1 /* $NetBSD: resize_ffs.c,v 1.54 2019/04/21 11:45:08 maya Exp $ */ 2 /* From sources sent on February 17, 2003 */ 3 /*- 4 * As its sole author, I explicitly place this code in the public 5 * domain. Anyone may use it for any purpose (though I would 6 * appreciate credit where it is due). 7 * 8 * der Mouse 9 * 10 * mouse@rodents.montreal.qc.ca 11 * 7D C8 61 52 5D E7 2D 39 4E F1 31 3E E8 B3 27 4B 12 */ 13 /* 14 * resize_ffs: 15 * 16 * Resize a file system. Is capable of both growing and shrinking. 17 * 18 * Usage: resize_ffs [-s newsize] [-y] file_system 19 * 20 * Example: resize_ffs -s 29574 /dev/rsd1e 21 * 22 * newsize is in DEV_BSIZE units (ie, disk sectors, usually 512 bytes 23 * each). 24 * 25 * Note: this currently requires gcc to build, since it is written 26 * depending on gcc-specific features, notably nested function 27 * definitions (which in at least a few cases depend on the lexical 28 * scoping gcc provides, so they can't be trivially moved outside). 29 * 30 * Many thanks go to John Kohl <jtk@NetBSD.org> for finding bugs: the 31 * one responsible for the "realloccgblk: can't find blk in cyl" 32 * problem and a more minor one which left fs_dsize wrong when 33 * shrinking. (These actually indicate bugs in fsck too - it should 34 * have caught and fixed them.) 35 * 36 */ 37 38 #include <sys/cdefs.h> 39 __RCSID("$NetBSD: resize_ffs.c,v 1.54 2019/04/21 11:45:08 maya Exp $"); 40 41 #include <sys/disk.h> 42 #include <sys/disklabel.h> 43 #include <sys/dkio.h> 44 #include <sys/ioctl.h> 45 #include <sys/stat.h> 46 #include <sys/mman.h> 47 #include <sys/param.h> /* MAXFRAG */ 48 #include <ufs/ffs/fs.h> 49 #include <ufs/ffs/ffs_extern.h> 50 #include <ufs/ufs/dir.h> 51 #include <ufs/ufs/dinode.h> 52 #include <ufs/ufs/ufs_bswap.h> /* ufs_rw32 */ 53 54 #include <err.h> 55 #include <errno.h> 56 #include <fcntl.h> 57 #include <stdio.h> 58 #include <stdlib.h> 59 #include <strings.h> 60 #include <unistd.h> 61 62 #include "progress.h" 63 64 /* new size of file system, in sectors */ 65 static int64_t newsize; 66 67 /* fd open onto disk device or file */ 68 static int fd; 69 70 /* disk device or file path */ 71 char *special; 72 73 /* must we break up big I/O operations - see checksmallio() */ 74 static int smallio; 75 76 /* size of a cg, in bytes, rounded up to a frag boundary */ 77 static int cgblksz; 78 79 /* possible superblock localtions */ 80 static int search[] = SBLOCKSEARCH; 81 /* location of the superblock */ 82 static off_t where; 83 84 /* Superblocks. */ 85 static struct fs *oldsb; /* before we started */ 86 static struct fs *newsb; /* copy to work with */ 87 /* Buffer to hold the above. Make sure it's aligned correctly. */ 88 static char sbbuf[2 * SBLOCKSIZE] 89 __attribute__((__aligned__(__alignof__(struct fs)))); 90 91 union dinode { 92 struct ufs1_dinode dp1; 93 struct ufs2_dinode dp2; 94 }; 95 #define DIP(dp, field) \ 96 ((is_ufs2) ? \ 97 (dp)->dp2.field : (dp)->dp1.field) 98 99 #define DIP_ASSIGN(dp, field, value) \ 100 do { \ 101 if (is_ufs2) \ 102 (dp)->dp2.field = (value); \ 103 else \ 104 (dp)->dp1.field = (value); \ 105 } while (0) 106 107 /* a cg's worth of brand new squeaky-clean inodes */ 108 static struct ufs1_dinode *zinodes1; 109 static struct ufs2_dinode *zinodes2; 110 111 /* pointers to the in-core cgs, read off disk and possibly modified */ 112 static struct cg **cgs; 113 114 /* pointer to csum array - the stuff pointed to on-disk by fs_csaddr */ 115 static struct csum *csums; 116 