1 /* $NetBSD: resize_ffs.c,v 1.44 2015/04/06 22:44:04 jmcneill Exp $ */ 2 /* From sources sent on February 17, 2003 */ 3 /*- 4 * As its sole author, I explicitly place this code in the public 5 * domain. Anyone may use it for any purpose (though I would 6 * appreciate credit where it is due). 7 * 8 * der Mouse 9 * 10 * mouse@rodents.montreal.qc.ca 11 * 7D C8 61 52 5D E7 2D 39 4E F1 31 3E E8 B3 27 4B 12 */ 13 /* 14 * resize_ffs: 15 * 16 * Resize a file system. Is capable of both growing and shrinking. 17 * 18 * Usage: resize_ffs [-s newsize] [-y] file_system 19 * 20 * Example: resize_ffs -s 29574 /dev/rsd1e 21 * 22 * newsize is in DEV_BSIZE units (ie, disk sectors, usually 512 bytes 23 * each). 24 * 25 * Note: this currently requires gcc to build, since it is written 26 * depending on gcc-specific features, notably nested function 27 * definitions (which in at least a few cases depend on the lexical 28 * scoping gcc provides, so they can't be trivially moved outside). 29 * 30 * Many thanks go to John Kohl <jtk@NetBSD.org> for finding bugs: the 31 * one responsible for the "realloccgblk: can't find blk in cyl" 32 * problem and a more minor one which left fs_dsize wrong when 33 * shrinking. (These actually indicate bugs in fsck too - it should 34 * have caught and fixed them.) 35 * 36 */ 37 38 #include <sys/cdefs.h> 39 __RCSID("$NetBSD: resize_ffs.c,v 1.44 2015/04/06 22:44:04 jmcneill Exp $"); 40 41 #include <sys/disk.h> 42 #include <sys/disklabel.h> 43 #include <sys/dkio.h> 44 #include <sys/ioctl.h> 45 #include <sys/stat.h> 46 #include <sys/mman.h> 47 #include <sys/param.h> /* MAXFRAG */ 48 #include <ufs/ffs/fs.h> 49 #include <ufs/ffs/ffs_extern.h> 50 #include <ufs/ufs/dir.h> 51 #include <ufs/ufs/dinode.h> 52 #include <ufs/ufs/ufs_bswap.h> /* ufs_rw32 */ 53 54 #include <err.h> 55 #include <errno.h> 56 #include <fcntl.h> 57 #include <stdio.h> 58 #include <stdlib.h> 59 #include <strings.h> 60 #include <unistd.h> 61 62 #include "progress.h" 63 64 /* new size of file system, in sectors */ 65 static int64_t newsize; 66 67 /* fd open onto disk device or file */ 68 static int fd; 69 70 /* disk device or file path */ 71 char *special; 72 73 /* must we break up big I/O operations - see checksmallio() */ 74 static int smallio; 75 76 /* size of a cg, in bytes, rounded up to a frag boundary */ 77 static int cgblksz; 78 79 /* possible superblock localtions */ 80 static int search[] = SBLOCKSEARCH; 81 /* location of the superblock */ 82 static off_t where; 83 84 /* Superblocks. */ 85 static struct fs *oldsb; /* before we started */ 86 static struct fs *newsb; /* copy to work with */ 87 /* Buffer to hold the above. Make sure it's aligned correctly. */ 88 static char sbbuf[2 * SBLOCKSIZE] 89 __attribute__((__aligned__(__alignof__(struct fs)))); 90 91 union dinode { 92 struct ufs1_dinode dp1; 93 struct ufs2_dinode dp2; 94 }; 95 #define DIP(dp, field) \ 96 ((is_ufs2) ? \ 97 (dp)->dp2.field : (dp)->dp1.field) 98 99 #define DIP_ASSIGN(dp, field, value) \ 100 do { \ 101 if (is_ufs2) \ 102 (dp)->dp2.field = (value); \ 103 else \ 104 (dp)->dp1.field = (value); \ 105 } while (0) 106 107 /* a cg's worth of brand new squeaky-clean inodes */ 108 static struct ufs1_dinode *zinodes; 109 110 /* pointers to the in-core cgs, read off disk and possibly modified */ 111 static struct cg **cgs; 112 113 /* pointer to csum array - the stuff pointed to on-disk by fs_csaddr */ 114 static struct csum *csums; 115 116 /* per-cg flags, indexed by cg number */ 117 static unsigned char *cgflags; 118 #define CGF_DIRTY 0x01 /* needs to be written to disk */ 119 #define CGF_BLKMAPS 0x02 /* block bitmaps need rebuilding */ 120 #define CGF_INOMAPS 0x04 /* inode bitmaps need rebuilding */ 121 122 /* when shrinking, these two arrays record how we want blocks to move. */ 123 /* if blkmove[i] is j, the frag that started out as frag #i should end */ 124 /* up as frag #j. inomove[i]=j means, similarly, that the inode that */ 125 /* started out as inode i should end up as inode j. */ 126 static unsigned int *blkmove; 127 static unsigned int *inomove; 128 129 /* in-core copies of all inodes in the fs, indexed by inumber */ 130 union dinode *inodes; 131 132 void *ibuf; /* ptr to fs block-sized buffer for reading/writing inodes */ 133 134 /* byteswapped inodes */ 135 union dinode *sinodes; 136 137 /* per-inode flags, indexed by inumber */ 138 static unsigned char *iflags; 139 #define IF_DIRTY 0x01 /* needs to be written to disk */ 140 #define IF_BDIRTY 0x02 /* like DIRTY, but is set on first inode in a 141 * block of inodes, and applies to the whole 142 * block. */ 143 144 /* resize_ffs works directly on dinodes, adapt blksize() */ 145 #define dblksize(fs, dip, lbn, filesize) \ 146 (((lbn) >= UFS_NDADDR || (uint64_t)(filesize) >= ffs_lblktosize(fs, (lbn) + 1)) \ 147 ? (fs)->fs_bsize \ 148 : (ffs_fragroundup(fs, ffs_blkoff(fs, (filesize))))) 149 150 151 /* 152 * Number of disk sectors per block/fragment 153 */ 154 #define NSPB(fs) (FFS_FSBTODB((fs),1) << (fs)->fs_fragshift) 155 #define NSPF(fs) (FFS_FSBTODB((fs),1)) 156 157 /* global flags */ 158 int is_ufs2 = 0; 159 int needswap = 0; 160 int verbose = 0; 161 int progress = 0; 162 163 static void usage(void) __dead; 164 165 /* 166 * See if we need to break up large I/O operations. This should never 167 * be needed, but under at least one <version,platform> combination, 168 * large enough disk transfers to the raw device hang. So if we're 169 * talking to a character special device, play it safe; in this case, 170 * readat() and writeat() break everything up into pieces no larger 171 * than 8K, doing multiple syscalls for larger operations. 172 */ 173 static void 174 checksmallio(void) 175 { 176 struct stat stb; 177 178 fstat(fd, &stb); 179 smallio = ((stb.st_mode & S_IFMT) == S_IFCHR); 180 } 181 182 static int 183 isplainfile(void) 184 { 185 struct stat stb; 186 187 fstat(fd, &stb); 188 return S_ISREG(stb.st_mode); 189 } 190 /* 191 * Read size bytes starting at blkno into buf. blkno is in DEV_BSIZE 192 * units, ie, after FFS_FSBTODB(); size is in bytes. 193 */ 194 static void 195 readat(off_t blkno, void *buf, int size) 196 { 197 /* Seek to the correct place. */ 198 if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0) 199 err(EXIT_FAILURE, "lseek failed"); 200 201 /* See if we have to break up the transfer... */ 202 if (smallio) { 203 char *bp; /* pointer into buf */ 204 int left; /* bytes left to go */ 205 int n; /* number to do this time around */ 206 int rv; /* syscall return value */ 207 bp = buf; 208 left = size; 209 while (left > 0) { 210 n = (left > 8192) ? 8192 : left; 211 rv = read(fd, bp, n); 212 if (rv < 0) 213 err(EXIT_FAILURE, "read failed"); 214 if (rv != n) 215 errx(EXIT_FAILURE, 216 "read: wanted %d, got %d", n, rv); 217 bp += n; 218 left -= n; 219 } 220 } else { 221 int rv; 222 rv = read(fd, buf, size); 223 if (rv < 0) 224 err(EXIT_FAILURE, "read failed"); 225 if (rv != size) 226 errx(EXIT_FAILURE, "read: wanted %d, got %d", 227 size, rv); 228 } 229 } 230 /* 231 * Write size bytes from buf starting at blkno. blkno is in DEV_BSIZE 232 * units, ie, after FFS_FSBTODB(); size is in bytes. 233 */ 234 static void 235 writeat(off_t blkno, const void *buf, int size) 236 { 237 /* Seek to the correct place. */ 238 if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0) 239 err(EXIT_FAILURE, "lseek failed"); 240 /* See if we have to break up the transfer... */ 241 if (smallio) { 242 const char *bp; /* pointer into buf */ 243 int left; /* bytes left to go */ 244 int n; /* number to do this time around */ 245 int rv; /* syscall return value */ 246 bp = buf; 247 left = size; 248 while (left > 0) { 249 n = (left > 8192) ? 8192 : left; 250 rv = write(fd, bp, n); 251 if (rv < 0) 252 err(EXIT_FAILURE, "write failed"); 253 if (rv != n) 254 errx(EXIT_FAILURE, 255 "write: wanted %d, got %d", n, rv); 256 bp += n; 257 left -= n; 258 } 259 } else { 260 int rv; 261 rv = write(fd, buf, size); 262 if (rv < 0) 263 err(EXIT_FAILURE, "write failed"); 264 if (rv != size) 265 errx(EXIT_FAILURE, 266 "write: wanted %d, got %d", size, rv); 267 } 268 } 269 /* 270 * Never-fail versions of malloc() and realloc(), and an allocation 271 * routine (which also never fails) for allocating memory that will 272 * never be freed until exit. 273 */ 274 275 /* 276 * Never-fail malloc. 277 */ 278 static void * 279 nfmalloc(size_t nb, const char *tag) 280 { 281 void *rv; 282 283 rv = malloc(nb); 284 if (rv) 285 return (rv); 286 err(EXIT_FAILURE, "Can't allocate %lu bytes for %s", 287 (unsigned long int) nb, tag); 288 } 289 /* 290 * Never-fail realloc. 291 */ 292 static void * 293 nfrealloc(void *blk, size_t nb, const char *tag) 294 { 295 void *rv; 296 297 rv = realloc(blk, nb); 298 if (rv) 299 return (rv); 300 err(EXIT_FAILURE, "Can't re-allocate %lu bytes for %s", 301 (unsigned long int) nb, tag); 302 } 303 /* 304 * Allocate memory that will never be freed or reallocated. Arguably 305 * this routine should handle small allocations by chopping up pages, 306 * but that's not worth the bother; it's not called more than a 307 * handful of times per run, and if the allocations are that small the 308 * waste in giving each one its own page is ignorable. 