (fs)->fs_old_npsect) 146 #define dblksize(fs, dip, lbn) \ 147 (((lbn) >= NDADDR || (dip)->di_size >= lblktosize(fs, (lbn) + 1)) \ 148 ? (fs)->fs_bsize \ 149 : (fragroundup(fs, blkoff(fs, (dip)->di_size)))) 150 151 152 /* 153 * Number of disk sectors per block/fragment; assumes DEV_BSIZE byte 154 * sector size. 155 */ 156 #define NSPB(fs) ((fs)->fs_old_nspf << (fs)->fs_fragshift) 157 #define NSPF(fs) ((fs)->fs_old_nspf) 158 159 /* 160 * See if we need to break up large I/O operations. This should never 161 * be needed, but under at least one <version,platform> combination, 162 * large enough disk transfers to the raw device hang. So if we're 163 * talking to a character special device, play it safe; in this case, 164 * readat() and writeat() break everything up into pieces no larger 165 * than 8K, doing multiple syscalls for larger operations. 166 */ 167 static void 168 checksmallio(void) 169 { 170 struct stat stb; 171 172 fstat(fd, &stb); 173 smallio = ((stb.st_mode & S_IFMT) == S_IFCHR); 174 } 175 /* 176 * Read size bytes starting at blkno into buf. blkno is in DEV_BSIZE 177 * units, ie, after fsbtodb(); size is in bytes. 178 */ 179 static void 180 readat(off_t blkno, void *buf, int size) 181 { 182 /* Seek to the correct place. */ 183 if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0) 184 err(1, "lseek failed"); 185 186 /* See if we have to break up the transfer... */ 187 if (smallio) { 188 char *bp; /* pointer into buf */ 189 int left; /* bytes left to go */ 190 int n; /* number to do this time around */ 191 int rv; /* syscall return value */ 192 bp = buf; 193 left = size; 194 while (left > 0) { 195 n = (left > 8192) ? 8192 : left; 196 rv = read(fd, bp, n); 197 if (rv < 0) 198 err(1, "read failed"); 199 if (rv != n) 200 errx(1, "read: wanted %d, got %d", n, rv); 201 bp += n; 202 left -= n; 203 } 204 } else { 205 int rv; 206 rv = read(fd, buf, size); 207 if (rv < 0) 208 err(1, "read failed"); 209 if (rv != size) 210 errx(1, "read: wanted %d, got %d", size, rv); 211 } 212 } 213 /* 214 * Write size bytes from buf starting at blkno. blkno is in DEV_BSIZE 215 * units, ie, after fsbtodb(); size is in bytes. 216 */ 217 static void 218 writeat(off_t blkno, const void *buf, int size) 219 { 220 /* Seek to the correct place. */ 221 if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0) 222 err(1, "lseek failed"); 223 /* See if we have to break up the transfer... */ 224 if (smallio) { 225 const char *bp; /* pointer into buf */ 226 int left; /* bytes left to go */ 227 int n; /* number to do this time around */ 228 int rv; /* syscall return value */ 229 bp = buf; 230 left = size; 231 while (left > 0) { 232 n = (left > 8192) ? 8192 : left; 233 rv = write(fd, bp, n); 234 if (rv < 0) 235 err(1, "write failed"); 236 if (rv != n) 237 errx(1, "write: wanted %d, got %d", n, rv); 238 bp += n; 239 left -= n; 240 } 241 } else { 242 int rv; 243 rv = write(fd, buf, size); 244 if (rv < 0) 245 err(1, "write failed"); 246 if (rv != size) 247 errx(1, "write: wanted %d, got %d", size, rv); 248 } 249 } 250 /* 251 * Never-fail versions of malloc() and realloc(), and an allocation 252 * routine (which also never fails) for allocating memory that will 253 * never be freed until exit. 254 */ 255 256 /* 257 * Never-fail malloc. 258 */ 259 static void * 260 nfmalloc(size_t nb, const char *tag) 261 { 262 void *rv; 263 264 rv = malloc(nb); 265 if (rv) 266 return (rv); 267 err(1, "Can't allocate %lu bytes for %s", 268 (unsigned long int) nb, tag); 269 } 270 /* 271 * Never-fail realloc. 272 */ 273 static void * 274 nfrealloc(void *blk, size_t nb, const char *tag) 275 { 276 void *rv; 277 278 rv = realloc(blk, nb); 279 if (rv) 280 return (rv); 281 err(1, "Can't re-allocate %lu bytes for %s", 282 (unsigned long int) nb, tag); 283 } 284 /* 285 * Allocate memory that will never be freed or reallocated. Arguably 286 * this routine should handle small allocations by chopping up pages, 287 * but that's not worth the bother; it's not called more than a 288 * handful of times per run, and if the allocations are that small the 289 * waste in giving each one its own page is ignorable. 290 */ 291 static void * 292 alloconce(size_t nb, const char *tag) 293 { 294 void *rv; 295 296 rv = mmap(0, nb, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0); 297 if (rv != MAP_FAILED) 298 return (rv); 299 err(1, "Can't map %lu bytes for %s", 300 (unsigned long int) nb, tag); 301 } 302 /* 303 * Load the cgs and csums off disk. Also allocates the space to load 304 * them into and initializes the per-cg flags. 305 */ 306 static void 307 loadcgs(void) 308 { 309 int cg; 310 char *cgp; 311 312 cgblksz = roundup(oldsb->fs_cgsize, oldsb->fs_fsize); 313 cgs = nfmalloc(oldsb->fs_ncg * sizeof(struct cg *), "cg pointers"); 314 cgp = alloconce(oldsb->fs_ncg * cgblksz, "cgs"); 315 cgflags = nfmalloc(oldsb->fs_ncg, "cg flags"); 316 csums = nfmalloc(oldsb->fs_cssize, "cg summary"); 317 for (cg = 0; cg < oldsb->fs_ncg; cg++) { 318 cgs[cg] = (struct cg *) cgp; 319 readat(fsbtodb(oldsb, cgtod(oldsb, cg)), cgp, cgblksz); 320 cgflags[cg] = 0; 321 cgp += cgblksz; 322 } 323 readat(fsbtodb(oldsb, oldsb->fs_csaddr), csums, oldsb->fs_cssize); 324 } 325 /* 326 * Set n bits, starting with bit #base, in the bitmap pointed to by 327 * bitvec (which is assumed to be large enough to include bits base 328 * through base+n-1). 329 */ 330 static void 331 set_bits(unsigned char *bitvec, unsigned int base, unsigned int n) 332 { 333 if (n < 1) 334 return; /* nothing to do */ 335 if (base & 7) { /* partial byte at beginning */ 336 if (n <= 8 - (base & 7)) { /* entirely within one byte */ 337 bitvec[base >> 3] |= (~((~0U) << n)) << (base & 7); 338 return; 339 } 340 bitvec[base >> 3] |= (~0U) << (base & 7); 341 n -= 8 - (base & 7); 342 base = (base & ~7) + 8; 343 } 344 if (n >= 8) { /* do full bytes */ 345 memset(bitvec + (base >> 3), 0xff, n >> 3); 346 base += n & ~7; 347 n &= 7; 348 } 349 if (n) { /* partial byte at end */ 350 bitvec[base >> 3] |= ~((~0U) << n); 351 } 352 } 353 /* 354 * Clear n bits, starting with bit #base, in the bitmap pointed to by 355 * bitvec (which is assumed to be large enough to include bits base 356 * through base+n-1). Code parallels set_bits(). 357 */ 358 static void 359 clr_bits(unsigned char *bitvec, int base, int n) 360 { 361 if (n < 1) 362 return; 363 if (base & 7) { 364 if (n <= 8 - (base & 7)) { 365 bitvec[base >> 3] &= ~((~((~0U) << n)) << (base & 7)); 366 return; 367 } 368 bitvec[base >> 3] &= ~((~0U) << (base & 7)); 369 n -= 8 - (base & 7); 370 base = (base & ~7) + 8; 371 } 372 if (n >= 8) { 373 bzero(bitvec + (base >> 3), n >> 3); 374 base += n & ~7; 375 n &= 7; 376 } 377 if (n) { 378 bitvec[base >> 3] &= (~0U) << n; 379 } 380 } 381 /* 382 * Test whether bit #bit is set in the bitmap pointed to by bitvec. 383 */ 384 INLINE static int 385 bit_is_set(unsigned char *bitvec, int bit) 386 { 387 return (bitvec[bit >> 3] & (1 << (bit & 7))); 388 } 389 /* 390 * Test whether bit #bit is clear in the bitmap pointed to by bitvec. 