117 /* per-cg flags, indexed by cg number */ 118 static unsigned char *cgflags; 119 #define CGF_DIRTY 0x01 /* needs to be written to disk */ 120 #define CGF_BLKMAPS 0x02 /* block bitmaps need rebuilding */ 121 #define CGF_INOMAPS 0x04 /* inode bitmaps need rebuilding */ 122 123 /* when shrinking, these two arrays record how we want blocks to move. */ 124 /* if blkmove[i] is j, the frag that started out as frag #i should end */ 125 /* up as frag #j. inomove[i]=j means, similarly, that the inode that */ 126 /* started out as inode i should end up as inode j. */ 127 static unsigned int *blkmove; 128 static unsigned int *inomove; 129 130 /* in-core copies of all inodes in the fs, indexed by inumber */ 131 union dinode *inodes; 132 133 void *ibuf; /* ptr to fs block-sized buffer for reading/writing inodes */ 134 135 /* byteswapped inodes */ 136 union dinode *sinodes; 137 138 /* per-inode flags, indexed by inumber */ 139 static unsigned char *iflags; 140 #define IF_DIRTY 0x01 /* needs to be written to disk */ 141 #define IF_BDIRTY 0x02 /* like DIRTY, but is set on first inode in a 142 * block of inodes, and applies to the whole 143 * block. */ 144 145 /* resize_ffs works directly on dinodes, adapt blksize() */ 146 #define dblksize(fs, dip, lbn, filesize) \ 147 (((lbn) >= UFS_NDADDR || (uint64_t)(filesize) >= ffs_lblktosize(fs, (lbn) + 1)) \ 148 ? (fs)->fs_bsize \ 149 : (ffs_fragroundup(fs, ffs_blkoff(fs, (filesize))))) 150 151 152 /* 153 * Number of disk sectors per block/fragment 154 */ 155 #define NSPB(fs) (FFS_FSBTODB((fs),1) << (fs)->fs_fragshift) 156 #define NSPF(fs) (FFS_FSBTODB((fs),1)) 157 158 /* global flags */ 159 int is_ufs2 = 0; 160 int needswap = 0; 161 int verbose = 0; 162 int progress = 0; 163 164 static void usage(void) __dead; 165 166 /* 167 * See if we need to break up large I/O operations. This should never 168 * be needed, but under at least one <version,platform> combination, 169 * large enough disk transfers to the raw device hang. So if we're 170 * talking to a character special device, play it safe; in this case, 171 * readat() and writeat() break everything up into pieces no larger 172 * than 8K, doing multiple syscalls for larger operations. 173 */ 174 static void 175 checksmallio(void) 176 { 177 struct stat stb; 178 179 fstat(fd, &stb); 180 smallio = ((stb.st_mode & S_IFMT) == S_IFCHR); 181 } 182 183 static int 184 isplainfile(void) 185 { 186 struct stat stb; 187 188 fstat(fd, &stb); 189 return S_ISREG(stb.st_mode); 190 } 191 /* 192 * Read size bytes starting at blkno into buf. blkno is in DEV_BSIZE 193 * units, ie, after FFS_FSBTODB(); size is in bytes. 194 */ 195 static void 196 readat(off_t blkno, void *buf, int size) 197 { 198 /* Seek to the correct place. */ 199 if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0) 200 err(EXIT_FAILURE, "lseek failed"); 201 202 /* See if we have to break up the transfer... */ 203 if (smallio) { 204 char *bp; /* pointer into buf */ 205 int left; /* bytes left to go */ 206 int n; /* number to do this time around */ 207 int rv; /* syscall return value */ 208 bp = buf; 209 left = size; 210 while (left > 0) { 211 n = (left > 8192) ? 8192 : left; 212 rv = read(fd, bp, n); 213 if (rv < 0) 214 err(EXIT_FAILURE, "read failed"); 215 if (rv != n) 216 errx(EXIT_FAILURE, 217 "read: wanted %d, got %d", n, rv); 218 bp += n; 219 left -= n; 220 } 221 } else { 222 int rv; 223 rv = read(fd, buf, size); 224 if (rv < 0) 225 err(EXIT_FAILURE, "read failed"); 226 if (rv != size) 227 errx(EXIT_FAILURE, "read: wanted %d, got %d", 228 size, rv); 229 } 230 } 231 /* 232 * Write size bytes from buf starting at blkno. blkno is in DEV_BSIZE 233 * units, ie, after FFS_FSBTODB(); size is in bytes. 