309 */ 310 static void * 311 alloconce(size_t nb, const char *tag) 312 { 313 void *rv; 314 315 rv = mmap(0, nb, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0); 316 if (rv != MAP_FAILED) 317 return (rv); 318 err(EXIT_FAILURE, "Can't map %lu bytes for %s", 319 (unsigned long int) nb, tag); 320 } 321 /* 322 * Load the cgs and csums off disk. Also allocates the space to load 323 * them into and initializes the per-cg flags. 324 */ 325 static void 326 loadcgs(void) 327 { 328 int cg; 329 char *cgp; 330 331 cgblksz = roundup(oldsb->fs_cgsize, oldsb->fs_fsize); 332 cgs = nfmalloc(oldsb->fs_ncg * sizeof(*cgs), "cg pointers"); 333 cgp = alloconce(oldsb->fs_ncg * cgblksz, "cgs"); 334 cgflags = nfmalloc(oldsb->fs_ncg, "cg flags"); 335 csums = nfmalloc(oldsb->fs_cssize, "cg summary"); 336 for (cg = 0; cg < oldsb->fs_ncg; cg++) { 337 cgs[cg] = (struct cg *) cgp; 338 readat(FFS_FSBTODB(oldsb, cgtod(oldsb, cg)), cgp, cgblksz); 339 if (needswap) 340 ffs_cg_swap(cgs[cg],cgs[cg],oldsb); 341 cgflags[cg] = 0; 342 cgp += cgblksz; 343 } 344 readat(FFS_FSBTODB(oldsb, oldsb->fs_csaddr), csums, oldsb->fs_cssize); 345 if (needswap) 346 ffs_csum_swap(csums,csums,oldsb->fs_cssize); 347 } 348 /* 349 * Set n bits, starting with bit #base, in the bitmap pointed to by 350 * bitvec (which is assumed to be large enough to include bits base 351 * through base+n-1). 352 */ 353 static void 354 set_bits(unsigned char *bitvec, unsigned int base, unsigned int n) 355 { 356 if (n < 1) 357 return; /* nothing to do */ 358 if (base & 7) { /* partial byte at beginning */ 359 if (n <= 8 - (base & 7)) { /* entirely within one byte */ 360 bitvec[base >> 3] |= (~((~0U) << n)) << (base & 7); 361 return; 362 } 363 bitvec[base >> 3] |= (~0U) << (base & 7); 364 n -= 8 - (base & 7); 365 base = (base & ~7) + 8; 366 } 367 if (n >= 8) { /* do full bytes */ 368 memset(bitvec + (base >> 3), 0xff, n >> 3); 369 base += n & ~7; 370 n &= 7; 371 } 372 if (n) { /* partial byte at end */ 373 bitvec[base >> 3] |= ~((~0U) << n); 374 } 375 } 376 /* 377 * Clear n bits, starting with bit #base, in the bitmap pointed to by 378 * bitvec (which is assumed to be large enough to include bits base 379 * through base+n-1). Code parallels set_bits(). 380 */ 381 static void 382 clr_bits(unsigned char *bitvec, int base, int n) 383 { 384 if (n < 1) 385 return; 386 if (base & 7) { 387 if (n <= 8 - (base & 7)) { 388 bitvec[base >> 3] &= ~((~((~0U) << n)) << (base & 7)); 389 return; 390 } 391 bitvec[base >> 3] &= ~((~0U) << (base & 7)); 392 n -= 8 - (base & 7); 393 base = (base & ~7) + 8; 394 } 395 if (n >= 8) { 396 memset(bitvec + (base >> 3), 0, n >> 3); 397 base += n & ~7; 398 n &= 7; 399 } 400 if (n) { 401 bitvec[base >> 3] &= (~0U) << n; 402 } 403 } 404 /* 405 * Test whether bit #bit is set in the bitmap pointed to by bitvec. 406 */ 407 static int 408 bit_is_set(unsigned char *bitvec, int bit) 409 { 410 return (bitvec[bit >> 3] & (1 << (bit & 7))); 411 } 412 /* 413 * Test whether bit #bit is clear in the bitmap pointed to by bitvec. 414 */ 415 static int 416 bit_is_clr(unsigned char *bitvec, int bit) 417 { 418 return (!bit_is_set(bitvec, bit)); 419 } 420 /* 421 * Test whether a whole block of bits is set in a bitmap. This is 422 * designed for testing (aligned) disk blocks in a bit-per-frag 423 * bitmap; it has assumptions wired into it based on that, essentially 424 * that the entire block fits into a single byte. This returns true 425 * iff _all_ the bits are set; it is not just the complement of 426 * blk_is_clr on the same arguments (unless blkfrags==1). 427 */ 428 static int 429 blk_is_set(unsigned char *bitvec, int blkbase, int blkfrags) 430 { 431 unsigned int mask; 432 433 mask = (~((~0U) << blkfrags)) << (blkbase & 7); 434 return ((bitvec[blkbase >> 3] & mask) == mask); 435 } 436 /* 437 * Test whether a whole block of bits is clear in a bitmap. See 438 * blk_is_set (above) for assumptions. This returns true iff _all_ 439 * the bits are clear; it is not just the complement of blk_is_set on 440 * the same arguments (unless blkfrags==1). 441 */ 442 static int 443 blk_is_clr(unsigned char *bitvec, int blkbase, int blkfrags) 444 { 445 unsigned int mask; 446 447 mask = (~((~0U) << blkfrags)) << (blkbase & 7); 448 return ((bitvec[blkbase >> 3] & mask) == 0); 449 } 450 /* 451 * Initialize a new cg. Called when growing. Assumes memory has been 452 * allocated but not otherwise set up. This code sets the fields of 453 * the cg, initializes the bitmaps (and cluster summaries, if 454 * applicable), updates both per-cylinder summary info and the global 455 * summary info in newsb; it also writes out new inodes for the cg. 456 * 457 * This code knows it can never be called for cg 0, which makes it a 458 * bit simpler than it would otherwise be. 459 */ 460 static void 461 initcg(int cgn) 462 { 463 struct cg *cg; /* The in-core cg, of course */ 464 int base; /* Disk address of cg base */ 465 int dlow; /* Size of pre-cg data area */ 466 int dhigh; /* Offset of post-inode data area, from base */ 467 int dmax; /* Offset of end of post-inode data area */ 468 int i; /* Generic loop index */ 469 int n; /* Generic count */ 470 int start; /* start of cg maps */ 471 472 cg = cgs[cgn]; 473 /* Place the data areas */ 474 base = cgbase(newsb, cgn); 475 dlow = cgsblock(newsb, cgn) - base; 476 dhigh = cgdmin(newsb, cgn) - base; 477 dmax = newsb->fs_size - base; 478 if (dmax > newsb->fs_fpg) 479 dmax = newsb->fs_fpg; 480 start = &cg->cg_space[0] - (unsigned char *) cg; 481 /* 482 * Clear out the cg - assumes all-0-bytes is the correct way 483 * to initialize fields we don't otherwise touch, which is 484 * perhaps not the right thing to do, but it's what fsck and 485 * mkfs do. 486 */ 487 memset(cg, 0, newsb->fs_cgsize); 488 if (newsb->fs_old_flags & FS_FLAGS_UPDATED) 489 cg->cg_time = newsb->fs_time; 490 cg->cg_magic = CG_MAGIC; 491 cg->cg_cgx = cgn; 492 cg->cg_niblk = newsb->fs_ipg; 493 cg->cg_ndblk = dmax; 494 495 if (is_ufs2) { 496 cg->cg_time = newsb->fs_time; 497 cg->cg_initediblk = newsb->fs_ipg < 2 * FFS_INOPB(newsb) ? 498 newsb->fs_ipg : 2 * FFS_INOPB(newsb); 499 cg->cg_iusedoff = start; 500 } else { 501 cg->cg_old_time = newsb->fs_time; 502 cg->cg_old_niblk = cg->cg_niblk; 503 cg->cg_niblk = 0; 504 cg->cg_initediblk = 0; 505 506 507 cg->cg_old_ncyl = newsb->fs_old_cpg; 508 /* Update the cg_old_ncyl value for the last cylinder. */ 509 if (cgn == newsb->fs_ncg - 1) { 510 if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) 511 cg->cg_old_ncyl = newsb->fs_old_ncyl % 512 newsb->fs_old_cpg; 513 } 514 515 /* Set up the bitmap pointers. We have to be careful 516 * to lay out the cg _exactly_ the way mkfs and fsck 517 * do it, since fsck compares the _entire_ cg against 518 * a recomputed cg, and whines if there is any 519 * mismatch, including the bitmap offsets. */ 520 /* XXX update this comment when fsck is fixed */ 521 cg->cg_old_btotoff = start; 522 cg->cg_old_boff = cg->cg_old_btotoff 523 + (newsb->fs_old_cpg * sizeof(int32_t)); 524 cg->cg_iusedoff = cg->cg_old_boff + 525 (newsb->fs_old_cpg * newsb->fs_old_nrpos * sizeof(int16_t)); 526 } 527 cg->cg_freeoff = cg->cg_iusedoff + howmany(newsb->fs_ipg, NBBY); 528 if (newsb->fs_contigsumsize > 0) { 529 cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag; 530 cg->cg_clustersumoff = cg->cg_freeoff + 531 howmany(newsb->fs_fpg, NBBY) - sizeof(int32_t); 532 cg->cg_clustersumoff = 533 roundup(cg->cg_clustersumoff, sizeof(int32_t)); 534 cg->cg_clusteroff = cg->cg_clustersumoff + 535 ((newsb->fs_contigsumsize + 1) * sizeof(int32_t)); 536 cg->cg_nextfreeoff = cg->cg_clusteroff + 537 howmany(ffs_fragstoblks(newsb,newsb->fs_fpg), NBBY); 538 n = dlow / newsb->fs_frag; 539 if (n > 0) { 540 set_bits(cg_clustersfree(cg, 0), 0, n); 541 cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ? 