391 */ 392 INLINE static int 393 bit_is_clr(unsigned char *bitvec, int bit) 394 { 395 return (!bit_is_set(bitvec, bit)); 396 } 397 /* 398 * Test whether a whole block of bits is set in a bitmap. This is 399 * designed for testing (aligned) disk blocks in a bit-per-frag 400 * bitmap; it has assumptions wired into it based on that, essentially 401 * that the entire block fits into a single byte. This returns true 402 * iff _all_ the bits are set; it is not just the complement of 403 * blk_is_clr on the same arguments (unless blkfrags==1). 404 */ 405 INLINE static int 406 blk_is_set(unsigned char *bitvec, int blkbase, int blkfrags) 407 { 408 unsigned int mask; 409 410 mask = (~((~0U) << blkfrags)) << (blkbase & 7); 411 return ((bitvec[blkbase >> 3] & mask) == mask); 412 } 413 /* 414 * Test whether a whole block of bits is clear in a bitmap. See 415 * blk_is_set (above) for assumptions. This returns true iff _all_ 416 * the bits are clear; it is not just the complement of blk_is_set on 417 * the same arguments (unless blkfrags==1). 418 */ 419 INLINE static int 420 blk_is_clr(unsigned char *bitvec, int blkbase, int blkfrags) 421 { 422 unsigned int mask; 423 424 mask = (~((~0U) << blkfrags)) << (blkbase & 7); 425 return ((bitvec[blkbase >> 3] & mask) == 0); 426 } 427 /* 428 * Initialize a new cg. Called when growing. Assumes memory has been 429 * allocated but not otherwise set up. This code sets the fields of 430 * the cg, initializes the bitmaps (and cluster summaries, if 431 * applicable), updates both per-cylinder summary info and the global 432 * summary info in newsb; it also writes out new inodes for the cg. 433 * 434 * This code knows it can never be called for cg 0, which makes it a 435 * bit simpler than it would otherwise be. 436 */ 437 static void 438 initcg(int cgn) 439 { 440 struct cg *cg; /* The in-core cg, of course */ 441 int base; /* Disk address of cg base */ 442 int dlow; /* Size of pre-cg data area */ 443 int dhigh; /* Offset of post-inode data area, from base */ 444 int dmax; /* Offset of end of post-inode data area */ 445 int i; /* Generic loop index */ 446 int n; /* Generic count */ 447 448 cg = cgs[cgn]; 449 /* Place the data areas */ 450 base = cgbase(newsb, cgn); 451 dlow = cgsblock(newsb, cgn) - base; 452 dhigh = cgdmin(newsb, cgn) - base; 453 dmax = newsb->fs_size - base; 454 if (dmax > newsb->fs_fpg) 455 dmax = newsb->fs_fpg; 456 /* 457 * Clear out the cg - assumes all-0-bytes is the correct way 458 * to initialize fields we don't otherwise touch, which is 459 * perhaps not the right thing to do, but it's what fsck and 460 * mkfs do. 461 */ 462 bzero(cg, newsb->fs_cgsize); 463 cg->cg_time = newsb->fs_time; 464 cg->cg_magic = CG_MAGIC; 465 cg->cg_cgx = cgn; 466 cg->cg_old_ncyl = newsb->fs_old_cpg; 467 /* fsck whines if the cg->cg_old_ncyl value in the last cg is fs_old_cpg 468 * instead of zero, when fs_old_cpg is the correct value. */ 469 /* XXX fix once fsck is fixed */ 470 if ((cgn == newsb->fs_ncg - 1) /* && (newsb->fs_old_ncyl % newsb->fs_old_cpg) */ ) { 471 cg->cg_old_ncyl = newsb->fs_old_ncyl % newsb->fs_old_cpg; 472 } 473 cg->cg_niblk = newsb->fs_ipg; 474 cg->cg_ndblk = dmax; 475 /* Set up the bitmap pointers. We have to be careful to lay out the 476 * cg _exactly_ the way mkfs and fsck do it, since fsck compares the 477 * _entire_ cg against a recomputed cg, and whines if there is any 478 * mismatch, including the bitmap offsets. */ 479 /* XXX update this comment when fsck is fixed */ 480 cg->cg_old_btotoff = &cg->cg_space[0] - (unsigned char *) cg; 481 cg->cg_old_boff = cg->cg_old_btotoff 482 + (newsb->fs_old_cpg * sizeof(int32_t)); 483 cg->cg_iusedoff = cg->cg_old_boff + 484 (newsb->fs_old_cpg * newsb->fs_old_nrpos * sizeof(int16_t)); 485 cg->cg_freeoff = cg->cg_iusedoff + howmany(newsb->fs_ipg, NBBY); 486 if (newsb->fs_contigsumsize > 0) { 487 cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag; 488 cg->cg_clustersumoff = cg->cg_freeoff + 489 howmany(newsb->fs_old_cpg * newsb->fs_old_spc / NSPF(newsb), 490 NBBY) - sizeof(int32_t); 491 cg->cg_clustersumoff = 492 roundup(cg->cg_clustersumoff, sizeof(int32_t)); 493 cg->cg_clusteroff = cg->cg_clustersumoff + 494 ((newsb->fs_contigsumsize + 1) * sizeof(int32_t)); 495 cg->cg_nextfreeoff = cg->cg_clusteroff + 496 howmany(newsb->fs_old_cpg * newsb->fs_old_spc / NSPB(newsb), 497 NBBY); 498 n = dlow / newsb->fs_frag; 499 if (n > 0) { 500 set_bits(cg_clustersfree(cg, 0), 0, n); 501 cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ? 502 newsb->fs_contigsumsize : n]++; 503 } 504 } else { 505 cg->cg_nextfreeoff = cg->cg_freeoff + 506 howmany(newsb->fs_old_cpg * newsb->fs_old_spc / NSPF(newsb), 507 NBBY); 508 } 509 /* Mark the data areas as free; everything else is marked busy by the 510 * bzero up at the top. */ 511 set_bits(cg_blksfree(cg, 0), 0, dlow); 512 set_bits(cg_blksfree(cg, 0), dhigh, dmax - dhigh); 513 /* Initialize summary info */ 514 cg->cg_cs.cs_ndir = 0; 515 cg->cg_cs.cs_nifree = newsb->fs_ipg; 516 cg->cg_cs.cs_nbfree = dlow / newsb->fs_frag; 517 cg->cg_cs.cs_nffree = 0; 518 519 /* This is the simplest way of doing this; we perhaps could compute 520 * the correct cg_blktot()[] and cg_blks()[] values other ways, but it 521 * would be complicated and hardly seems worth the effort. (The 522 * reason there isn't frag-at-beginning and frag-at-end code here, 523 * like the code below for the post-inode data area, is that the 524 * pre-sb data area always starts at 0, and thus is block-aligned, and 525 * always ends at the sb, which is block-aligned.) */ 526 for (i = 0; i < dlow; i += newsb->fs_frag) { 527 cg_blktot(cg, 0)[cbtocylno(newsb, i)]++; 528 cg_blks(newsb, cg, cbtocylno(newsb, i), 0)[cbtorpos(newsb, i)]++; 529 } 530 /* Deal with a partial block at the beginning of the post-inode area. 531 * I'm not convinced this can happen - I think the inodes are always 532 * block-aligned and always an integral number of blocks - but it's 533 * cheap to do the right thing just in case. */ 534 if (dhigh % newsb->fs_frag) { 535 n = newsb->fs_frag - (dhigh % newsb->fs_frag); 536 cg->cg_frsum[n]++; 537 cg->cg_cs.cs_nffree += n; 538 dhigh += n; 539 } 540 n = (dmax - dhigh) / newsb->fs_frag; 541 /* We have n full-size blocks in the post-inode data area. */ 542 if (n > 0) { 543 cg->cg_cs.cs_nbfree += n; 544 if (newsb->fs_contigsumsize > 0) { 545 i = dhigh / newsb->fs_frag; 546 set_bits(cg_clustersfree(cg, 0), i, n); 547 cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ? 548 newsb->fs_contigsumsize : n]++; 549 } 550 for (i = n; i > 0; i--) { 551 cg_blktot(cg, 0)[cbtocylno(newsb, dhigh)]++; 552 cg_blks(newsb, cg, 553 cbtocylno(newsb, dhigh), 0)[cbtorpos(newsb, 554 dhigh)]++; 555 dhigh += newsb->fs_frag; 556 } 557 } 558 /* Deal with any leftover frag at the end of the cg. */ 559 i = dmax - dhigh; 560 if (i) { 561 cg->cg_frsum[i]++; 562 cg->cg_cs.cs_nffree += i; 563 } 564 /* Update the csum info. */ 565 csums[cgn] = cg->cg_cs; 566 newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree; 567 newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree; 568 newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree; 569 /* Write out the cleared inodes. */ 570 writeat(fsbtodb(newsb, cgimin(newsb, cgn)), zinodes, 571 newsb->fs_ipg * sizeof(struct ufs1_dinode)); 572 /* Dirty the cg. */ 573 cgflags[cgn] |= CGF_DIRTY; 574 } 575 /* 576 * Find free space, at least nfrags consecutive frags of it. Pays no 577 * attention to block boundaries, but refuses to straddle cg 578 * boundaries, even if the disk blocks involved are in fact 579 * consecutive. Return value is the frag number of the first frag of 580 * the block, or -1 if no space was found. Uses newsb for sb values, 581 * and assumes the cgs[] structures correctly describe the area to be 582 * searched. 