234 */ 235 static void 236 writeat(off_t blkno, const void *buf, int size) 237 { 238 /* Seek to the correct place. */ 239 if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0) 240 err(EXIT_FAILURE, "lseek failed"); 241 /* See if we have to break up the transfer... */ 242 if (smallio) { 243 const char *bp; /* pointer into buf */ 244 int left; /* bytes left to go */ 245 int n; /* number to do this time around */ 246 int rv; /* syscall return value */ 247 bp = buf; 248 left = size; 249 while (left > 0) { 250 n = (left > 8192) ? 8192 : left; 251 rv = write(fd, bp, n); 252 if (rv < 0) 253 err(EXIT_FAILURE, "write failed"); 254 if (rv != n) 255 errx(EXIT_FAILURE, 256 "write: wanted %d, got %d", n, rv); 257 bp += n; 258 left -= n; 259 } 260 } else { 261 int rv; 262 rv = write(fd, buf, size); 263 if (rv < 0) 264 err(EXIT_FAILURE, "write failed"); 265 if (rv != size) 266 errx(EXIT_FAILURE, 267 "write: wanted %d, got %d", size, rv); 268 } 269 } 270 /* 271 * Never-fail versions of malloc() and realloc(), and an allocation 272 * routine (which also never fails) for allocating memory that will 273 * never be freed until exit. 274 */ 275 276 /* 277 * Never-fail malloc. 278 */ 279 static void * 280 nfmalloc(size_t nb, const char *tag) 281 { 282 void *rv; 283 284 rv = malloc(nb); 285 if (rv) 286 return (rv); 287 err(EXIT_FAILURE, "Can't allocate %lu bytes for %s", 288 (unsigned long int) nb, tag); 289 } 290 /* 291 * Never-fail realloc. 292 */ 293 static void * 294 nfrealloc(void *blk, size_t nb, const char *tag) 295 { 296 void *rv; 297 298 rv = realloc(blk, nb); 299 if (rv) 300 return (rv); 301 err(EXIT_FAILURE, "Can't re-allocate %lu bytes for %s", 302 (unsigned long int) nb, tag); 303 } 304 /* 305 * Allocate memory that will never be freed or reallocated. Arguably 306 * this routine should handle small allocations by chopping up pages, 307 * but that's not worth the bother; it's not called more than a 308 * handful of times per run, and if the allocations are that small the 309 * waste in giving each one its own page is ignorable. 310 */ 311 static void * 312 alloconce(size_t nb, const char *tag) 313 { 314 void *rv; 315 316 rv = mmap(0, nb, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0); 317 if (rv != MAP_FAILED) 318 return (rv); 319 err(EXIT_FAILURE, "Can't map %lu bytes for %s", 320 (unsigned long int) nb, tag); 321 } 322 /* 323 * Load the cgs and csums off disk. Also allocates the space to load 324 * them into and initializes the per-cg flags. 325 */ 326 static void 327 loadcgs(void) 328 { 329 int cg; 330 char *cgp; 331 332 cgblksz = roundup(oldsb->fs_cgsize, oldsb->fs_fsize); 333 cgs = nfmalloc(oldsb->fs_ncg * sizeof(*cgs), "cg pointers"); 334 cgp = alloconce(oldsb->fs_ncg * cgblksz, "cgs"); 335 cgflags = nfmalloc(oldsb->fs_ncg, "cg flags"); 336 csums = nfmalloc(oldsb->fs_cssize, "cg summary"); 337 for (cg = 0; cg < oldsb->fs_ncg; cg++) { 338 cgs[cg] = (struct cg *) cgp; 339 readat(FFS_FSBTODB(oldsb, cgtod(oldsb, cg)), cgp, cgblksz); 340 if (needswap) 341 ffs_cg_swap(cgs[cg],cgs[cg],oldsb); 342 cgflags[cg] = 0; 343 cgp += cgblksz; 344 } 345 readat(FFS_FSBTODB(oldsb, oldsb->fs_csaddr), csums, oldsb->fs_cssize); 346 if (needswap) 347 ffs_csum_swap(csums,csums,oldsb->fs_cssize); 348 } 349 /* 350 * Set n bits, starting with bit #base, in the bitmap pointed to by 351 * bitvec (which is assumed to be large enough to include bits base 352 * through base+n-1). 