542 newsb->fs_contigsumsize : n]++; 543 } 544 } else { 545 cg->cg_nextfreeoff = cg->cg_freeoff + 546 howmany(newsb->fs_fpg, NBBY); 547 } 548 /* Mark the data areas as free; everything else is marked busy by the 549 * memset() up at the top. */ 550 set_bits(cg_blksfree(cg, 0), 0, dlow); 551 set_bits(cg_blksfree(cg, 0), dhigh, dmax - dhigh); 552 /* Initialize summary info */ 553 cg->cg_cs.cs_ndir = 0; 554 cg->cg_cs.cs_nifree = newsb->fs_ipg; 555 cg->cg_cs.cs_nbfree = dlow / newsb->fs_frag; 556 cg->cg_cs.cs_nffree = 0; 557 558 /* This is the simplest way of doing this; we perhaps could 559 * compute the correct cg_blktot()[] and cg_blks()[] values 560 * other ways, but it would be complicated and hardly seems 561 * worth the effort. (The reason there isn't 562 * frag-at-beginning and frag-at-end code here, like the code 563 * below for the post-inode data area, is that the pre-sb data 564 * area always starts at 0, and thus is block-aligned, and 565 * always ends at the sb, which is block-aligned.) */ 566 if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) 567 for (i = 0; i < dlow; i += newsb->fs_frag) { 568 old_cg_blktot(cg, 0)[old_cbtocylno(newsb, i)]++; 569 old_cg_blks(newsb, cg, 570 old_cbtocylno(newsb, i), 571 0)[old_cbtorpos(newsb, i)]++; 572 } 573 574 /* Deal with a partial block at the beginning of the post-inode area. 575 * I'm not convinced this can happen - I think the inodes are always 576 * block-aligned and always an integral number of blocks - but it's 577 * cheap to do the right thing just in case. */ 578 if (dhigh % newsb->fs_frag) { 579 n = newsb->fs_frag - (dhigh % newsb->fs_frag); 580 cg->cg_frsum[n]++; 581 cg->cg_cs.cs_nffree += n; 582 dhigh += n; 583 } 584 n = (dmax - dhigh) / newsb->fs_frag; 585 /* We have n full-size blocks in the post-inode data area. */ 586 if (n > 0) { 587 cg->cg_cs.cs_nbfree += n; 588 if (newsb->fs_contigsumsize > 0) { 589 i = dhigh / newsb->fs_frag; 590 set_bits(cg_clustersfree(cg, 0), i, n); 591 cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ? 592 newsb->fs_contigsumsize : n]++; 593 } 594 if (is_ufs2 == 0) 595 for (i = n; i > 0; i--) { 596 old_cg_blktot(cg, 0)[old_cbtocylno(newsb, 597 dhigh)]++; 598 old_cg_blks(newsb, cg, 599 old_cbtocylno(newsb, dhigh), 600 0)[old_cbtorpos(newsb, 601 dhigh)]++; 602 dhigh += newsb->fs_frag; 603 } 604 } 605 if (is_ufs2 == 0) { 606 /* Deal with any leftover frag at the end of the cg. */ 607 i = dmax - dhigh; 608 if (i) { 609 cg->cg_frsum[i]++; 610 cg->cg_cs.cs_nffree += i; 611 } 612 } 613 /* Update the csum info. */ 614 csums[cgn] = cg->cg_cs; 615 newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree; 616 newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree; 617 newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree; 618 if (is_ufs2 == 0) 619 /* Write out the cleared inodes. */ 620 writeat(FFS_FSBTODB(newsb, cgimin(newsb, cgn)), zinodes, 621 newsb->fs_ipg * sizeof(*zinodes)); 622 /* Dirty the cg. */ 623 cgflags[cgn] |= CGF_DIRTY; 624 } 625 /* 626 * Find free space, at least nfrags consecutive frags of it. Pays no 627 * attention to block boundaries, but refuses to straddle cg 628 * boundaries, even if the disk blocks involved are in fact 629 * consecutive. Return value is the frag number of the first frag of 630 * the block, or -1 if no space was found. Uses newsb for sb values, 631 * and assumes the cgs[] structures correctly describe the area to be 632 * searched. 633 * 634 * XXX is there a bug lurking in the ignoring of block boundaries by 635 * the routine used by fragmove() in evict_data()? Can an end-of-file 636 * frag legally straddle a block boundary? If not, this should be 637 * cloned and fixed to stop at block boundaries for that use. The 638 * current one may still be needed for csum info motion, in case that 639 * takes up more than a whole block (is the csum info allowed to begin 640 * partway through a block and continue into the following block?). 641 * 642 * If we wrap off the end of the file system back to the beginning, we 643 * can end up searching the end of the file system twice. I ignore 644 * this inefficiency, since if that happens we're going to croak with 645 * a no-space error anyway, so it happens at most once. 646 */ 647 static int 648 find_freespace(unsigned int nfrags) 649 { 650 static int hand = 0; /* hand rotates through all frags in the fs */ 651 int cgsize; /* size of the cg hand currently points into */ 652 int cgn; /* number of cg hand currently points into */ 653 int fwc; /* frag-within-cg number of frag hand points 654 * to */ 655 unsigned int run; /* length of run of free frags seen so far */ 656 int secondpass; /* have we wrapped from end of fs to 657 * beginning? */ 658 unsigned char *bits; /* cg_blksfree()[] for cg hand points into */ 659 660 cgn = dtog(newsb, hand); 661 fwc = dtogd(newsb, hand); 662 secondpass = (hand == 0); 663 run = 0; 664 bits = cg_blksfree(cgs[cgn], 0); 665 cgsize = cgs[cgn]->cg_ndblk; 666 while (1) { 667 if (bit_is_set(bits, fwc)) { 668 run++; 669 if (run >= nfrags) 670 return (hand + 1 - run); 671 } else { 672 run = 0; 673 } 674 hand++; 675 fwc++; 676 if (fwc >= cgsize) { 677 fwc = 0; 678 cgn++; 679 if (cgn >= newsb->fs_ncg) { 680 hand = 0; 681 if (secondpass) 682 return (-1); 683 secondpass = 1; 684 cgn = 0; 685 } 686 bits = cg_blksfree(cgs[cgn], 0); 687 cgsize = cgs[cgn]->cg_ndblk; 688 run = 0; 689 } 690 } 691 } 692 /* 693 * Find a free block of disk space. Finds an entire block of frags, 694 * all of which are free. Return value is the frag number of the 695 * first frag of the block, or -1 if no space was found. Uses newsb 696 * for sb values, and assumes the cgs[] structures correctly describe 697 * the area to be searched. 698 * 699 * See find_freespace(), above, for remarks about hand wrapping around. 700 */ 701 static int 702 find_freeblock(void) 703 { 704 static int hand = 0; /* hand rotates through all frags in fs */ 705 int cgn; /* cg number of cg hand points into */ 706 int fwc; /* frag-within-cg number of frag hand points 707 * to */ 708 int cgsize; /* size of cg hand points into */ 709 int secondpass; /* have we wrapped from end to beginning? */ 710 unsigned char *bits; /* cg_blksfree()[] for cg hand points into */ 711 712 cgn = dtog(newsb, hand); 713 fwc = dtogd(newsb, hand); 714 secondpass = (hand == 0); 715 bits = cg_blksfree(cgs[cgn], 0); 716 cgsize = ffs_blknum(newsb, cgs[cgn]->cg_ndblk); 717 while (1) { 718 if (blk_is_set(bits, fwc, newsb->fs_frag)) 719 return (hand); 720 fwc += newsb->fs_frag; 721 hand += newsb->fs_frag; 722 if (fwc >= cgsize) { 723 fwc = 0; 724 cgn++; 725 if (cgn >= newsb->fs_ncg) { 726 hand = 0; 727 if (secondpass) 728 return (-1); 729 secondpass = 1; 730 cgn = 0; 731 } 732 bits = cg_blksfree(cgs[cgn], 0); 733 cgsize = ffs_blknum(newsb, cgs[cgn]->cg_ndblk); 734 } 735 } 736 } 737 /* 738 * Find a free inode, returning its inumber or -1 if none was found. 739 * Uses newsb for sb values, and assumes the cgs[] structures 740 * correctly describe the area to be searched. 741 * 742 * See find_freespace(), above, for remarks about hand wrapping around. 743 */ 744 static int 745 find_freeinode(void) 746 { 747 static int hand = 0; /* hand rotates through all inodes in fs */ 748 int cgn; /* cg number of cg hand points into */ 749 int iwc; /* inode-within-cg number of inode hand points 750 * to */ 751 int secondpass; /* have we wrapped from end to beginning? */ 752 unsigned char *bits; /* cg_inosused()[] for cg hand points into */ 753 754 cgn = hand / newsb->fs_ipg; 755 iwc = hand % newsb->fs_ipg; 756 secondpass = (hand == 0); 757 bits = cg_inosused(cgs[cgn], 0); 758 while (1) { 759 if (bit_is_clr(bits, iwc)) 760 return (hand); 761 hand++; 762 iwc++; 763 if (iwc >= newsb->fs_ipg) { 764 iwc = 0; 765 cgn++; 766 if (cgn >= newsb->fs_ncg) { 767 hand = 0; 768 if (secondpass) 769 return (-1); 770 secondpass = 1; 771 cgn = 0; 772 } 773 bits = cg_inosused(cgs[cgn], 0); 774 } 775 } 776 } 777 /* 778 * Mark a frag as free. Sets the frag's bit in the cg_blksfree bitmap 779 * for the appropriate cg, and marks the cg as dirty. 780 */ 781 static void 782 free_frag(int fno) 783 { 784 int cgn; 785 786 cgn = dtog(newsb, fno); 787 set_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1); 788 cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS; 789 } 790 /* 791 * Allocate a frag. Clears the frag's bit in the cg_blksfree bitmap 792 * for the appropriate cg, and marks the cg as dirty. 793 */ 794 static void 795 alloc_frag(int fno) 796 { 797 int cgn; 798 799 cgn = dtog(newsb, fno); 800 clr_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1); 801 cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS; 802 } 803 /* 804 * Fix up the csum array. If shrinking, this involves freeing zero or 805 * more frags; if growing, it involves allocating them, or if the 806 * frags being grown into aren't free, finding space elsewhere for the 807 * csum info. (If the number of occupied frags doesn't change, 808 * nothing happens here.) 809 */ 810 static void 811 csum_fixup(void) 812 { 813 int nold; /* # frags in old csum info */ 814 int ntot; /* # frags in new csum info */ 815 int nnew; /* ntot-nold */ 816 int newloc; /* new location for csum info, if necessary */ 817 int i; /* generic loop index */ 818 int j; /* generic loop index */ 819 int f; /* "from" frag number, if moving */ 820 int t; /* "to" frag number, if moving */ 821 int cgn; /* cg number, used when shrinking */ 822 823 ntot = howmany(newsb->fs_cssize, newsb->fs_fsize); 824 nold = howmany(oldsb->fs_cssize, newsb->fs_fsize); 825 nnew = ntot - nold; 826 /* First, if there's no change in frag counts, it's easy. */ 827 if (nnew == 0) 828 return; 829 /* Next, if we're shrinking, it's almost as easy. Just free up any 830 * frags in the old area we no longer need. */ 831 if (nnew < 0) { 832 for ((i = newsb->fs_csaddr + ntot - 1), (j = nnew); 833 j < 0; 834 i--, j++) { 835 free_frag(i); 836 } 837 return; 838 } 839 /* We must be growing. Check to see that the new csum area fits 840 * within the file system. I think this can never happen, since for 841 * the csum area to grow, we must be adding at least one cg, so the 842 * old csum area can't be this close to the end of the new file system. 