583 * 584 * XXX is there a bug lurking in the ignoring of block boundaries by 585 * the routine used by fragmove() in evict_data()? Can an end-of-file 586 * frag legally straddle a block boundary? If not, this should be 587 * cloned and fixed to stop at block boundaries for that use. The 588 * current one may still be needed for csum info motion, in case that 589 * takes up more than a whole block (is the csum info allowed to begin 590 * partway through a block and continue into the following block?). 591 * 592 * If we wrap off the end of the filesystem back to the beginning, we 593 * can end up searching the end of the filesystem twice. I ignore 594 * this inefficiency, since if that happens we're going to croak with 595 * a no-space error anyway, so it happens at most once. 596 */ 597 static int 598 find_freespace(unsigned int nfrags) 599 { 600 static int hand = 0; /* hand rotates through all frags in the fs */ 601 int cgsize; /* size of the cg hand currently points into */ 602 int cgn; /* number of cg hand currently points into */ 603 int fwc; /* frag-within-cg number of frag hand points 604 * to */ 605 int run; /* length of run of free frags seen so far */ 606 int secondpass; /* have we wrapped from end of fs to 607 * beginning? */ 608 unsigned char *bits; /* cg_blksfree()[] for cg hand points into */ 609 610 cgn = dtog(newsb, hand); 611 fwc = dtogd(newsb, hand); 612 secondpass = (hand == 0); 613 run = 0; 614 bits = cg_blksfree(cgs[cgn], 0); 615 cgsize = cgs[cgn]->cg_ndblk; 616 while (1) { 617 if (bit_is_set(bits, fwc)) { 618 run++; 619 if (run >= nfrags) 620 return (hand + 1 - run); 621 } else { 622 run = 0; 623 } 624 hand++; 625 fwc++; 626 if (fwc >= cgsize) { 627 fwc = 0; 628 cgn++; 629 if (cgn >= newsb->fs_ncg) { 630 hand = 0; 631 if (secondpass) 632 return (-1); 633 secondpass = 1; 634 cgn = 0; 635 } 636 bits = cg_blksfree(cgs[cgn], 0); 637 cgsize = cgs[cgn]->cg_ndblk; 638 run = 0; 639 } 640 } 641 } 642 /* 643 * Find a free block of disk space. Finds an entire block of frags, 644 * all of which are free. Return value is the frag number of the 645 * first frag of the block, or -1 if no space was found. Uses newsb 646 * for sb values, and assumes the cgs[] structures correctly describe 647 * the area to be searched. 648 * 649 * See find_freespace(), above, for remarks about hand wrapping around. 650 */ 651 static int 652 find_freeblock(void) 653 { 654 static int hand = 0; /* hand rotates through all frags in fs */ 655 int cgn; /* cg number of cg hand points into */ 656 int fwc; /* frag-within-cg number of frag hand points 657 * to */ 658 int cgsize; /* size of cg hand points into */ 659 int secondpass; /* have we wrapped from end to beginning? */ 660 unsigned char *bits; /* cg_blksfree()[] for cg hand points into */ 661 662 cgn = dtog(newsb, hand); 663 fwc = dtogd(newsb, hand); 664 secondpass = (hand == 0); 665 bits = cg_blksfree(cgs[cgn], 0); 666 cgsize = blknum(newsb, cgs[cgn]->cg_ndblk); 667 while (1) { 668 if (blk_is_set(bits, fwc, newsb->fs_frag)) 669 return (hand); 670 fwc += newsb->fs_frag; 671 hand += newsb->fs_frag; 672 if (fwc >= cgsize) { 673 fwc = 0; 674 cgn++; 675 if (cgn >= newsb->fs_ncg) { 676 hand = 0; 677 if (secondpass) 678 return (-1); 679 secondpass = 1; 680 cgn = 0; 681 } 682 bits = cg_blksfree(cgs[cgn], 0); 683 cgsize = blknum(newsb, cgs[cgn]->cg_ndblk); 684 } 685 } 686 } 687 /* 688 * Find a free inode, returning its inumber or -1 if none was found. 689 * Uses newsb for sb values, and assumes the cgs[] structures 690 * correctly describe the area to be searched. 691 * 692 * See find_freespace(), above, for remarks about hand wrapping around. 693 */ 694 static int 695 find_freeinode(void) 696 { 697 static int hand = 0; /* hand rotates through all inodes in fs */ 698 int cgn; /* cg number of cg hand points into */ 699 int iwc; /* inode-within-cg number of inode hand points 700 * to */ 701 int secondpass; /* have we wrapped from end to beginning? */ 702 unsigned char *bits; /* cg_inosused()[] for cg hand points into */ 703 704 cgn = hand / newsb->fs_ipg; 705 iwc = hand % newsb->fs_ipg; 706 secondpass = (hand == 0); 707 bits = cg_inosused(cgs[cgn], 0); 708 while (1) { 709 if (bit_is_clr(bits, iwc)) 710 return (hand); 711 hand++; 712 iwc++; 713 if (iwc >= newsb->fs_ipg) { 714 iwc = 0; 715 cgn++; 716 if (cgn >= newsb->fs_ncg) { 717 hand = 0; 718 if (secondpass) 719 return (-1); 720 secondpass = 1; 721 cgn = 0; 722 } 723 bits = cg_inosused(cgs[cgn], 0); 724 } 725 } 726 } 727 /* 728 * Mark a frag as free. Sets the frag's bit in the cg_blksfree bitmap 729 * for the appropriate cg, and marks the cg as dirty. 730 */ 731 static void 732 free_frag(int fno) 733 { 734 int cgn; 735 736 cgn = dtog(newsb, fno); 737 set_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1); 738 cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS; 739 } 740 /* 741 * Allocate a frag. Clears the frag's bit in the cg_blksfree bitmap 742 * for the appropriate cg, and marks the cg as dirty. 743 */ 744 static void 745 alloc_frag(int fno) 746 { 747 int cgn; 748 749 cgn = dtog(newsb, fno); 750 clr_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1); 751 cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS; 752 } 753 /* 754 * Fix up the csum array. If shrinking, this involves freeing zero or 755 * more frags; if growing, it involves allocating them, or if the 756 * frags being grown into aren't free, finding space elsewhere for the 757 * csum info. (If the number of occupied frags doesn't change, 758 * nothing happens here.) 759 */ 760 static void 761 csum_fixup(void) 762 { 763 int nold; /* # frags in old csum info */ 764 int ntot; /* # frags in new csum info */ 765 int nnew; /* ntot-nold */ 766 int newloc; /* new location for csum info, if necessary */ 767 int i; /* generic loop index */ 768 int j; /* generic loop index */ 769 int f; /* "from" frag number, if moving */ 770 int t; /* "to" frag number, if moving */ 771 int cgn; /* cg number, used when shrinking */ 772 773 ntot = howmany(newsb->fs_cssize, newsb->fs_fsize); 774 nold = howmany(oldsb->fs_cssize, newsb->fs_fsize); 775 nnew = ntot - nold; 776 /* First, if there's no change in frag counts, it's easy. */ 777 if (nnew == 0) 778 return; 779 /* Next, if we're shrinking, it's almost as easy. Just free up any 780 * frags in the old area we no longer need. */ 781 if (nnew < 0) { 782 for ((i = newsb->fs_csaddr + ntot - 1), (j = nnew); 783 j < 0; 784 i--, j++) { 785 free_frag(i); 786 } 787 return; 788 } 789 /* We must be growing. Check to see that the new csum area fits 790 * within the filesystem. I think this can never happen, since for 791 * the csum area to grow, we must be adding at least one cg, so the 792 * old csum area can't be this close to the end of the new filesystem. 