353 */ 354 static void 355 set_bits(unsigned char *bitvec, unsigned int base, unsigned int n) 356 { 357 if (n < 1) 358 return; /* nothing to do */ 359 if (base & 7) { /* partial byte at beginning */ 360 if (n <= 8 - (base & 7)) { /* entirely within one byte */ 361 bitvec[base >> 3] |= (~((~0U) << n)) << (base & 7); 362 return; 363 } 364 bitvec[base >> 3] |= (~0U) << (base & 7); 365 n -= 8 - (base & 7); 366 base = (base & ~7) + 8; 367 } 368 if (n >= 8) { /* do full bytes */ 369 memset(bitvec + (base >> 3), 0xff, n >> 3); 370 base += n & ~7; 371 n &= 7; 372 } 373 if (n) { /* partial byte at end */ 374 bitvec[base >> 3] |= ~((~0U) << n); 375 } 376 } 377 /* 378 * Clear n bits, starting with bit #base, in the bitmap pointed to by 379 * bitvec (which is assumed to be large enough to include bits base 380 * through base+n-1). Code parallels set_bits(). 381 */ 382 static void 383 clr_bits(unsigned char *bitvec, int base, int n) 384 { 385 if (n < 1) 386 return; 387 if (base & 7) { 388 if (n <= 8 - (base & 7)) { 389 bitvec[base >> 3] &= ~((~((~0U) << n)) << (base & 7)); 390 return; 391 } 392 bitvec[base >> 3] &= ~((~0U) << (base & 7)); 393 n -= 8 - (base & 7); 394 base = (base & ~7) + 8; 395 } 396 if (n >= 8) { 397 memset(bitvec + (base >> 3), 0, n >> 3); 398 base += n & ~7; 399 n &= 7; 400 } 401 if (n) { 402 bitvec[base >> 3] &= (~0U) << n; 403 } 404 } 405 /* 406 * Test whether bit #bit is set in the bitmap pointed to by bitvec. 407 */ 408 static int 409 bit_is_set(unsigned char *bitvec, int bit) 410 { 411 return (bitvec[bit >> 3] & (1 << (bit & 7))); 412 } 413 /* 414 * Test whether bit #bit is clear in the bitmap pointed to by bitvec. 415 */ 416 static int 417 bit_is_clr(unsigned char *bitvec, int bit) 418 { 419 return (!bit_is_set(bitvec, bit)); 420 } 421 /* 422 * Test whether a whole block of bits is set in a bitmap. This is 423 * designed for testing (aligned) disk blocks in a bit-per-frag 424 * bitmap; it has assumptions wired into it based on that, essentially 425 * that the entire block fits into a single byte. This returns true 426 * iff _all_ the bits are set; it is not just the complement of 427 * blk_is_clr on the same arguments (unless blkfrags==1). 428 */ 429 static int 430 blk_is_set(unsigned char *bitvec, int blkbase, int blkfrags) 431 { 432 unsigned int mask; 433 434 mask = (~((~0U) << blkfrags)) << (blkbase & 7); 435 return ((bitvec[blkbase >> 3] & mask) == mask); 436 } 437 /* 438 * Test whether a whole block of bits is clear in a bitmap. See 439 * blk_is_set (above) for assumptions. This returns true iff _all_ 440 * the bits are clear; it is not just the complement of blk_is_set on 441 * the same arguments (unless blkfrags==1). 442 */ 443 static int 444 blk_is_clr(unsigned char *bitvec, int blkbase, int blkfrags) 445 { 446 unsigned int mask; 447 448 mask = (~((~0U) << blkfrags)) << (blkbase & 7); 449 return ((bitvec[blkbase >> 3] & mask) == 0); 450 } 451 /* 452 * Initialize a new cg. Called when growing. Assumes memory has been 453 * allocated but not otherwise set up. This code sets the fields of 454 * the cg, initializes the bitmaps (and cluster summaries, if 455 * applicable), updates both per-cylinder summary info and the global 456 * summary info in newsb; it also writes out new inodes for the cg. 457 * 458 * This code