843 * But it's a cheap check. */ 844 /* XXX what if csum info is at end of cg and grows into next cg, what 845 * if it spills over onto the next cg's backup superblock? Can this 846 * happen? */ 847 if (newsb->fs_csaddr + ntot <= newsb->fs_size) { 848 /* Okay, it fits - now, see if the space we want is free. */ 849 for ((i = newsb->fs_csaddr + nold), (j = nnew); 850 j > 0; 851 i++, j--) { 852 cgn = dtog(newsb, i); 853 if (bit_is_clr(cg_blksfree(cgs[cgn], 0), 854 dtogd(newsb, i))) 855 break; 856 } 857 if (j <= 0) { 858 /* Win win - all the frags we want are free. Allocate 859 * 'em and we're all done. */ 860 for ((i = newsb->fs_csaddr + ntot - nnew), 861 (j = nnew); j > 0; i++, j--) { 862 alloc_frag(i); 863 } 864 return; 865 } 866 } 867 /* We have to move the csum info, sigh. Look for new space, free old 868 * space, and allocate new. Update fs_csaddr. We don't copy anything 869 * on disk at this point; the csum info will be written to the 870 * then-current fs_csaddr as part of the final flush. */ 871 newloc = find_freespace(ntot); 872 if (newloc < 0) 873 errx(EXIT_FAILURE, "Sorry, no space available for new csums"); 874 for (i = 0, f = newsb->fs_csaddr, t = newloc; i < ntot; i++, f++, t++) { 875 if (i < nold) { 876 free_frag(f); 877 } 878 alloc_frag(t); 879 } 880 newsb->fs_csaddr = newloc; 881 } 882 /* 883 * Recompute newsb->fs_dsize. Just scans all cgs, adding the number of 884 * data blocks in that cg to the total. 885 */ 886 static void 887 recompute_fs_dsize(void) 888 { 889 int i; 890 891 newsb->fs_dsize = 0; 892 for (i = 0; i < newsb->fs_ncg; i++) { 893 int dlow; /* size of before-sb data area */ 894 int dhigh; /* offset of post-inode data area */ 895 int dmax; /* total size of cg */ 896 int base; /* base of cg, since cgsblock() etc add it in */ 897 base = cgbase(newsb, i); 898 dlow = cgsblock(newsb, i) - base; 899 dhigh = cgdmin(newsb, i) - base; 900 dmax = newsb->fs_size - base; 901 if (dmax > newsb->fs_fpg) 902 dmax = newsb->fs_fpg; 903 newsb->fs_dsize += dlow + dmax - dhigh; 904 } 905 /* Space in cg 0 before cgsblock is boot area, not free space! */ 906 newsb->fs_dsize -= cgsblock(newsb, 0) - cgbase(newsb, 0); 907 /* And of course the csum info takes up space. */ 908 newsb->fs_dsize -= howmany(newsb->fs_cssize, newsb->fs_fsize); 909 } 910 /* 911 * Return the current time. We call this and assign, rather than 912 * calling time() directly, as insulation against OSes where fs_time 913 * is not a time_t. 914 */ 915 static time_t 916 timestamp(void) 917 { 918 time_t t; 919 920 time(&t); 921 return (t); 922 } 923 924 /* 925 * Calculate new filesystem geometry 926 * return 0 if geometry actually changed 927 */ 928 static int 929 makegeometry(int chatter) 930 { 931 932 /* Update the size. */ 933 newsb->fs_size = FFS_DBTOFSB(newsb, newsize); 934 if (is_ufs2) 935 newsb->fs_ncg = howmany(newsb->fs_size, newsb->fs_fpg); 936 else { 937 /* Update fs_old_ncyl and fs_ncg. */ 938 newsb->fs_old_ncyl = howmany(newsb->fs_size * NSPF(newsb), 939 newsb->fs_old_spc); 940 newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg); 941 } 942 943 /* Does the last cg end before the end of its inode area? There is no 944 * reason why this couldn't be handled, but it would complicate a lot 945 * of code (in all file system code - fsck, kernel, etc) because of the 946 * potential partial inode area, and the gain in space would be 947 * minimal, at most the pre-sb data area. */ 948 if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) { 949 newsb->fs_ncg--; 950 if (is_ufs2) 951 newsb->fs_size = newsb->fs_ncg * newsb->fs_fpg; 952 else { 953 newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg; 954 newsb->fs_size = (newsb->fs_old_ncyl * 955 newsb->fs_old_spc) / NSPF(newsb); 956 } 957 if (chatter || verbose) { 958 printf("Warning: last cylinder group is too small;\n"); 959 printf(" dropping it. New size = %lu.\n", 960 (unsigned long int) FFS_FSBTODB(newsb, newsb->fs_size)); 961 } 962 } 963 964 /* Did we actually not grow? (This can happen if newsize is less than 965 * a frag larger than the old size - unlikely, but no excuse to 966 * misbehave if it happens.) */ 967 if (newsb->fs_size == oldsb->fs_size) 968 return 1; 969 970 return 0; 971 } 972 973 974 /* 975 * Grow the file system. 976 */ 977 static void 978 grow(void) 979 { 980 int i; 981 982 if (makegeometry(1)) { 983 printf("New fs size %"PRIu64" = old fs size %"PRIu64 984 ", not growing.\n", newsb->fs_size, oldsb->fs_size); 985 return; 986 } 987 988 if (verbose) { 989 printf("Growing fs from %"PRIu64" blocks to %"PRIu64 990 " blocks.\n", oldsb->fs_size, newsb->fs_size); 991 } 992 993 /* Update the timestamp. */ 994 newsb->fs_time = timestamp(); 995 /* Allocate and clear the new-inode area, in case we add any cgs. */ 996 zinodes = alloconce(newsb->fs_ipg * sizeof(*zinodes), "zeroed inodes"); 997 memset(zinodes, 0, newsb->fs_ipg * sizeof(*zinodes)); 998 999 /* Check that the new last sector (frag, actually) is writable. Since 1000 * it's at least one frag larger than it used to be, we know we aren't 1001 * overwriting anything important by this. (The choice of sbbuf as 1002 * what to write is irrelevant; it's just something handy that's known 1003 * to be at least one frag in size.) */ 1004 writeat(FFS_FSBTODB(newsb,newsb->fs_size - 1), &sbbuf, newsb->fs_fsize); 1005 1006 /* Find out how big the csum area is, and realloc csums if bigger. */ 1007 newsb->fs_cssize = ffs_fragroundup(newsb, 1008 newsb->fs_ncg * sizeof(struct csum)); 1009 if (newsb->fs_cssize > oldsb->fs_cssize) 1010 csums = nfrealloc(csums, newsb->fs_cssize, "new cg summary"); 1011 /* If we're adding any cgs, realloc structures and set up the new 1012 cgs. */ 1013 if (newsb->fs_ncg > oldsb->fs_ncg) { 1014 char *cgp; 1015 cgs = nfrealloc(cgs, newsb->fs_ncg * sizeof(*cgs), 1016 "cg pointers"); 1017 cgflags = nfrealloc(cgflags, newsb->fs_ncg, "cg flags"); 1018 memset(cgflags + oldsb->fs_ncg, 0, 1019 newsb->fs_ncg - oldsb->fs_ncg); 1020 cgp = alloconce((newsb->fs_ncg - oldsb->fs_ncg) * cgblksz, 1021 "cgs"); 1022 for (i = oldsb->fs_ncg; i < newsb->fs_ncg; i++) { 1023 cgs[i] = (struct cg *) cgp; 1024 progress_bar(special, "grow cg", 1025 i - oldsb->fs_ncg, newsb->fs_ncg - oldsb->fs_ncg); 1026 initcg(i); 1027 cgp += cgblksz; 1028 } 1029 cgs[oldsb->fs_ncg - 1]->cg_old_ncyl = oldsb->fs_old_cpg; 1030 cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY; 1031 } 1032 /* If the old fs ended partway through a cg, we have to update the old 1033 * last cg (though possibly not to a full cg!). */ 1034 if (oldsb->fs_size % oldsb->fs_fpg) { 1035 struct cg *cg; 1036 int newcgsize; 1037 int prevcgtop; 1038 int oldcgsize; 1039 cg = cgs[oldsb->fs_ncg - 1]; 1040 cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY | CGF_BLKMAPS; 1041 prevcgtop = oldsb->fs_fpg * (oldsb->fs_ncg - 1); 1042 newcgsize = newsb->fs_size - prevcgtop; 1043 if (newcgsize > newsb->fs_fpg) 1044 newcgsize = newsb->fs_fpg; 1045 oldcgsize = oldsb->fs_size % oldsb->fs_fpg; 1046 set_bits(cg_blksfree(cg, 0), oldcgsize, newcgsize - oldcgsize); 1047 cg->cg_old_ncyl = oldsb->fs_old_cpg; 1048 cg->cg_ndblk = newcgsize; 1049 } 1050 /* Fix up the csum info, if necessary. */ 1051 csum_fixup(); 1052 /* Make fs_dsize match the new reality. */ 1053 recompute_fs_dsize(); 1054 1055 progress_done(); 1056 } 1057 /* 1058 * Call (*fn)() for each inode, passing the inode and its inumber. The 1059 * number of cylinder groups is pased in, so this can be used to map 1060 * over either the old or the new file system's set of inodes. 1061 */ 1062 static void 1063 map_inodes(void (*fn) (union dinode * di, unsigned int, void *arg), 1064 int ncg, void *cbarg) { 1065 int i; 1066 int ni; 1067 1068 ni = oldsb->fs_ipg * ncg; 1069 for (i = 0; i < ni; i++) 1070 (*fn) (inodes + i, i, cbarg); 1071 } 1072 /* Values for the third argument to the map function for 1073 * map_inode_data_blocks. MDB_DATA indicates the block is contains 1074 * file data; MDB_INDIR_PRE and MDB_INDIR_POST indicate that it's an 1075 * indirect block. The MDB_INDIR_PRE call is made before the indirect 1076 * block pointers are followed and the pointed-to blocks scanned, 1077 * MDB_INDIR_POST after. 