793 * But it's a cheap check. */ 794 /* XXX what if csum info is at end of cg and grows into next cg, what 795 * if it spills over onto the next cg's backup superblock? Can this 796 * happen? */ 797 if (newsb->fs_csaddr + ntot <= newsb->fs_size) { 798 /* Okay, it fits - now, see if the space we want is free. */ 799 for ((i = newsb->fs_csaddr + nold), (j = nnew); 800 j > 0; 801 i++, j--) { 802 cgn = dtog(newsb, i); 803 if (bit_is_clr(cg_blksfree(cgs[cgn], 0), 804 dtogd(newsb, i))) 805 break; 806 } 807 if (j <= 0) { 808 /* Win win - all the frags we want are free. Allocate 809 * 'em and we're all done. */ 810 for ((i = newsb->fs_csaddr + ntot - nnew), (j = nnew); j > 0; i++, j--) { 811 alloc_frag(i); 812 } 813 return; 814 } 815 } 816 /* We have to move the csum info, sigh. Look for new space, free old 817 * space, and allocate new. Update fs_csaddr. We don't copy anything 818 * on disk at this point; the csum info will be written to the 819 * then-current fs_csaddr as part of the final flush. */ 820 newloc = find_freespace(ntot); 821 if (newloc < 0) { 822 printf("Sorry, no space available for new csums\n"); 823 exit(1); 824 } 825 for (i = 0, f = newsb->fs_csaddr, t = newloc; i < ntot; i++, f++, t++) { 826 if (i < nold) { 827 free_frag(f); 828 } 829 alloc_frag(t); 830 } 831 newsb->fs_csaddr = newloc; 832 } 833 /* 834 * Recompute newsb->fs_dsize. Just scans all cgs, adding the number of 835 * data blocks in that cg to the total. 836 */ 837 static void 838 recompute_fs_dsize(void) 839 { 840 int i; 841 842 newsb->fs_dsize = 0; 843 for (i = 0; i < newsb->fs_ncg; i++) { 844 int dlow; /* size of before-sb data area */ 845 int dhigh; /* offset of post-inode data area */ 846 int dmax; /* total size of cg */ 847 int base; /* base of cg, since cgsblock() etc add it in */ 848 base = cgbase(newsb, i); 849 dlow = cgsblock(newsb, i) - base; 850 dhigh = cgdmin(newsb, i) - base; 851 dmax = newsb->fs_size - base; 852 if (dmax > newsb->fs_fpg) 853 dmax = newsb->fs_fpg; 854 newsb->fs_dsize += dlow + dmax - dhigh; 855 } 856 /* Space in cg 0 before cgsblock is boot area, not free space! */ 857 newsb->fs_dsize -= cgsblock(newsb, 0) - cgbase(newsb, 0); 858 /* And of course the csum info takes up space. */ 859 newsb->fs_dsize -= howmany(newsb->fs_cssize, newsb->fs_fsize); 860 } 861 /* 862 * Return the current time. We call this and assign, rather than 863 * calling time() directly, as insulation against OSes where fs_time 864 * is not a time_t. 865 */ 866 static time_t 867 timestamp(void) 868 { 869 time_t t; 870 871 time(&t); 872 return (t); 873 } 874 /* 875 * Grow the filesystem. 876 */ 877 static void 878 grow(void) 879 { 880 int i; 881 882 /* Update the timestamp. */ 883 newsb->fs_time = timestamp(); 884 /* Allocate and clear the new-inode area, in case we add any cgs. */ 885 zinodes = alloconce(newsb->fs_ipg * sizeof(struct ufs1_dinode), 886 "zeroed inodes"); 887 bzero(zinodes, newsb->fs_ipg * sizeof(struct ufs1_dinode)); 888 /* Update the size. */ 889 newsb->fs_size = dbtofsb(newsb, newsize); 890 /* Did we actually not grow? (This can happen if newsize is less than 891 * a frag larger than the old size - unlikely, but no excuse to 892 * misbehave if it happens.) */ 893 if (newsb->fs_size == oldsb->fs_size) 894 return; 895 /* Check that the new last sector (frag, actually) is writable. Since 896 * it's at least one frag larger than it used to be, we know we aren't 897 * overwriting anything important by this. (The choice of sbbuf as 898 * what to write is irrelevant; it's just something handy that's known 899 * to be at least one frag in size.) */ 900 writeat(newsb->fs_size - 1, &sbbuf, newsb->fs_fsize); 901 /* Update fs_old_ncyl and fs_ncg. */ 902 newsb->fs_old_ncyl = (newsb->fs_size * NSPF(newsb)) / newsb->fs_old_spc; 903 newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg); 904 /* Does the last cg end before the end of its inode area? There is no 905 * reason why this couldn't be handled, but it would complicate a lot 906 * of code (in all filesystem code - fsck, kernel, etc) because of the 907 * potential partial inode area, and the gain in space would be 908 * minimal, at most the pre-sb data area. */ 909 if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) { 910 newsb->fs_ncg--; 911 newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg; 912 newsb->fs_size = (newsb->fs_old_ncyl * newsb->fs_old_spc) / NSPF(newsb); 913 printf("Warning: last cylinder group is too small;\n"); 914 printf(" dropping it. New size = %lu.\n", 915 (unsigned long int) fsbtodb(newsb, newsb->fs_size)); 916 } 917 /* Find out how big the csum area is, and realloc csums if bigger. */ 918 newsb->fs_cssize = fragroundup(newsb, 919 newsb->fs_ncg * sizeof(struct csum)); 920 if (newsb->fs_cssize > oldsb->fs_cssize) 921 csums = nfrealloc(csums, newsb->fs_cssize, "new cg summary"); 922 /* If we're adding any cgs, realloc structures and set up the new cgs. */ 923 if (newsb->fs_ncg > oldsb->fs_ncg) { 924 char *cgp; 925 cgs = nfrealloc(cgs, newsb->fs_ncg * sizeof(struct cg *), 926 "cg pointers"); 927 cgflags = nfrealloc(cgflags, newsb->fs_ncg, "cg flags"); 928 bzero(cgflags + oldsb->fs_ncg, newsb->fs_ncg - oldsb->fs_ncg); 929 cgp = alloconce((newsb->fs_ncg - oldsb->fs_ncg) * cgblksz, 930 "cgs"); 931 for (i = oldsb->fs_ncg; i < newsb->fs_ncg; i++) { 932 cgs[i] = (struct cg *) cgp; 933 initcg(i); 934 cgp += cgblksz; 935 } 936 cgs[oldsb->fs_ncg - 1]->cg_old_ncyl = oldsb->fs_old_cpg; 937 cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY; 938 } 939 /* If the old fs ended partway through a cg, we have to update the old 940 * last cg (though possibly not to a full cg!). */ 941 if (oldsb->fs_size % oldsb->fs_fpg) { 942 struct cg *cg; 943 int newcgsize; 944 int prevcgtop; 945 int oldcgsize; 946 cg = cgs[oldsb->fs_ncg - 1]; 947 cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY | CGF_BLKMAPS; 948 prevcgtop = oldsb->fs_fpg * (oldsb->fs_ncg - 1); 949 newcgsize = newsb->fs_size - prevcgtop; 950 if (newcgsize > newsb->fs_fpg) 951 newcgsize = newsb->fs_fpg; 952 oldcgsize = oldsb->fs_size % oldsb->fs_fpg; 953 set_bits(cg_blksfree(cg, 0), oldcgsize, newcgsize - oldcgsize); 954 cg->cg_old_ncyl = howmany(newcgsize * NSPF(newsb), newsb->fs_old_spc); 955 cg->cg_ndblk = newcgsize; 956 } 957 /* Fix up the csum info, if necessary. */ 958 csum_fixup(); 959 /* Make fs_dsize match the new reality. */ 960 recompute_fs_dsize(); 961 } 962 /* 963 * Call (*fn)() for each inode, passing the inode and its inumber. The 964 * number of cylinder groups is pased in, so this can be used to map 965 * over either the old or the new filesystem's set of inodes. 966 */ 967 static void 968 map_inodes(void (*fn) (struct ufs1_dinode * di, unsigned int, void *arg), int ncg, void *cbarg) { 969 int i; 970 int ni; 971 972 ni = oldsb->fs_ipg * ncg; 973 for (i = 0; i < ni; i++) 974 (*fn) (inodes + i, i, cbarg); 975 } 976 /* Values for the third argument to the map function for 977 * map_inode_data_blocks. MDB_DATA indicates the block is contains 978 * file data; MDB_INDIR_PRE and MDB_INDIR_POST indicate that it's an 979 * indirect block. The MDB_INDIR_PRE call is made before the indirect 980 * block pointers are followed and the pointed-to blocks scanned, 981 * MDB_INDIR_POST after. 982 */ 983 #define MDB_DATA 1 984 #define MDB_INDIR_PRE 2 985 #define MDB_INDIR_POST 3 986 987 typedef void (*mark_callback_t) (unsigned int blocknum, unsigned int nfrags, unsigned int blksize, int opcode); 988 989 /* Helper function - handles a data block. Calls the callback 990 * function and returns number of bytes occupied in file (actually, 991 * rounded up to a frag boundary). The name is historical. */ 992 static int 993 markblk(mark_callback_t fn, struct ufs1_dinode * di, int bn, off_t o) 994 { 995 int sz; 996 int nb; 997 if (o >= di->di_size) 998 return (0); 999 sz = dblksize(newsb, di, lblkno(newsb, o)); 1000 nb = (sz > di->di_size - o) ? di->di_size - o : sz; 1001 if (bn) 1002 (*fn) (bn, numfrags(newsb, sz), nb, MDB_DATA); 1003 return (sz); 1004 } 1005 /* Helper function - handles an indirect block. Makes the 1006 * MDB_INDIR_PRE callback for the indirect block, loops over the 1007 * pointers and recurses, and makes the MDB_INDIR_POST callback. 1008 * Returns the number of bytes occupied in file, as does markblk(). 1009 * For the sake of update_for_data_move(), we read the indirect block 1010 * _after_ making the _PRE callback. The name is historical. */ 1011 static int 1012 markiblk(mark_callback_t fn, struct ufs1_dinode * di, int bn, off_t o, int lev) 1013 { 1014 int i; 1015 int j; 1016 int tot; 1017 static int32_t indirblk1[howmany(MAXBSIZE, sizeof(int32_t))]; 1018 static int32_t indirblk2[howmany(MAXBSIZE, sizeof(int32_t))]; 1019 static int32_t indirblk3[howmany(MAXBSIZE, sizeof(int32_t))]; 1020 static int32_t *indirblks[3] = { 1021 &indirblk1[0], &indirblk2[0], &indirblk3[0] 1022 }; 1023 if (lev < 0) 1024 return (markblk(fn, di, bn, o)); 1025 if (bn == 0) { 1026 for (i = newsb->fs_bsize; 1027 lev >= 0; 1028 i *= NINDIR(newsb), lev--); 1029 return (i); 1030 } 1031 (*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_PRE); 1032 readat(fsbtodb(newsb, bn), indirblks[lev], newsb->fs_bsize); 1033 tot = 0; 1034 for (i = 0; i < NINDIR(newsb); i++) { 1035 j = markiblk(fn, di, indirblks[lev][i], o, lev - 1); 1036 if (j == 0) 1037 break; 1038 o += j; 1039 tot += j; 1040 } 1041 (*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_POST); 1042 return (tot); 1043 } 1044 1045 1046 /* 1047 * Call (*fn)() for each data block for an inode. This routine assumes 1048 * the inode is known to be of a type that has data blocks (file, 1049 * directory, or non-fast symlink). The called function is: 1050 * 1051 * (*fn)(unsigned int blkno, unsigned int nf, unsigned int nb, int op) 1052 * 1053 * where blkno is the frag number, nf is the number of frags starting 1054 * at blkno (always <= fs_frag), nb is the number of bytes that belong 1055 * to the file (usually nf*fs_frag, often less for the last block/frag 1056 * of a file). 1057 */ 1058 static void 1059 map_inode_data_blocks(struct ufs1_dinode * di, mark_callback_t fn) 1060 { 1061 off_t o; /* offset within inode */ 1062 int inc; /* increment for o - maybe should be off_t? */ 1063 int b; /* index within di_db[] and di_ib[] arrays */ 1064 1065 /* Scan the direct blocks... */ 1066 o = 0; 1067 for (b = 0; b < NDADDR; b++) { 1068 inc = markblk(fn, di, di->di_db[b], o); 1069 if (inc == 0) 1070 break; 1071 o += inc; 1072 } 1073 /* ...and the indirect blocks. */ 1074 if (inc) { 1075 for (b = 0; b < NIADDR; b++) { 1076 inc = markiblk(fn, di, di->di_ib[b], o, b); 1077 if (inc == 0) 1078 return; 1079 o += inc; 1080 } 1081 } 1082 } 1083 1084 static void 1085 dblk_callback(struct ufs1_dinode * di, unsigned int inum, void *arg) 1086 { 1087 mark_callback_t fn; 1088 fn = (mark_callback_t) arg; 1089 switch (di->di_mode & IFMT) { 1090 case IFLNK: 1091 if (di->di_size > newsb->fs_maxsymlinklen) { 1092 case IFDIR: 1093 case IFREG: 1094 map_inode_data_blocks(di, fn); 1095 } 1096 break; 1097 } 1098 } 1099 /* 1100 * Make a callback call, a la map_inode_data_blocks, for all data 1101 * blocks in the entire fs. This is used only once, in 1102 * update_for_data_move, but it's out at top level because the complex 1103 * downward-funarg nesting that would otherwise result seems to give 1104 * gcc gastric distress. 1105 */ 1106 static void 1107 map_data_blocks(mark_callback_t fn, int ncg) 1108 { 1109 map_inodes(&dblk_callback, ncg, (void *) fn); 1110 } 1111 /* 1112 * Initialize the blkmove array. 1113 */ 1114 static void 1115 blkmove_init(void) 1116 { 1117 int i; 1118 1119 blkmove = alloconce(oldsb->fs_size * sizeof(*blkmove), "blkmove"); 1120 for (i = 0; i < oldsb->fs_size; i++) 1121 blkmove[i] = i; 1122 } 1123 /* 1124 * Load the inodes off disk. Allocates the structures and initializes 1125 * them - the inodes from disk, the flags to zero. 1126 */ 1127 static void 1128 loadinodes(void) 1129 { 1130 int cg; 1131 struct ufs1_dinode *iptr; 1132 1133 inodes = alloconce(oldsb->fs_ncg * oldsb->fs_ipg * sizeof(struct ufs1_dinode), "inodes"); 1134 iflags = alloconce(oldsb->fs_ncg * oldsb->fs_ipg, "inode flags"); 1135 bzero(iflags, oldsb->fs_ncg * oldsb->fs_ipg); 1136 iptr = inodes; 1137 for (cg = 0; cg < oldsb->fs_ncg; cg++) { 1138 readat(fsbtodb(oldsb, cgimin(oldsb, cg)), iptr, 1139 oldsb->fs_ipg * sizeof(struct ufs1_dinode)); 1140 iptr += oldsb->fs_ipg; 1141 } 1142 } 1143 /* 1144 * Report a filesystem-too-full problem. 1145 */ 1146 static void 1147 toofull(void) 1148 { 1149 printf("Sorry, would run out of data blocks\n"); 1150 exit(1); 1151 } 1152 /* 1153 * Record a desire to move "n" frags from "from" to "to". 1154 */ 1155 static void 1156 mark_move(unsigned int from, unsigned int to, unsigned int n) 1157 { 1158 for (; n > 0; n--) 1159 blkmove[from++] = to++; 1160 } 1161 /* Helper function - evict n frags, starting with start (cg-relative). 1162 * The free bitmap is scanned, unallocated frags are ignored, and 1163 * each block of consecutive allocated frags is moved as a unit. 1164 */ 1165 static void 1166 fragmove(struct cg * cg, int base, unsigned int start, unsigned int n) 1167 { 1168 int i; 1169 int run; 1170 run = 0; 1171 for (i = 0; i <= n; i++) { 1172 if ((i < n) && bit_is_clr(cg_blksfree(cg, 0), start + i)) { 1173 run++; 1174 } else { 1175 if (run > 0) { 1176 int off; 1177 off = find_freespace(run); 1178 if (off < 0) 1179 toofull(); 1180 mark_move(base + start + i - run, off, run); 1181 set_bits(cg_blksfree(cg, 0), start + i - run, 1182 run); 1183 clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0), 1184 dtogd(oldsb, off), run); 1185 } 1186 run = 0; 1187 } 1188 } 1189 } 1190 /* 1191 * Evict all data blocks from the given cg, starting at minfrag (based 1192 * at the beginning of the cg), for length nfrag. The eviction is 1193 * assumed to be entirely data-area; this should not be called with a 1194 * range overlapping the metadata structures in the cg. It also 1195 * assumes minfrag points into the given cg; it will misbehave if this 1196 * is not true. 1197 * 1198 * See the comment header on find_freespace() for one possible bug 1199 * lurking here. 1200 */ 1201 static void 1202 