1078 */ 1079 #define MDB_DATA 1 1080 #define MDB_INDIR_PRE 2 1081 #define MDB_INDIR_POST 3 1082 1083 typedef void (*mark_callback_t) (off_t blocknum, unsigned int nfrags, 1084 unsigned int blksize, int opcode); 1085 1086 /* Helper function - handles a data block. Calls the callback 1087 * function and returns number of bytes occupied in file (actually, 1088 * rounded up to a frag boundary). The name is historical. */ 1089 static int 1090 markblk(mark_callback_t fn, union dinode * di, off_t bn, off_t o) 1091 { 1092 int sz; 1093 int nb; 1094 off_t filesize; 1095 1096 filesize = DIP(di,di_size); 1097 if (o >= filesize) 1098 return (0); 1099 sz = dblksize(newsb, di, ffs_lblkno(newsb, o), filesize); 1100 nb = (sz > filesize - o) ? filesize - o : sz; 1101 if (bn) 1102 (*fn) (bn, ffs_numfrags(newsb, sz), nb, MDB_DATA); 1103 return (sz); 1104 } 1105 /* Helper function - handles an indirect block. Makes the 1106 * MDB_INDIR_PRE callback for the indirect block, loops over the 1107 * pointers and recurses, and makes the MDB_INDIR_POST callback. 1108 * Returns the number of bytes occupied in file, as does markblk(). 1109 * For the sake of update_for_data_move(), we read the indirect block 1110 * _after_ making the _PRE callback. The name is historical. */ 1111 static int 1112 markiblk(mark_callback_t fn, union dinode * di, off_t bn, off_t o, int lev) 1113 { 1114 int i; 1115 int j; 1116 unsigned k; 1117 int tot; 1118 static int32_t indirblk1[howmany(MAXBSIZE, sizeof(int32_t))]; 1119 static int32_t indirblk2[howmany(MAXBSIZE, sizeof(int32_t))]; 1120 static int32_t indirblk3[howmany(MAXBSIZE, sizeof(int32_t))]; 1121 static int32_t *indirblks[3] = { 1122 &indirblk1[0], &indirblk2[0], &indirblk3[0] 1123 }; 1124 1125 if (lev < 0) 1126 return (markblk(fn, di, bn, o)); 1127 if (bn == 0) { 1128 for (i = newsb->fs_bsize; 1129 lev >= 0; 1130 i *= FFS_NINDIR(newsb), lev--); 1131 return (i); 1132 } 1133 (*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_PRE); 1134 readat(FFS_FSBTODB(newsb, bn), indirblks[lev], newsb->fs_bsize); 1135 if (needswap) 1136 for (k = 0; k < howmany(MAXBSIZE, sizeof(int32_t)); k++) 1137 indirblks[lev][k] = bswap32(indirblks[lev][k]); 1138 tot = 0; 1139 for (i = 0; i < FFS_NINDIR(newsb); i++) { 1140 j = markiblk(fn, di, indirblks[lev][i], o, lev - 1); 1141 if (j == 0) 1142 break; 1143 o += j; 1144 tot += j; 1145 } 1146 (*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_POST); 1147 return (tot); 1148 } 1149 1150 1151 /* 1152 * Call (*fn)() for each data block for an inode. This routine assumes 1153 * the inode is known to be of a type that has data blocks (file, 1154 * directory, or non-fast symlink). The called function is: 1155 * 1156 * (*fn)(unsigned int blkno, unsigned int nf, unsigned int nb, int op) 1157 * 1158 * where blkno is the frag number, nf is the number of frags starting 1159 * at blkno (always <= fs_frag), nb is the number of bytes that belong 1160 * to the file (usually nf*fs_frag, often less for the last block/frag 1161 * of a file). 1162 */ 1163 static void 1164 map_inode_data_blocks(union dinode * di, mark_callback_t fn) 1165 { 1166 off_t o; /* offset within inode */ 1167 int inc; /* increment for o - maybe should be off_t? */ 1168 int b; /* index within di_db[] and di_ib[] arrays */ 1169 1170 /* Scan the direct blocks... */ 1171 o = 0; 1172 for (b = 0; b < UFS_NDADDR; b++) { 1173 inc = markblk(fn, di, DIP(di,di_db[b]), o); 1174 if (inc == 0) 1175 break; 1176 o += inc; 1177 } 1178 /* ...and the indirect blocks. */ 1179 if (inc) { 1180 for (b = 0; b < UFS_NIADDR; b++) { 1181 inc = markiblk(fn, di, DIP(di,di_ib[b]), o, b); 1182 if (inc == 0) 1183 return; 1184 o += inc; 1185 } 1186 } 1187 } 1188 1189 static void 1190 dblk_callback(union dinode * di, unsigned int inum, void *arg) 1191 { 1192 mark_callback_t fn; 1193 off_t filesize; 1194 1195 filesize = DIP(di,di_size); 1196 fn = (mark_callback_t) arg; 1197 switch (DIP(di,di_mode) & IFMT) { 1198 case IFLNK: 1199 if (filesize <= newsb->fs_maxsymlinklen) { 1200 break; 1201 } 1202 /* FALLTHROUGH */ 1203 case IFDIR: 1204 case IFREG: 1205 map_inode_data_blocks(di, fn); 1206 break; 1207 } 1208 } 1209 /* 1210 * Make a callback call, a la map_inode_data_blocks, for all data 1211 * blocks in the entire fs. This is used only once, in 1212 * update_for_data_move, but it's out at top level because the complex 1213 * downward-funarg nesting that would otherwise result seems to give 1214 * gcc gastric distress. 1215 */ 1216 static void 1217 map_data_blocks(mark_callback_t fn, int ncg) 1218 { 1219 map_inodes(&dblk_callback, ncg, (void *) fn); 1220 } 1221 /* 1222 * Initialize the blkmove array. 1223 */ 1224 static void 1225 blkmove_init(void) 1226 { 1227 int i; 1228 1229 blkmove = alloconce(oldsb->fs_size * sizeof(*blkmove), "blkmove"); 1230 for (i = 0; i < oldsb->fs_size; i++) 1231 blkmove[i] = i; 1232 } 1233 /* 1234 * Load the inodes off disk. Allocates the structures and initializes 1235 * them - the inodes from disk, the flags to zero. 1236 */ 1237 static void 1238 loadinodes(void) 1239 { 1240 int imax, ino, i, j; 1241 struct ufs1_dinode *dp1 = NULL; 1242 struct ufs2_dinode *dp2 = NULL; 1243 1244 /* read inodes one fs block at a time and copy them */ 1245 1246 inodes = alloconce(oldsb->fs_ncg * oldsb->fs_ipg * 1247 sizeof(union dinode), "inodes"); 1248 iflags = alloconce(oldsb->fs_ncg * oldsb->fs_ipg, "inode flags"); 1249 memset(iflags, 0, oldsb->fs_ncg * oldsb->fs_ipg); 1250 1251 ibuf = nfmalloc(oldsb->fs_bsize,"inode block buf"); 1252 if (is_ufs2) 1253 dp2 = (struct ufs2_dinode *)ibuf; 1254 else 1255 dp1 = (struct ufs1_dinode *)ibuf; 1256 1257 for (ino = 0,imax = oldsb->fs_ipg * oldsb->fs_ncg; ino < imax; ) { 1258 readat(FFS_FSBTODB(oldsb, ino_to_fsba(oldsb, ino)), ibuf, 1259 oldsb->fs_bsize); 1260 1261 for (i = 0; i < oldsb->fs_inopb; i++) { 1262 if (is_ufs2) { 1263 if (needswap) { 1264 ffs_dinode2_swap(&(dp2[i]), &(dp2[i])); 1265 for (j = 0; j < UFS_NDADDR + UFS_NIADDR; j++) 1266 dp2[i].di_db[j] = 1267 bswap32(dp2[i].di_db[j]); 1268 } 1269 memcpy(&inodes[ino].dp2, &dp2[i], 1270 sizeof(inodes[ino].dp2)); 1271 } else { 1272 if (needswap) { 1273 ffs_dinode1_swap(&(dp1[i]), &(dp1[i])); 1274 for (j = 0; j < UFS_NDADDR + UFS_NIADDR; j++) 1275 dp1[i].di_db[j] = 1276 bswap32(dp1[i].di_db[j]); 1277 } 1278 memcpy(&inodes[ino].dp1, &dp1[i], 1279 sizeof(inodes[ino].dp1)); 1280 } 1281 if (++ino > imax) 1282 errx(EXIT_FAILURE, 1283 "Exceeded number of inodes"); 1284 } 1285 1286 } 1287 } 1288 /* 1289 * Report a file-system-too-full problem. 1290 */ 1291 __dead static void 1292 toofull(void) 1293 { 1294 errx(EXIT_FAILURE, "Sorry, would run out of data blocks"); 1295 } 1296 /* 1297 * Record a desire to move "n" frags from "from" to "to". 1298 */ 1299 static void 1300 mark_move(unsigned int from, unsigned int to, unsigned int n) 1301 { 1302 for (; n > 0; n--) 1303 blkmove[from++] = to++; 1304 } 1305 /* Helper function - evict n frags, starting with start (cg-relative). 1306 * The free bitmap is scanned, unallocated frags are ignored, and 1307 * each block of consecutive allocated frags is moved as a unit. 1308 */ 1309 static void 1310 fragmove(struct cg * cg, int base, unsigned int start, unsigned int n) 1311 { 1312 unsigned int i; 1313 int run; 1314 1315 run = 0; 1316 for (i = 0; i <= n; i++) { 1317 if ((i < n) && bit_is_clr(cg_blksfree(cg, 0), start + i)) { 1318 run++; 1319 } else { 1320 if (run > 0) { 1321 int off; 1322 off = find_freespace(run); 1323 if (off < 0) 1324 toofull(); 1325 mark_move(base + start + i - run, off, run); 1326 set_bits(cg_blksfree(cg, 0), start + i - run, 1327 run); 1328 clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0), 1329 dtogd(oldsb, off), run); 1330 } 1331 run = 0; 1332 } 1333 } 1334 } 1335 /* 1336 * Evict all data blocks from the given cg, starting at minfrag (based 1337 * at the beginning of the cg), for length nfrag. The eviction is 1338 * assumed to be entirely data-area; this should not be called with a 1339 * range overlapping the metadata structures in the cg. It also 1340 * assumes minfrag points into the given cg; it will misbehave if this 1341 * is not true. 1342 * 1343 * See the comment header on find_freespace() for one possible bug 1344 * lurking here. 1345 */ 1346 static void 1347 evict_data(struct cg * cg, unsigned int minfrag, int nfrag) 1348 { 1349 int base; /* base of cg (in frags from beginning of fs) */ 1350 1351 base = cgbase(oldsb, cg->cg_cgx); 1352 /* Does the boundary fall in the middle of a block? To avoid 1353 * breaking between frags allocated as consecutive, we always 1354 * evict the whole block in this case, though one could argue 1355 * we should check to see if the frag before or after the 1356 * break is unallocated. */ 1357 if (minfrag % oldsb->fs_frag) { 1358 int n; 1359 n = minfrag % oldsb->fs_frag; 1360 minfrag -= n; 1361 nfrag += n; 1362 } 1363 /* Do whole blocks. If a block is wholly free, skip it; if 1364 * wholly allocated, move it in toto. If neither, call 1365 * fragmove() to move the frags to new locations. */ 1366 while (nfrag >= oldsb->fs_frag) { 1367 if (!blk_is_set(cg_blksfree(cg, 0), minfrag, oldsb->fs_frag)) { 1368 if (blk_is_clr(cg_blksfree(cg, 0), minfrag, 1369 oldsb->fs_frag)) { 1370 int off; 1371 off = find_freeblock(); 1372 if (off < 0) 1373 toofull(); 1374 mark_move(base + minfrag, off, oldsb->fs_frag); 1375 set_bits(cg_blksfree(cg, 0), minfrag, 1376 oldsb->fs_frag); 1377 clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0), 1378 dtogd(oldsb, off), oldsb->fs_frag); 1379 } else { 1380 fragmove(cg, base, minfrag, oldsb->fs_frag); 1381 } 1382 } 1383 minfrag += oldsb->fs_frag; 1384 nfrag -= oldsb->fs_frag; 1385 } 1386 /* Clean up any sub-block amount left over. */ 1387 if (nfrag) { 1388 fragmove(cg, base, minfrag, nfrag); 1389 } 1390 } 1391 /* 1392 * Move all data blocks according to blkmove. We have to be careful, 1393 * because we may be updating indirect blocks that will themselves be 1394 * getting moved, or inode int32_t arrays that point to indirect 1395 * blocks that will be moved. We call this before 1396 * update_for_data_move, and update_for_data_move does inodes first, 1397 * then indirect blocks in preorder, so as to make sure that the 1398 * file system is self-consistent at all points, for better crash 1399 * tolerance. (We can get away with this only because all the writes 1400 * done by perform_data_move() are writing into space that's not used 1401 * by the old file system.) If we crash, some things may point to the 1402 * old data and some to the new, but both copies are the same. The 1403 * only wrong things should be csum info and free bitmaps, which fsck 1404 * is entirely capable of cleaning up. 1405 * 1406 * Since blkmove_init() initializes all blocks to move to their current 1407 * locations, we can have two blocks marked as wanting to move to the 1408 * same location, but only two and only when one of them is the one 1409 * that was already there. So if blkmove[i]==i, we ignore that entry 1410 * entirely - for unallocated blocks, we don't want it (and may be 1411 * putting something else there), and for allocated blocks, we don't 1412 * want to copy it anywhere. 1413 */ 1414 static void 1415 perform_data_move(void) 1416 { 1417 int i; 1418 int run; 1419 int maxrun; 1420 char buf[65536]; 1421 1422 maxrun = sizeof(buf) / newsb->fs_fsize; 1423 run = 0; 1424 for (i = 0; i < oldsb->fs_size; i++) { 1425 if ((blkmove[i] == (unsigned)i /*XXX cast*/) || 1426 (run >= maxrun) || 1427 ((run > 0) && 1428 (blkmove[i] != blkmove[i - 1] + 1))) { 1429 if (run > 0) { 1430 readat(FFS_FSBTODB(oldsb, i - run), &buf[0], 1431 run << oldsb->fs_fshift); 1432 writeat(FFS_FSBTODB(oldsb, blkmove[i - run]), 1433 &buf[0], run << oldsb->fs_fshift); 1434 } 1435 run = 0; 1436 } 1437 if (blkmove[i] != (unsigned)i /*XXX cast*/) 1438 run++; 1439 } 1440 if (run > 0) { 1441 readat(FFS_FSBTODB(oldsb, i - run), &buf[0], 1442 run << oldsb->fs_fshift); 1443 writeat(FFS_FSBTODB(oldsb, blkmove[i - run]), &buf[0], 1444 run << oldsb->fs_fshift); 1445 } 1446 } 1447 /* 1448 * This modifies an array of int32_t, according to blkmove. This is 1449 * used to update inode block arrays and indirect blocks to point to 1450 * the new locations of data blocks. 1451 * 1452 * Return value is the number of int32_ts that needed updating; in 1453 * particular, the return value is zero iff nothing was modified. 1454 */ 1455 static int 1456 movemap_blocks(int32_t * vec, int n) 1457 { 1458 int rv; 1459 1460 rv = 0; 1461 for (; n > 0; n--, vec++) { 1462 if (blkmove[*vec] != (unsigned)*vec /*XXX cast*/) { 1463 *vec = blkmove[*vec]; 1464 rv++; 1465 } 1466 } 1467 return (rv); 1468 } 1469 static void 1470 moveblocks_callback(union dinode * di, unsigned int inum, void *arg) 1471 { 1472 int32_t *dblkptr, *iblkptr; 1473 1474 switch (DIP(di,di_mode) & IFMT) { 1475 case IFLNK: 1476 if ((off_t)DIP(di,di_size) <= oldsb->fs_maxsymlinklen) { 1477 break; 1478 } 1479 /* FALLTHROUGH */ 1480 case IFDIR: 1481 case IFREG: 1482 if (is_ufs2) { 1483 /* XXX these are not int32_t and this is WRONG! */ 1484 dblkptr = (void *) &(di->dp2.di_db[0]); 1485 iblkptr = (void *) &(di->dp2.di_ib[0]); 1486 } else { 1487 dblkptr = &(di->dp1.di_db[0]); 1488 iblkptr = &(di->dp1.di_ib[0]); 1489 } 1490 /* 1491 * Don't || these two calls; we need their 1492 * side-effects. 1493 */ 1494 if (movemap_blocks(dblkptr, UFS_NDADDR)) { 1495 iflags[inum] |= IF_DIRTY; 1496 } 1497 if (movemap_blocks(iblkptr, UFS_NIADDR)) { 1498 iflags[inum] |= IF_DIRTY; 1499 } 1500 break; 1501 } 1502 } 1503 1504 static void 1505 moveindir_callback(off_t off, unsigned int nfrag, unsigned int nbytes, 1506 int kind) 1507 { 1508 unsigned int i; 1509 1510 if (kind == MDB_INDIR_PRE) { 1511 int32_t blk[howmany(MAXBSIZE, sizeof(int32_t))]; 1512 readat(FFS_FSBTODB(oldsb, off), &blk[0], oldsb->fs_bsize); 1513 if (needswap) 1514 for (i = 0; i < howmany(MAXBSIZE, sizeof(int32_t)); i++) 1515 blk[i] = bswap32(blk[i]); 1516 if (movemap_blocks(&blk[0], FFS_NINDIR(oldsb))) { 1517 if (needswap) 1518 for (i = 0; i < howmany(MAXBSIZE, 1519 sizeof(int32_t)); i++) 1520 blk[i] = bswap32(blk[i]); 1521 writeat(FFS_FSBTODB(oldsb, off), &blk[0], oldsb->fs_bsize); 1522 } 1523 } 1524 } 1525 /* 1526 * Update all inode data arrays and indirect blocks to point to the new 1527 * locations of data blocks. See the comment header on 1528 * perform_data_move for some ordering considerations. 1529 */ 1530 static void 1531 update_for_data_move(void) 1532 { 1533 map_inodes(&moveblocks_callback, oldsb->fs_ncg, NULL); 1534 map_data_blocks(&moveindir_callback, oldsb->fs_ncg); 1535 } 1536 /* 1537 * Initialize the inomove array. 1538 */ 1539 static void 1540 inomove_init(void) 1541 { 1542 int i; 1543 1544 inomove = alloconce(oldsb->fs_ipg * oldsb->fs_ncg * sizeof(*inomove), 1545 "inomove"); 1546 for (i = (oldsb->fs_ipg * oldsb->fs_ncg) - 1; i >= 0; i--) 1547 inomove[i] = i; 1548 } 1549 /* 1550 * Flush all dirtied inodes to disk. Scans the inode flags array; for 1551 * each dirty inode, it sets the BDIRTY bit on the first inode in the 1552 * block containing the dirty inode. Then it scans by blocks, and for 1553 * each marked block, writes it. 1554 */ 1555 static void 1556 flush_inodes(void) 1557 { 1558 int i, j, k, na, ni, m; 1559 struct ufs1_dinode *dp1 = NULL; 1560 struct ufs2_dinode *dp2 = NULL; 1561 1562 na = UFS_NDADDR + UFS_NIADDR; 1563 ni = newsb->fs_ipg * newsb->fs_ncg; 1564 m = FFS_INOPB(newsb) - 1; 1565 for (i = 0; i < ni; i++) { 1566 if (iflags[i] & IF_DIRTY) { 1567 iflags[i & ~m] |= IF_BDIRTY; 1568 } 1569 } 1570 m++; 1571 1572 if (is_ufs2) 1573 dp2 = (struct ufs2_dinode *)ibuf; 1574 else 1575 dp1 = (struct ufs1_dinode *)ibuf; 1576 1577 for (i = 0; i < ni; i += m) { 1578 if (iflags[i] & IF_BDIRTY) { 1579 if (is_ufs2) 1580 for (j = 0; j < m; j++) { 1581 dp2[j] = inodes[i + j].dp2; 1582 if (needswap) { 1583 for (k = 0; k < na; k++) 1584 dp2[j].di_db[k]= 1585 bswap32(dp2[j].di_db[k]); 1586 ffs_dinode2_swap(&dp2[j], 1587 &dp2[j]); 1588 } 1589 } 1590 else 1591 for (j = 0; j < m; j++) { 1592 dp1[j] = inodes[i + j].dp1; 1593 if (needswap) { 1594 for (k = 0; k < na; k++) 1595 dp1[j].di_db[k]= 1596 bswap32(dp1[j].di_db[k]); 1597 ffs_dinode1_swap(&dp1[j], 1598 &dp1[j]); 1599 } 1600 } 1601 1602 writeat(FFS_FSBTODB(newsb, ino_to_fsba(newsb, i)), 1603 ibuf, newsb->fs_bsize); 1604 } 1605 } 1606 } 1607 /* 1608 * Evict all inodes from the specified cg. shrink() already checked 1609 * that there were enough free inodes, so the no-free-inodes check is 1610 * a can't-happen. If it does trip, the file system should be in good 1611 * enough shape for fsck to fix; see the comment on perform_data_move 1612 * for the considerations in question. 1613 */ 1614 static void 1615 evict_inodes(struct cg * cg) 1616 { 1617 int inum; 1618 int i; 1619 int fi; 1620 1621 inum = newsb->fs_ipg * cg->cg_cgx; 1622 for (i = 0; i < newsb->fs_ipg; i++, inum++) { 1623 if (DIP(inodes + inum,di_mode) != 0) { 1624 fi = find_freeinode(); 1625 if (fi < 0) 1626 errx(EXIT_FAILURE, "Sorry, inodes evaporated - " 1627 "file system probably needs fsck"); 1628 inomove[inum] = fi; 1629 clr_bits(cg_inosused(cg, 0), i, 1); 1630 set_bits(cg_inosused(cgs[ino_to_cg(newsb, fi)], 0), 1631 fi % newsb->fs_ipg, 1); 1632 } 1633 } 1634 } 1635 /* 1636 * Move inodes from old locations to new. Does not actually write 1637 * anything to disk; just copies in-core and sets dirty bits. 1638 * 1639 * We have to be careful here for reasons similar to those mentioned in 1640 * the comment header on perform_data_move, above: for the sake of 1641 * crash tolerance, we want to make sure everything is present at both 1642 * old and new locations before we update pointers. So we call this 1643 * first, then flush_inodes() to get them out on disk, then update 1644 * directories to match. 1645 */ 1646 static void 1647 perform_inode_move(void) 1648 { 1649 unsigned int i; 1650 unsigned int ni; 1651 1652 ni = oldsb->fs_ipg * oldsb->fs_ncg; 1653 for (i = 0; i < ni; i++) { 1654 if (inomove[i] != i) { 1655 inodes[inomove[i]] = inodes[i]; 1656 iflags[inomove[i]] = iflags[i] | IF_DIRTY; 1657 } 1658 } 1659 } 1660 /* 1661 * Update the directory contained in the nb bytes at buf, to point to 1662 * inodes' new locations. 