evict_data(struct cg * cg, unsigned int minfrag, unsigned int nfrag) 1203 { 1204 int base; /* base of cg (in frags from beginning of fs) */ 1205 1206 1207 base = cgbase(oldsb, cg->cg_cgx); 1208 /* Does the boundary fall in the middle of a block? To avoid breaking 1209 * between frags allocated as consecutive, we always evict the whole 1210 * block in this case, though one could argue we should check to see 1211 * if the frag before or after the break is unallocated. */ 1212 if (minfrag % oldsb->fs_frag) { 1213 int n; 1214 n = minfrag % oldsb->fs_frag; 1215 minfrag -= n; 1216 nfrag += n; 1217 } 1218 /* Do whole blocks. If a block is wholly free, skip it; if wholly 1219 * allocated, move it in toto. If neither, call fragmove() to move 1220 * the frags to new locations. */ 1221 while (nfrag >= oldsb->fs_frag) { 1222 if (!blk_is_set(cg_blksfree(cg, 0), minfrag, oldsb->fs_frag)) { 1223 if (blk_is_clr(cg_blksfree(cg, 0), minfrag, 1224 oldsb->fs_frag)) { 1225 int off; 1226 off = find_freeblock(); 1227 if (off < 0) 1228 toofull(); 1229 mark_move(base + minfrag, off, oldsb->fs_frag); 1230 set_bits(cg_blksfree(cg, 0), minfrag, 1231 oldsb->fs_frag); 1232 clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0), 1233 dtogd(oldsb, off), oldsb->fs_frag); 1234 } else { 1235 fragmove(cg, base, minfrag, oldsb->fs_frag); 1236 } 1237 } 1238 minfrag += oldsb->fs_frag; 1239 nfrag -= oldsb->fs_frag; 1240 } 1241 /* Clean up any sub-block amount left over. */ 1242 if (nfrag) { 1243 fragmove(cg, base, minfrag, nfrag); 1244 } 1245 } 1246 /* 1247 * Move all data blocks according to blkmove. We have to be careful, 1248 * because we may be updating indirect blocks that will themselves be 1249 * getting moved, or inode int32_t arrays that point to indirect 1250 * blocks that will be moved. We call this before 1251 * update_for_data_move, and update_for_data_move does inodes first, 1252 * then indirect blocks in preorder, so as to make sure that the 1253 * filesystem is self-consistent at all points, for better crash 1254 * tolerance. (We can get away with this only because all the writes 1255 * done by perform_data_move() are writing into space that's not used 1256 * by the old filesystem.) If we crash, some things may point to the 1257 * old data and some to the new, but both copies are the same. The 1258 * only wrong things should be csum info and free bitmaps, which fsck 1259 * is entirely capable of cleaning up. 1260 * 1261 * Since blkmove_init() initializes all blocks to move to their current 1262 * locations, we can have two blocks marked as wanting to move to the 1263 * same location, but only two and only when one of them is the one 1264 * that was already there. So if blkmove[i]==i, we ignore that entry 1265 * entirely - for unallocated blocks, we don't want it (and may be 1266 * putting something else there), and for allocated blocks, we don't 1267 * want to copy it anywhere. 1268 */ 1269 static void 1270 perform_data_move(void) 1271 { 1272 int i; 1273 int run; 1274 int maxrun; 1275 char buf[65536]; 1276 1277 maxrun = sizeof(buf) / newsb->fs_fsize; 1278 run = 0; 1279 for (i = 0; i < oldsb->fs_size; i++) { 1280 if ((blkmove[i] == i) || 1281 (run >= maxrun) || 1282 ((run > 0) && 1283 (blkmove[i] != blkmove[i - 1] + 1))) { 1284 if (run > 0) { 1285 readat(fsbtodb(oldsb, i - run), &buf[0], 1286 run << oldsb->fs_fshift); 1287 writeat(fsbtodb(oldsb, blkmove[i - run]), 1288 &buf[0], run << oldsb->fs_fshift); 1289 } 1290 run = 0; 1291 } 1292 if (blkmove[i] != i) 1293 run++; 1294 } 1295 if (run > 0) { 1296 readat(fsbtodb(oldsb, i - run), &buf[0], 1297 run << oldsb->fs_fshift); 1298 writeat(fsbtodb(oldsb, blkmove[i - run]), &buf[0], 1299 run << oldsb->fs_fshift); 1300 } 1301 } 1302 /* 1303 * This modifies an array of int32_t, according to blkmove. This is 1304 * used to update inode block arrays and indirect blocks to point to 1305 * the new locations of data blocks. 1306 * 1307 * Return value is the number of int32_ts that needed updating; in 1308 * particular, the return value is zero iff nothing was modified. 1309 */ 1310 static int 1311 movemap_blocks(int32_t * vec, int n) 1312 { 1313 int rv; 1314 1315 rv = 0; 1316 for (; n > 0; n--, vec++) { 1317 if (blkmove[*vec] != *vec) { 1318 *vec = blkmove[*vec]; 1319 rv++; 1320 } 1321 } 1322 return (rv); 1323 } 1324 static void 1325 moveblocks_callback(struct ufs1_dinode * di, unsigned int inum, void *arg) 1326 { 1327 switch (di->di_mode & IFMT) { 1328 case IFLNK: 1329 if (di->di_size > oldsb->fs_maxsymlinklen) { 1330 case IFDIR: 1331 case IFREG: 1332 /* don't || these two calls; we need their 1333 * side-effects */ 1334 if (movemap_blocks(&di->di_db[0], NDADDR)) { 1335 iflags[inum] |= IF_DIRTY; 1336 } 1337 if (movemap_blocks(&di->di_ib[0], NIADDR)) { 1338 iflags[inum] |= IF_DIRTY; 1339 } 1340 } 1341 break; 1342 } 1343 } 1344 1345 static void 1346 moveindir_callback(unsigned int off, unsigned int nfrag, unsigned int nbytes, int kind) 1347 { 1348 if (kind == MDB_INDIR_PRE) { 1349 int32_t blk[howmany(MAXBSIZE, sizeof(int32_t))]; 1350 readat(fsbtodb(oldsb, off), &blk[0], oldsb->fs_bsize); 1351 if (movemap_blocks(&blk[0], NINDIR(oldsb))) { 1352 writeat(fsbtodb(oldsb, off), &blk[0], oldsb->fs_bsize); 1353 } 1354 } 1355 } 1356 /* 1357 * Update all inode data arrays and indirect blocks to point to the new 1358 * locations of data blocks. See the comment header on 1359 * perform_data_move for some ordering considerations. 1360 */ 1361 static void 1362 update_for_data_move(void) 1363 { 1364 map_inodes(&moveblocks_callback, oldsb->fs_ncg, NULL); 1365 map_data_blocks(&moveindir_callback, oldsb->fs_ncg); 1366 } 1367 /* 1368 * Initialize the inomove array. 1369 */ 1370 static void 1371 inomove_init(void) 1372 { 1373 int i; 1374 1375 inomove = alloconce(oldsb->fs_ipg * oldsb->fs_ncg * sizeof(*inomove), 1376 "inomove"); 1377 for (i = (oldsb->fs_ipg * oldsb->fs_ncg) - 1; i >= 0; i--) 1378 inomove[i] = i; 1379 } 1380 /* 1381 * Flush all dirtied inodes to disk. Scans the inode flags array; for 1382 * each dirty inode, it sets the BDIRTY bit on the first inode in the 1383 * block containing the dirty inode. Then it scans by blocks, and for 1384 * each marked block, writes it. 1385 */ 1386 static void 1387 flush_inodes(void) 1388 { 1389 int i; 1390 int ni; 1391 int m; 1392 1393 ni = newsb->fs_ipg * newsb->fs_ncg; 1394 m = INOPB(newsb) - 1; 1395 for (i = 0; i < ni; i++) { 1396 if (iflags[i] & IF_DIRTY) { 1397 iflags[i & ~m] |= IF_BDIRTY; 1398 } 1399 } 1400 m++; 1401 for (i = 0; i < ni; i += m) { 1402 if (iflags[i] & IF_BDIRTY) { 1403 writeat(fsbtodb(newsb, ino_to_fsba(newsb, i)), 1404 inodes + i, newsb->fs_bsize); 1405 } 1406 } 1407 } 1408 /* 1409 * Evict all inodes from the specified cg. shrink() already checked 1410 * that there were enough free inodes, so the no-free-inodes check is 1411 * a can't-happen. If it does trip, the filesystem should be in good 1412 * enough shape for fsck to fix; see the comment on perform_data_move 1413 * for the considerations in question. 1414 */ 1415 static void 1416 evict_inodes(struct cg * cg) 1417 { 1418 int inum; 1419 int i; 1420 int fi; 1421 1422 inum = newsb->fs_ipg * cg->cg_cgx; 1423 for (i = 0; i < newsb->fs_ipg; i++, inum++) { 1424 if (inodes[inum].di_mode != 0) { 1425 fi = find_freeinode(); 1426 if (fi < 0) { 1427 printf("Sorry, inodes evaporated - " 1428 "filesystem probably needs fsck\n"); 1429 exit(1); 1430 } 1431 inomove[inum] = fi; 1432 clr_bits(cg_inosused(cg, 0), i, 1); 1433 set_bits(cg_inosused(cgs[ino_to_cg(newsb, fi)], 0), 1434 fi % newsb->fs_ipg, 1); 1435 } 1436 } 1437 } 1438 /* 1439 * Move inodes from old locations to new. Does not actually write 1440 * anything to disk; just copies in-core and sets dirty bits. 1441 * 1442 * We have to be careful here for reasons similar to those mentioned in 1443 * the comment header on perform_data_move, above: for the sake of 1444 * crash tolerance, we want to make sure everything is present at both 1445 * old and new locations before we update pointers. So we call this 1446 * first, then flush_inodes() to get them out on disk, then update 1447 * directories to match. 1448 */ 1449 static void 1450 perform_inode_move(void) 1451 { 1452 int i; 1453 int ni; 1454 1455 ni = oldsb->fs_ipg * oldsb->fs_ncg; 1456 for (i = 0; i < ni; i++) { 1457 if (inomove[i] != i) { 1458 inodes[inomove[i]] = inodes[i]; 1459 iflags[inomove[i]] = iflags[i] | IF_DIRTY; 1460 } 1461 } 1462 } 1463 /* 1464 * Update the directory contained in the nb bytes at buf, to point to 1465 * inodes' new locations. 1466 */ 1467 static int 1468 update_dirents(char *buf, int nb) 1469 { 1470 int rv; 1471 #define d ((struct direct *)buf) 1472 1473 rv = 0; 1474 while (nb > 0) { 1475 if (inomove[d->d_ino] != d->d_ino) { 1476 rv++; 1477 d->d_ino = inomove[d->d_ino]; 1478 } 1479 nb -= d->d_reclen; 1480 buf += d->d_reclen; 1481 } 1482 return (rv); 1483 #undef d 1484 } 1485 /* 1486 * Callback function for map_inode_data_blocks, for updating a 1487 * directory to point to new inode locations. 1488 */ 1489 static void 1490 update_dir_data(unsigned int bn, unsigned int size, unsigned int nb, int kind) 1491 { 1492 if (kind == MDB_DATA) { 1493 union { 1494 struct direct d; 1495 char ch[MAXBSIZE]; 1496 } buf; 1497 readat(fsbtodb(oldsb, bn), &buf, size << oldsb->fs_fshift); 1498 if (update_dirents((char *) &buf, nb)) { 1499 writeat(fsbtodb(oldsb, bn), &buf, 1500 size << oldsb->fs_fshift); 1501 } 1502 } 1503 } 1504 static void 1505 dirmove_callback(struct ufs1_dinode * di, unsigned int inum, void *arg) 1506 { 1507 switch (di->di_mode & IFMT) { 1508 case IFDIR: 1509 map_inode_data_blocks(di, &update_dir_data); 1510 break; 1511 } 1512 } 1513 /* 1514 * Update directory entries to point to new inode locations. 1515 */ 1516 static void 1517 update_for_inode_move(void) 1518 { 1519 map_inodes(&dirmove_callback, newsb->fs_ncg, NULL); 1520 } 1521 /* 1522 * Shrink the filesystem. 1523 */ 1524 static void 1525 shrink(void) 1526 { 1527 int i; 1528 1529 /* Load the inodes off disk - we'll need 'em. */ 1530 loadinodes(); 1531 /* Update the timestamp. */ 1532 newsb->fs_time = timestamp(); 1533 /* Update the size figures. */ 1534 newsb->fs_size = dbtofsb(newsb, newsize); 1535 newsb->fs_old_ncyl = (newsb->fs_size * NSPF(newsb)) / newsb->fs_old_spc; 1536 newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg); 1537 /* Does the (new) last cg end before the end of its inode area? See 1538 * the similar code in grow() for more on this. */ 1539 if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) { 1540 newsb->fs_ncg--; 1541 newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg; 1542 newsb->fs_size = (newsb->fs_old_ncyl * newsb->fs_old_spc) / NSPF(newsb); 1543 printf("Warning: last cylinder group is too small;\n"); 1544 printf(" dropping it. New size = %lu.\n", 1545 (unsigned long int) fsbtodb(newsb, newsb->fs_size)); 1546 } 1547 /* Let's make sure we're not being shrunk into oblivion. */ 1548 if (newsb->fs_ncg < 1) { 1549 printf("Size too small - filesystem would have no cylinders\n"); 1550 exit(1); 1551 } 1552 /* Initialize for block motion. */ 1553 blkmove_init(); 1554 /* Update csum size, then fix up for the new size */ 1555 newsb->fs_cssize = fragroundup(newsb, 1556 newsb->fs_ncg * sizeof(struct csum)); 1557 csum_fixup(); 1558 /* Evict data from any cgs being wholly eliminated */ 1559 for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++) { 1560 int base; 1561 int dlow; 1562 int dhigh; 1563 int dmax; 1564 base = cgbase(oldsb, i); 1565 dlow = cgsblock(oldsb, i) - base; 1566 dhigh = cgdmin(oldsb, i) - base; 1567 dmax = oldsb->fs_size - base; 1568 if (dmax > cgs[i]->cg_ndblk) 1569 dmax = cgs[i]->cg_ndblk; 1570 evict_data(cgs[i], 0, dlow); 1571 evict_data(cgs[i], dhigh, dmax - dhigh); 1572 newsb->fs_cstotal.cs_ndir -= cgs[i]->cg_cs.cs_ndir; 1573 newsb->fs_cstotal.cs_nifree -= cgs[i]->cg_cs.cs_nifree; 1574 newsb->fs_cstotal.cs_nffree -= cgs[i]->cg_cs.cs_nffree; 1575 newsb->fs_cstotal.cs_nbfree -= cgs[i]->cg_cs.cs_nbfree; 1576 } 1577 /* Update the new last cg. */ 1578 cgs[newsb->fs_ncg - 1]->cg_ndblk = newsb->fs_size - 1579 ((newsb->fs_ncg - 1) * newsb->fs_fpg); 1580 /* Is the new last cg partial? If so, evict any data from the part 1581 * being shrunken away. */ 1582 if (newsb->fs_size % newsb->fs_fpg) { 1583 struct cg *cg; 1584 int oldcgsize; 1585 int newcgsize; 1586 cg = cgs[newsb->fs_ncg - 1]; 1587 newcgsize = newsb->fs_size % newsb->fs_fpg; 1588 oldcgsize = oldsb->fs_size - ((newsb->fs_ncg - 1) & oldsb->fs_fpg); 1589 if (oldcgsize > oldsb->fs_fpg) 1590 oldcgsize = oldsb->fs_fpg; 1591 evict_data(cg, newcgsize, oldcgsize - newcgsize); 1592 clr_bits(cg_blksfree(cg, 0), newcgsize, oldcgsize - newcgsize); 1593 } 1594 /* Find out whether we would run out of inodes. (Note we haven't 1595 * actually done anything to the filesystem yet; all those evict_data 1596 * calls just update blkmove.) */ 1597 { 1598 int slop; 1599 slop = 0; 1600 for (i = 0; i < newsb->fs_ncg; i++) 1601 slop += cgs[i]->cg_cs.cs_nifree; 1602 for (; i < oldsb->fs_ncg; i++) 1603 slop -= oldsb->fs_ipg - cgs[i]->cg_cs.cs_nifree; 1604 if (slop < 0) { 1605 printf("Sorry, would run out of inodes\n"); 1606 exit(1); 1607 } 1608 } 1609 /* Copy data, then update pointers to data. See the comment header on 1610 * perform_data_move for ordering considerations. */ 1611 perform_data_move(); 1612 update_for_data_move(); 1613 /* Now do inodes. Initialize, evict, move, update - see the comment 1614 * header on perform_inode_move. */ 1615 inomove_init(); 1616 for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++) 1617 evict_inodes(cgs[i]); 1618 perform_inode_move(); 1619 flush_inodes(); 1620 update_for_inode_move(); 1621 /* Recompute all the bitmaps; most of them probably need it anyway, 1622 * the rest are just paranoia and not wanting to have to bother 1623 * keeping track of exactly which ones require it. */ 1624 for (i = 0; i < newsb->fs_ncg; i++) 1625 cgflags[i] |= CGF_DIRTY | CGF_BLKMAPS | CGF_INOMAPS; 1626 /* Update the cg_old_ncyl value for the last cylinder. The condition is 1627 * commented out because fsck whines if not - see the similar 1628 * condition in grow() for more. */ 1629 /* XXX fix once fsck is fixed */ 1630 /* if (newsb->fs_old_ncyl % newsb->fs_old_cpg) XXX */ 1631 /*XXXJTK*/ 1632 cgs[newsb->fs_ncg - 1]->cg_old_ncyl = 1633 newsb->fs_old_ncyl % newsb->fs_old_cpg; 1634 /* Make fs_dsize match the new reality. */ 1635 recompute_fs_dsize(); 1636 } 1637 /* 1638 * Recompute the block totals, block cluster summaries, and rotational 1639 * position summaries, for a given cg (specified by number), based on 1640 * its free-frag bitmap (cg_blksfree()[]). 