1663 */ 1664 static int 1665 update_dirents(char *buf, int nb) 1666 { 1667 int rv; 1668 #define d ((struct direct *)buf) 1669 #define s32(x) (needswap?bswap32((x)):(x)) 1670 #define s16(x) (needswap?bswap16((x)):(x)) 1671 1672 rv = 0; 1673 while (nb > 0) { 1674 if (inomove[s32(d->d_ino)] != s32(d->d_ino)) { 1675 rv++; 1676 d->d_ino = s32(inomove[s32(d->d_ino)]); 1677 } 1678 nb -= s16(d->d_reclen); 1679 buf += s16(d->d_reclen); 1680 } 1681 return (rv); 1682 #undef d 1683 #undef s32 1684 #undef s16 1685 } 1686 /* 1687 * Callback function for map_inode_data_blocks, for updating a 1688 * directory to point to new inode locations. 1689 */ 1690 static void 1691 update_dir_data(off_t bn, unsigned int size, unsigned int nb, int kind) 1692 { 1693 if (kind == MDB_DATA) { 1694 union { 1695 struct direct d; 1696 char ch[MAXBSIZE]; 1697 } buf; 1698 readat(FFS_FSBTODB(oldsb, bn), &buf, size << oldsb->fs_fshift); 1699 if (update_dirents((char *) &buf, nb)) { 1700 writeat(FFS_FSBTODB(oldsb, bn), &buf, 1701 size << oldsb->fs_fshift); 1702 } 1703 } 1704 } 1705 static void 1706 dirmove_callback(union dinode * di, unsigned int inum, void *arg) 1707 { 1708 switch (DIP(di,di_mode) & IFMT) { 1709 case IFDIR: 1710 map_inode_data_blocks(di, &update_dir_data); 1711 break; 1712 } 1713 } 1714 /* 1715 * Update directory entries to point to new inode locations. 1716 */ 1717 static void 1718 update_for_inode_move(void) 1719 { 1720 map_inodes(&dirmove_callback, newsb->fs_ncg, NULL); 1721 } 1722 /* 1723 * Shrink the file system. 1724 */ 1725 static void 1726 shrink(void) 1727 { 1728 int i; 1729 1730 if (makegeometry(1)) { 1731 printf("New fs size %"PRIu64" = old fs size %"PRIu64 1732 ", not shrinking.\n", newsb->fs_size, oldsb->fs_size); 1733 return; 1734 } 1735 1736 /* Let's make sure we're not being shrunk into oblivion. */ 1737 if (newsb->fs_ncg < 1) 1738 errx(EXIT_FAILURE, "Size too small - file system would " 1739 "have no cylinders"); 1740 1741 if (verbose) { 1742 printf("Shrinking fs from %"PRIu64" blocks to %"PRIu64 1743 " blocks.\n", oldsb->fs_size, newsb->fs_size); 1744 } 1745 1746 /* Load the inodes off disk - we'll need 'em. */ 1747 loadinodes(); 1748 1749 /* Update the timestamp. */ 1750 newsb->fs_time = timestamp(); 1751 1752 /* Initialize for block motion. */ 1753 blkmove_init(); 1754 /* Update csum size, then fix up for the new size */ 1755 newsb->fs_cssize = ffs_fragroundup(newsb, 1756 newsb->fs_ncg * sizeof(struct csum)); 1757 csum_fixup(); 1758 /* Evict data from any cgs being wholly eliminated */ 1759 for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++) { 1760 int base; 1761 int dlow; 1762 int dhigh; 1763 int dmax; 1764 base = cgbase(oldsb, i); 1765 dlow = cgsblock(oldsb, i) - base; 1766 dhigh = cgdmin(oldsb, i) - base; 1767 dmax = oldsb->fs_size - base; 1768 if (dmax > cgs[i]->cg_ndblk) 1769 dmax = cgs[i]->cg_ndblk; 1770 evict_data(cgs[i], 0, dlow); 1771 evict_data(cgs[i], dhigh, dmax - dhigh); 1772 newsb->fs_cstotal.cs_ndir -= cgs[i]->cg_cs.cs_ndir; 1773 newsb->fs_cstotal.cs_nifree -= cgs[i]->cg_cs.cs_nifree; 1774 newsb->fs_cstotal.cs_nffree -= cgs[i]->cg_cs.cs_nffree; 1775 newsb->fs_cstotal.cs_nbfree -= cgs[i]->cg_cs.cs_nbfree; 1776 } 1777 /* Update the new last cg. */ 1778 cgs[newsb->fs_ncg - 1]->cg_ndblk = newsb->fs_size - 1779 ((newsb->fs_ncg - 1) * newsb->fs_fpg); 1780 /* Is the new last cg partial? If so, evict any data from the part 1781 * being shrunken away. */ 1782 if (newsb->fs_size % newsb->fs_fpg) { 1783 struct cg *cg; 1784 int oldcgsize; 1785 int newcgsize; 1786 cg = cgs[newsb->fs_ncg - 1]; 1787 newcgsize = newsb->fs_size % newsb->fs_fpg; 1788 oldcgsize = oldsb->fs_size - ((newsb->fs_ncg - 1) & 1789 oldsb->fs_fpg); 1790 if (oldcgsize > oldsb->fs_fpg) 1791 oldcgsize = oldsb->fs_fpg; 1792 evict_data(cg, newcgsize, oldcgsize - newcgsize); 1793 clr_bits(cg_blksfree(cg, 0), newcgsize, oldcgsize - newcgsize); 1794 } 1795 /* Find out whether we would run out of inodes. (Note we 1796 * haven't actually done anything to the file system yet; all 1797 * those evict_data calls just update blkmove.) */ 1798 { 1799 int slop; 1800 slop = 0; 1801 for (i = 0; i < newsb->fs_ncg; i++) 1802 slop += cgs[i]->cg_cs.cs_nifree; 1803 for (; i < oldsb->fs_ncg; i++) 1804 slop -= oldsb->fs_ipg - cgs[i]->cg_cs.cs_nifree; 1805 if (slop < 0) 1806 errx(EXIT_FAILURE, "Sorry, would run out of inodes"); 1807 } 1808 /* Copy data, then update pointers to data. See the comment 1809 * header on perform_data_move for ordering considerations. */ 1810 perform_data_move(); 1811 update_for_data_move(); 1812 /* Now do inodes. Initialize, evict, move, update - see the 1813 * comment header on perform_inode_move. */ 1814 inomove_init(); 1815 for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++) 1816 evict_inodes(cgs[i]); 1817 perform_inode_move(); 1818 flush_inodes(); 1819 update_for_inode_move(); 1820 /* Recompute all the bitmaps; most of them probably need it anyway, 1821 * the rest are just paranoia and not wanting to have to bother 1822 * keeping track of exactly which ones require it. */ 1823 for (i = 0; i < newsb->fs_ncg; i++) 1824 cgflags[i] |= CGF_DIRTY | CGF_BLKMAPS | CGF_INOMAPS; 1825 /* Update the cg_old_ncyl value for the last cylinder. */ 1826 if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) 1827 cgs[newsb->fs_ncg - 1]->cg_old_ncyl = 1828 newsb->fs_old_ncyl % newsb->fs_old_cpg; 1829 /* Make fs_dsize match the new reality. */ 1830 recompute_fs_dsize(); 1831 } 1832 /* 1833 * Recompute the block totals, block cluster summaries, and rotational 1834 * position summaries, for a given cg (specified by number), based on 1835 * its free-frag bitmap (cg_blksfree()[]). 1836 */ 1837 static void 1838 rescan_blkmaps(int cgn) 1839 { 1840 struct cg *cg; 1841 int f; 1842 int b; 1843 int blkfree; 1844 int blkrun; 1845 int fragrun; 1846 int fwb; 1847 1848 cg = cgs[cgn]; 1849 /* Subtract off the current totals from the sb's summary info */ 1850 newsb->fs_cstotal.cs_nffree -= cg->cg_cs.cs_nffree; 1851 newsb->fs_cstotal.cs_nbfree -= cg->cg_cs.cs_nbfree; 1852 /* Clear counters and bitmaps. */ 1853 cg->cg_cs.cs_nffree = 0; 1854 cg->cg_cs.cs_nbfree = 0; 1855 memset(&cg->cg_frsum[0], 0, MAXFRAG * sizeof(cg->cg_frsum[0])); 1856 memset(&old_cg_blktot(cg, 0)[0], 0, 1857 newsb->fs_old_cpg * sizeof(old_cg_blktot(cg, 0)[0])); 1858 memset(&old_cg_blks(newsb, cg, 0, 0)[0], 0, 1859 newsb->fs_old_cpg * newsb->fs_old_nrpos * 1860 sizeof(old_cg_blks(newsb, cg, 0, 0)[0])); 1861 if (newsb->fs_contigsumsize > 0) { 1862 cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag; 1863 memset(&cg_clustersum(cg, 0)[1], 0, 1864 newsb->fs_contigsumsize * 1865 sizeof(cg_clustersum(cg, 0)[1])); 1866 if (is_ufs2) 1867 memset(&cg_clustersfree(cg, 0)[0], 0, 1868 howmany(newsb->fs_fpg / NSPB(newsb), NBBY)); 1869 else 1870 memset(&cg_clustersfree(cg, 0)[0], 0, 1871 howmany((newsb->fs_old_cpg * newsb->fs_old_spc) / 1872 NSPB(newsb), NBBY)); 1873 } 1874 /* Scan the free-frag bitmap. Runs of free frags are kept 1875 * track of with fragrun, and recorded into cg_frsum[] and 1876 * cg_cs.cs_nffree; on each block boundary, entire free blocks 1877 * are recorded as well. */ 1878 blkfree = 1; 1879 blkrun = 0; 1880 fragrun = 0; 1881 f = 0; 1882 b = 0; 1883 fwb = 0; 1884 while (f < cg->cg_ndblk) { 1885 if (bit_is_set(cg_blksfree(cg, 0), f)) { 1886 fragrun++; 1887 } else { 1888 blkfree = 0; 1889 if (fragrun > 0) { 1890 cg->cg_frsum[fragrun]++; 1891 cg->cg_cs.cs_nffree += fragrun; 1892 } 1893 fragrun = 0; 1894 } 1895 f++; 1896 fwb++; 1897 if (fwb >= newsb->fs_frag) { 1898 if (blkfree) { 1899 cg->cg_cs.cs_nbfree++; 1900 if (newsb->fs_contigsumsize > 0) 1901 set_bits(cg_clustersfree(cg, 0), b, 1); 1902 if (is_ufs2 == 0) { 1903 old_cg_blktot(cg, 0)[ 1904 old_cbtocylno(newsb, 1905 f - newsb->fs_frag)]++; 1906 old_cg_blks(newsb, cg, 1907 old_cbtocylno(newsb, 1908 f - newsb->fs_frag), 1909 0)[old_cbtorpos(newsb, 1910 f - newsb->fs_frag)]++; 1911 } 1912 blkrun++; 1913 } else { 1914 if (fragrun > 0) { 1915 cg->cg_frsum[fragrun]++; 1916 cg->cg_cs.cs_nffree += fragrun; 1917 } 1918 if (newsb->fs_contigsumsize > 0) { 1919 if (blkrun > 0) { 1920 cg_clustersum(cg, 0)[(blkrun 1921 > newsb->fs_contigsumsize) 1922 ? newsb->fs_contigsumsize 1923 : blkrun]++; 1924 } 1925 } 1926 blkrun = 0; 1927 } 1928 fwb = 0; 1929 b++; 1930 blkfree = 1; 1931 fragrun = 0; 1932 } 1933 } 1934 if (fragrun > 0) { 1935 cg->cg_frsum[fragrun]++; 1936 cg->cg_cs.cs_nffree += fragrun; 1937 } 1938 if ((blkrun > 0) && (newsb->fs_contigsumsize > 0)) { 1939 cg_clustersum(cg, 0)[(blkrun > newsb->fs_contigsumsize) ? 1940 newsb->fs_contigsumsize : blkrun]++; 1941 } 1942 /* 1943 * Put the updated summary info back into csums, and add it 1944 * back into the sb's summary info. Then mark the cg dirty. 