1641 */ 1642 static void 1643 rescan_blkmaps(int cgn) 1644 { 1645 struct cg *cg; 1646 int f; 1647 int b; 1648 int blkfree; 1649 int blkrun; 1650 int fragrun; 1651 int fwb; 1652 1653 cg = cgs[cgn]; 1654 /* Subtract off the current totals from the sb's summary info */ 1655 newsb->fs_cstotal.cs_nffree -= cg->cg_cs.cs_nffree; 1656 newsb->fs_cstotal.cs_nbfree -= cg->cg_cs.cs_nbfree; 1657 /* Clear counters and bitmaps. */ 1658 cg->cg_cs.cs_nffree = 0; 1659 cg->cg_cs.cs_nbfree = 0; 1660 bzero(&cg->cg_frsum[0], MAXFRAG * sizeof(cg->cg_frsum[0])); 1661 bzero(&cg_blktot(cg, 0)[0], 1662 newsb->fs_old_cpg * sizeof(cg_blktot(cg, 0)[0])); 1663 bzero(&cg_blks(newsb, cg, 0, 0)[0], 1664 newsb->fs_old_cpg * newsb->fs_old_nrpos * 1665 sizeof(cg_blks(newsb, cg, 0, 0)[0])); 1666 if (newsb->fs_contigsumsize > 0) { 1667 cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag; 1668 bzero(&cg_clustersum(cg, 0)[1], 1669 newsb->fs_contigsumsize * 1670 sizeof(cg_clustersum(cg, 0)[1])); 1671 bzero(&cg_clustersfree(cg, 0)[0], 1672 howmany((newsb->fs_old_cpg * newsb->fs_old_spc) / NSPB(newsb), 1673 NBBY)); 1674 } 1675 /* Scan the free-frag bitmap. Runs of free frags are kept track of 1676 * with fragrun, and recorded into cg_frsum[] and cg_cs.cs_nffree; on 1677 * each block boundary, entire free blocks are recorded as well. */ 1678 blkfree = 1; 1679 blkrun = 0; 1680 fragrun = 0; 1681 f = 0; 1682 b = 0; 1683 fwb = 0; 1684 while (f < cg->cg_ndblk) { 1685 if (bit_is_set(cg_blksfree(cg, 0), f)) { 1686 fragrun++; 1687 } else { 1688 blkfree = 0; 1689 if (fragrun > 0) { 1690 cg->cg_frsum[fragrun]++; 1691 cg->cg_cs.cs_nffree += fragrun; 1692 } 1693 fragrun = 0; 1694 } 1695 f++; 1696 fwb++; 1697 if (fwb >= newsb->fs_frag) { 1698 if (blkfree) { 1699 cg->cg_cs.cs_nbfree++; 1700 if (newsb->fs_contigsumsize > 0) 1701 set_bits(cg_clustersfree(cg, 0), b, 1); 1702 cg_blktot(cg, 0)[cbtocylno(newsb, f - newsb->fs_frag)]++; 1703 cg_blks(newsb, cg, 1704 cbtocylno(newsb, f - newsb->fs_frag), 1705 0)[cbtorpos(newsb, f - newsb->fs_frag)]++; 1706 blkrun++; 1707 } else { 1708 if (fragrun > 0) { 1709 cg->cg_frsum[fragrun]++; 1710 cg->cg_cs.cs_nffree += fragrun; 1711 } 1712 if (newsb->fs_contigsumsize > 0) { 1713 if (blkrun > 0) { 1714 cg_clustersum(cg, 0)[(blkrun > newsb->fs_contigsumsize) ? newsb->fs_contigsumsize : blkrun]++; 1715 } 1716 } 1717 blkrun = 0; 1718 } 1719 fwb = 0; 1720 b++; 1721 blkfree = 1; 1722 fragrun = 0; 1723 } 1724 } 1725 if (fragrun > 0) { 1726 cg->cg_frsum[fragrun]++; 1727 cg->cg_cs.cs_nffree += fragrun; 1728 } 1729 if ((blkrun > 0) && (newsb->fs_contigsumsize > 0)) { 1730 cg_clustersum(cg, 0)[(blkrun > newsb->fs_contigsumsize) ? 1731 newsb->fs_contigsumsize : blkrun]++; 1732 } 1733 /* 1734 * Put the updated summary info back into csums, and add it 1735 * back into the sb's summary info. Then mark the cg dirty. 1736 */ 1737 csums[cgn] = cg->cg_cs; 1738 newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree; 1739 newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree; 1740 cgflags[cgn] |= CGF_DIRTY; 1741 } 1742 /* 1743 * Recompute the cg_inosused()[] bitmap, and the cs_nifree and cs_ndir 1744 * values, for a cg, based on the in-core inodes for that cg. 1745 */ 1746 static void 1747 rescan_inomaps(int cgn) 1748 { 1749 struct cg *cg; 1750 int inum; 1751 int iwc; 1752 1753 cg = cgs[cgn]; 1754 newsb->fs_cstotal.cs_ndir -= cg->cg_cs.cs_ndir; 1755 newsb->fs_cstotal.cs_nifree -= cg->cg_cs.cs_nifree; 1756 cg->cg_cs.cs_ndir = 0; 1757 cg->cg_cs.cs_nifree = 0; 1758 bzero(&cg_inosused(cg, 0)[0], howmany(newsb->fs_ipg, NBBY)); 1759 inum = cgn * newsb->fs_ipg; 1760 if (cgn == 0) { 1761 set_bits(cg_inosused(cg, 0), 0, 2); 1762 iwc = 2; 1763 inum += 2; 1764 } else { 1765 iwc = 0; 1766 } 1767 for (; iwc < newsb->fs_ipg; iwc++, inum++) { 1768 switch (inodes[inum].di_mode & IFMT) { 1769 case 0: 1770 cg->cg_cs.cs_nifree++; 1771 break; 1772 case IFDIR: 1773 cg->cg_cs.cs_ndir++; 1774 /* fall through */ 1775 default: 1776 set_bits(cg_inosused(cg, 0), iwc, 1); 1777 break; 1778 } 1779 } 1780 csums[cgn] = cg->cg_cs; 1781 newsb->fs_cstotal.cs_ndir += cg->cg_cs.cs_ndir; 1782 newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree; 1783 cgflags[cgn] |= CGF_DIRTY; 1784 } 1785 /* 1786 * Flush cgs to disk, recomputing anything they're marked as needing. 1787 */ 1788 static void 1789 flush_cgs(void) 1790 { 1791 int i; 1792 1793 for (i = 0; i < newsb->fs_ncg; i++) { 1794 if (cgflags[i] & CGF_BLKMAPS) { 1795 rescan_blkmaps(i); 1796 } 1797 if (cgflags[i] & CGF_INOMAPS) { 1798 rescan_inomaps(i); 1799 } 1800 if (cgflags[i] & CGF_DIRTY) { 1801 cgs[i]->cg_rotor = 0; 1802 cgs[i]->cg_frotor = 0; 1803 cgs[i]->cg_irotor = 0; 1804 writeat(fsbtodb(newsb, cgtod(newsb, i)), cgs[i], 1805 cgblksz); 1806 } 1807 } 1808 writeat(fsbtodb(newsb, newsb->fs_csaddr), csums, newsb->fs_cssize); 1809 } 1810 /* 1811 * Write the superblock, both to the main superblock and to each cg's 1812 * alternative superblock. 1813 */ 1814 static void 1815 write_sbs(void) 1816 { 1817 int i; 1818 1819 writeat(where / DEV_BSIZE, newsb, SBLOCKSIZE); 1820 for (i = 0; i < newsb->fs_ncg; i++) { 1821 writeat(fsbtodb(newsb, cgsblock(newsb, i)), newsb, SBLOCKSIZE); 1822 } 1823 } 1824 /* 1825 * main(). 1826 */ 1827 int main(int, char **); 1828 int 1829 main(int ac, char **av) 1830 { 1831 size_t i; 1832 if (ac != 3) { 1833 fprintf(stderr, "usage: %s filesystem new-size\n", 1834 getprogname()); 1835 exit(1); 1836 } 1837 fd = open(av[1], O_RDWR, 0); 1838 if (fd < 0) 1839 err(1, "Cannot open `%s'", av[1]); 1840 checksmallio(); 1841 newsize = atoi(av[2]); 1842 oldsb = (struct fs *) & sbbuf; 1843 newsb = (struct fs *) (SBLOCKSIZE + (char *) &sbbuf); 1844 for (where = search[i = 0]; search[i] != -1; where = search[++i]) { 1845 readat(where / DEV_BSIZE, oldsb, SBLOCKSIZE); 1846 if (oldsb->fs_magic == FS_UFS1_MAGIC) 1847 break; 1848 if (where == SBLOCK_UFS2) 1849 continue; 1850 if (oldsb->fs_old_flags & FS_FLAGS_UPDATED) 1851 err(1, "Cannot resize ffsv2 format suberblock!"); 1852 } 1853 if (where == (off_t)-1) 1854 errx(1, "Bad magic number"); 1855 oldsb->fs_qbmask = ~(int64_t) oldsb->fs_bmask; 1856 oldsb->fs_qfmask = ~(int64_t) oldsb->fs_fmask; 1857 if (oldsb->fs_ipg % INOPB(oldsb)) { 1858 printf("ipg[%d] %% INOPB[%d] != 0\n", (int) oldsb->fs_ipg, 1859 (int) INOPB(oldsb)); 1860 exit(1); 1861 } 1862 /* The superblock is bigger than struct fs (there are trailing tables, 1863 * of non-fixed size); make sure we copy the whole thing. SBLOCKSIZE may 1864 * be an over-estimate, but we do this just once, so being generous is 1865 * cheap. */ 1866 bcopy(oldsb, newsb, SBLOCKSIZE); 1867 loadcgs(); 1868 if (newsize > fsbtodb(oldsb, oldsb->fs_size)) { 1869 grow(); 1870 } else if (newsize < fsbtodb(oldsb, oldsb->fs_size)) { 1871 shrink(); 1872 } 1873 flush_cgs(); 1874 write_sbs(); 1875 exit(0); 1876 } 1877