1945 */ 1946 csums[cgn] = cg->cg_cs; 1947 newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree; 1948 newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree; 1949 cgflags[cgn] |= CGF_DIRTY; 1950 } 1951 /* 1952 * Recompute the cg_inosused()[] bitmap, and the cs_nifree and cs_ndir 1953 * values, for a cg, based on the in-core inodes for that cg. 1954 */ 1955 static void 1956 rescan_inomaps(int cgn) 1957 { 1958 struct cg *cg; 1959 int inum; 1960 int iwc; 1961 1962 cg = cgs[cgn]; 1963 newsb->fs_cstotal.cs_ndir -= cg->cg_cs.cs_ndir; 1964 newsb->fs_cstotal.cs_nifree -= cg->cg_cs.cs_nifree; 1965 cg->cg_cs.cs_ndir = 0; 1966 cg->cg_cs.cs_nifree = 0; 1967 memset(&cg_inosused(cg, 0)[0], 0, howmany(newsb->fs_ipg, NBBY)); 1968 inum = cgn * newsb->fs_ipg; 1969 if (cgn == 0) { 1970 set_bits(cg_inosused(cg, 0), 0, 2); 1971 iwc = 2; 1972 inum += 2; 1973 } else { 1974 iwc = 0; 1975 } 1976 for (; iwc < newsb->fs_ipg; iwc++, inum++) { 1977 switch (DIP(inodes + inum, di_mode) & IFMT) { 1978 case 0: 1979 cg->cg_cs.cs_nifree++; 1980 break; 1981 case IFDIR: 1982 cg->cg_cs.cs_ndir++; 1983 /* FALLTHROUGH */ 1984 default: 1985 set_bits(cg_inosused(cg, 0), iwc, 1); 1986 break; 1987 } 1988 } 1989 csums[cgn] = cg->cg_cs; 1990 newsb->fs_cstotal.cs_ndir += cg->cg_cs.cs_ndir; 1991 newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree; 1992 cgflags[cgn] |= CGF_DIRTY; 1993 } 1994 /* 1995 * Flush cgs to disk, recomputing anything they're marked as needing. 1996 */ 1997 static void 1998 flush_cgs(void) 1999 { 2000 int i; 2001 2002 for (i = 0; i < newsb->fs_ncg; i++) { 2003 progress_bar(special, "flush cg", 2004 i, newsb->fs_ncg - 1); 2005 if (cgflags[i] & CGF_BLKMAPS) { 2006 rescan_blkmaps(i); 2007 } 2008 if (cgflags[i] & CGF_INOMAPS) { 2009 rescan_inomaps(i); 2010 } 2011 if (cgflags[i] & CGF_DIRTY) { 2012 cgs[i]->cg_rotor = 0; 2013 cgs[i]->cg_frotor = 0; 2014 cgs[i]->cg_irotor = 0; 2015 if (needswap) 2016 ffs_cg_swap(cgs[i],cgs[i],newsb); 2017 writeat(FFS_FSBTODB(newsb, cgtod(newsb, i)), cgs[i], 2018 cgblksz); 2019 } 2020 } 2021 if (needswap) 2022 ffs_csum_swap(csums,csums,newsb->fs_cssize); 2023 writeat(FFS_FSBTODB(newsb, newsb->fs_csaddr), csums, newsb->fs_cssize); 2024 2025 progress_done(); 2026 } 2027 /* 2028 * Write the superblock, both to the main superblock and to each cg's 2029 * alternative superblock. 2030 */ 2031 static void 2032 write_sbs(void) 2033 { 2034 int i; 2035 2036 if (newsb->fs_magic == FS_UFS1_MAGIC && 2037 (newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) { 2038 newsb->fs_old_time = newsb->fs_time; 2039 newsb->fs_old_size = newsb->fs_size; 2040 /* we don't update fs_csaddr */ 2041 newsb->fs_old_dsize = newsb->fs_dsize; 2042 newsb->fs_old_cstotal.cs_ndir = newsb->fs_cstotal.cs_ndir; 2043 newsb->fs_old_cstotal.cs_nbfree = newsb->fs_cstotal.cs_nbfree; 2044 newsb->fs_old_cstotal.cs_nifree = newsb->fs_cstotal.cs_nifree; 2045 newsb->fs_old_cstotal.cs_nffree = newsb->fs_cstotal.cs_nffree; 2046 /* fill fs_old_postbl_start with 256 bytes of 0xff? */ 2047 } 2048 /* copy newsb back to oldsb, so we can use it for offsets if 2049 newsb has been swapped for writing to disk */ 2050 memcpy(oldsb, newsb, SBLOCKSIZE); 2051 if (needswap) 2052 ffs_sb_swap(newsb,newsb); 2053 writeat(where / DEV_BSIZE, newsb, SBLOCKSIZE); 2054 for (i = 0; i < oldsb->fs_ncg; i++) { 2055 progress_bar(special, "write sb", 2056 i, oldsb->fs_ncg - 1); 2057 writeat(FFS_FSBTODB(oldsb, cgsblock(oldsb, i)), newsb, SBLOCKSIZE); 2058 } 2059 2060 progress_done(); 2061 } 2062 2063 /* 2064 * Check to see wether new size changes the filesystem 2065 * return exit code 2066 */ 2067 static int 2068 checkonly(void) 2069 { 2070 if (makegeometry(0)) { 2071 if (verbose) { 2072 printf("Wouldn't change: already %" PRId64 2073 " blocks\n", (int64_t)oldsb->fs_size); 2074 } 2075 return 1; 2076 } 2077 2078 if (verbose) { 2079 printf("Would change: newsize: %" PRId64 " oldsize: %" 2080 PRId64 " fsdb: %" PRId64 "\n", FFS_DBTOFSB(oldsb, newsize), 2081 (int64_t)oldsb->fs_size, 2082 (int64_t)oldsb->fs_fsbtodb); 2083 } 2084 return 0; 2085 } 2086 2087 static off_t 2088 get_dev_size(char *dev_name) 2089 { 2090 struct dkwedge_info dkw; 2091 struct partition *pp; 2092 struct disklabel lp; 2093 struct stat st; 2094 size_t ptn; 2095 2096 /* Get info about partition/wedge */ 2097 if (ioctl(fd, DIOCGWEDGEINFO, &dkw) != -1) 2098 return dkw.dkw_size; 2099 if (ioctl(fd, DIOCGDINFO, &lp) != -1) { 2100 ptn = strchr(dev_name, '\0')[-1] - 'a'; 2101 if (ptn >= lp.d_npartitions) 2102 return 0; 2103 pp = &lp.d_partitions[ptn]; 2104 return pp->p_size; 2105 } 2106 if (fstat(fd, &st) != -1 && S_ISREG(st.st_mode)) 2107 return st.st_size / DEV_BSIZE; 2108 2109 return 0; 2110 } 2111 2112 /* 2113 * main(). 2114 */ 2115 int 2116 main(int argc, char **argv) 2117 { 2118 int ch; 2119 int CheckOnlyFlag; 2120 int ExpertFlag; 2121 int SFlag; 2122 size_t i; 2123 2124 char reply[5]; 2125 2126 newsize = 0; 2127 ExpertFlag = 0; 2128 SFlag = 0; 2129 CheckOnlyFlag = 0; 2130 2131 while ((ch = getopt(argc, argv, "cps:vy")) != -1) { 2132 switch (ch) { 2133 case 'c': 2134 CheckOnlyFlag = 1; 2135 break; 2136 case 'p': 2137 progress = 1; 2138 break; 2139 case 's': 2140 SFlag = 1; 2141 newsize = strtoll(optarg, NULL, 10); 2142 if(newsize < 1) { 2143 usage(); 2144 } 2145 break; 2146 case 'v': 2147 verbose = 1; 2148 break; 2149 case 'y': 2150 ExpertFlag = 1; 2151 break; 2152 case '?': 2153 /* FALLTHROUGH */ 2154 default: 2155 usage(); 2156 } 2157 } 2158 argc -= optind; 2159 argv += optind; 2160 2161 if (argc != 1) { 2162 usage(); 2163 } 2164 2165 special = *argv; 2166 2167 if (ExpertFlag == 0 && CheckOnlyFlag == 0) { 2168 printf("It's required to manually run fsck on file system " 2169 "before you can resize it\n\n" 2170 " Did you run fsck on your disk (Yes/No) ? "); 2171 fgets(reply, (int)sizeof(reply), stdin); 2172 if (strcasecmp(reply, "Yes\n")) { 2173 printf("\n Nothing done \n"); 2174 exit(EXIT_SUCCESS); 2175 } 2176 } 2177 2178 fd = open(special, O_RDWR, 0); 2179 if (fd < 0) 2180 err(EXIT_FAILURE, "Can't open `%s'", special); 2181 checksmallio(); 2182 2183 if (SFlag == 0) { 2184 newsize = get_dev_size(special); 2185 if (newsize == 0) 2186 err(EXIT_FAILURE, 2187 "Can't resize file system, newsize not known."); 2188 } 2189 2190 oldsb = (struct fs *) & sbbuf; 2191 newsb = (struct fs *) (SBLOCKSIZE + (char *) &sbbuf); 2192 for (where = search[i = 0]; search[i] != -1; where = search[++i]) { 2193 readat(where / DEV_BSIZE, oldsb, SBLOCKSIZE); 2194 switch (oldsb->fs_magic) { 2195 case FS_UFS2_MAGIC: 2196 is_ufs2 = 1; 2197 /* FALLTHROUGH */ 2198 case FS_UFS1_MAGIC: 2199 needswap = 0; 2200 break; 2201 case FS_UFS2_MAGIC_SWAPPED: 2202 is_ufs2 = 1; 2203 /* FALLTHROUGH */ 2204 case FS_UFS1_MAGIC_SWAPPED: 2205 needswap = 1; 2206 break; 2207 default: 2208 continue; 2209 } 2210 if (!is_ufs2 && where == SBLOCK_UFS2) 2211 continue; 2212 break; 2213 } 2214 if (where == (off_t)-1) 2215 errx(EXIT_FAILURE, "Bad magic number"); 2216 if (needswap) 2217 ffs_sb_swap(oldsb,oldsb); 2218 if (oldsb->fs_magic == FS_UFS1_MAGIC && 2219 (oldsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) { 2220 oldsb->fs_csaddr = oldsb->fs_old_csaddr; 2221 oldsb->fs_size = oldsb->fs_old_size; 2222 oldsb->fs_dsize = oldsb->fs_old_dsize; 2223 oldsb->fs_cstotal.cs_ndir = oldsb->fs_old_cstotal.cs_ndir; 2224 oldsb->fs_cstotal.cs_nbfree = oldsb->fs_old_cstotal.cs_nbfree; 2225 oldsb->fs_cstotal.cs_nifree = oldsb->fs_old_cstotal.cs_nifree; 2226 oldsb->fs_cstotal.cs_nffree = oldsb->fs_old_cstotal.cs_nffree; 2227 /* any others? */ 2228 printf("Resizing with ffsv1 superblock\n"); 2229 } 2230 2231 oldsb->fs_qbmask = ~(int64_t) oldsb->fs_bmask; 2232 oldsb->fs_qfmask = ~(int64_t) oldsb->fs_fmask; 2233 if (oldsb->fs_ipg % FFS_INOPB(oldsb)) 2234 errx(EXIT_FAILURE, "ipg[%d] %% FFS_INOPB[%d] != 0", 2235 (int) oldsb->fs_ipg, (int) FFS_INOPB(oldsb)); 2236 /* The superblock is bigger than struct fs (there are trailing 2237 * tables, of non-fixed size); make sure we copy the whole 2238 * thing. SBLOCKSIZE may be an over-estimate, but we do this 2239 * just once, so being generous is cheap. */ 2240 memcpy(newsb, oldsb, SBLOCKSIZE); 2241 2242 if (progress) { 2243 progress_ttywidth(0); 2244 signal(SIGWINCH, progress_ttywidth); 2245 } 2246 2247 loadcgs(); 2248 2249 if (progress && !CheckOnlyFlag) { 2250 progress_switch(progress); 2251 progress_init(); 2252 } 2253 2254 if (newsize > FFS_FSBTODB(oldsb, oldsb->fs_size)) { 2255 if (CheckOnlyFlag) 2256 exit(checkonly()); 2257 grow(); 2258 } else if (newsize < FFS_FSBTODB(oldsb, oldsb->fs_size)) { 2259 if (is_ufs2) 2260 errx(EXIT_FAILURE,"shrinking not supported for ufs2"); 2261 if (CheckOnlyFlag) 2262 exit(checkonly()); 2263 shrink(); 2264 } else { 2265 if (CheckOnlyFlag) 2266 exit(checkonly()); 2267 if (verbose) 2268 printf("No change requested: already %" PRId64 2269 " blocks\n", (int64_t)oldsb->fs_size); 2270 } 2271 2272 flush_cgs(); 2273 write_sbs(); 2274 if (isplainfile()) 2275 ftruncate(fd,newsize * DEV_BSIZE); 2276 return 0; 2277 } 2278 2279 static void 2280 usage(void) 2281 { 2282 2283 (void)fprintf(stderr, "usage: %s [-cvy] [-s size] special\n", 2284 getprogname()); 2285 exit(EXIT_FAILURE); 2286 } 2287