knows it can never be called for cg 0, which makes it a 459 * bit simpler than it would otherwise be. 460 */ 461 static void 462 initcg(int cgn) 463 { 464 struct cg *cg; /* The in-core cg, of course */ 465 int64_t base; /* Disk address of cg base */ 466 int64_t dlow; /* Size of pre-cg data area */ 467 int64_t dhigh; /* Offset of post-inode data area, from base */ 468 int64_t dmax; /* Offset of end of post-inode data area */ 469 int i; /* Generic loop index */ 470 int n; /* Generic count */ 471 int start; /* start of cg maps */ 472 473 cg = cgs[cgn]; 474 /* Place the data areas */ 475 base = cgbase(newsb, cgn); 476 dlow = cgsblock(newsb, cgn) - base; 477 dhigh = cgdmin(newsb, cgn) - base; 478 dmax = newsb->fs_size - base; 479 if (dmax > newsb->fs_fpg) 480 dmax = newsb->fs_fpg; 481 start = (unsigned char *)&cg->cg_space[0] - (unsigned char *) cg; 482 /* 483 * Clear out the cg - assumes all-0-bytes is the correct way 484 * to initialize fields we don't otherwise touch, which is 485 * perhaps not the right thing to do, but it's what fsck and 486 * mkfs do. 487 */ 488 memset(cg, 0, newsb->fs_cgsize); 489 if (newsb->fs_old_flags & FS_FLAGS_UPDATED) 490 cg->cg_time = newsb->fs_time; 491 cg->cg_magic = CG_MAGIC; 492 cg->cg_cgx = cgn; 493 cg->cg_niblk = newsb->fs_ipg; 494 cg->cg_ndblk = dmax; 495 496 if (is_ufs2) { 497 cg->cg_time = newsb->fs_time; 498 cg->cg_initediblk = newsb->fs_ipg < 2 * FFS_INOPB(newsb) ? 499 newsb->fs_ipg : 2 * FFS_INOPB(newsb); 500 cg->cg_iusedoff = start; 501 } else { 502 cg->cg_old_time = newsb->fs_time; 503 cg->cg_old_niblk = cg->cg_niblk; 504 cg->cg_niblk = 0; 505 cg->cg_initediblk = 0; 506 507 508 cg->cg_old_ncyl = newsb->fs_old_cpg; 509 /* Update the cg_old_ncyl value for the last cylinder. */ 510 if (cgn == newsb->fs_ncg - 1) { 511 if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) 512 cg->cg_old_ncyl = newsb->fs_old_ncyl % 513 newsb->fs_old_cpg; 514 } 515 516 /* Set up the bitmap pointers. We have to be careful 517 * to lay out the cg _exactly_ the way mkfs and fsck 518 * do it, since fsck compares the _entire_ cg against 519 * a recomputed cg, and whines if there is any 520 * mismatch, including the bitmap offsets. */ 521 /* XXX update this comment when fsck is fixed */ 522 cg->cg_old_btotoff = start; 523 cg->cg_old_boff = cg->cg_old_btotoff 524 + (newsb->fs_old_cpg * sizeof(int32_t)); 525 cg->cg_iusedoff = cg->cg_old_boff + 526 (newsb->fs_old_cpg * newsb->fs_old_nrpos * sizeof(int16_t)); 527 } 528 cg->cg_freeoff = cg->cg_iusedoff + howmany(newsb->fs_ipg, NBBY); 529 if (newsb->fs_contigsumsize > 0) { 530 cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag; 531 cg->cg_clustersumoff = cg->cg_freeoff + 532 howmany(newsb->fs_fpg, NBBY) - sizeof(int32_t); 533 cg->cg_clustersumoff = 534 roundup(cg->cg_clustersumoff, sizeof(int32_t)); 535 cg->cg_clusteroff = cg->cg_clustersumoff + 536 ((newsb->fs_contigsumsize + 1) * sizeof(int32_t)); 537 cg->cg_nextfreeoff = cg->cg_clusteroff + 538 howmany(ffs_fragstoblks(newsb,newsb->fs_fpg), NBBY); 539 n = dlow / newsb->fs_frag; 540 if (n > 0) { 541 set_bits(cg_clustersfree(cg, 0), 0, n); 542 cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ? 543 newsb->fs_contigsumsize : n]++; 544 } 545 } else { 546 cg->cg_nextfreeoff = cg->cg_freeoff + 547 howmany(newsb->fs_fpg, NBBY); 548 } 549 /* Mark the data areas as free; everything else is marked busy by the 550 * memset() up at the top. */ 551 set_bits(cg_blksfree(cg, 0), 0, dlow); 552 set_bits(cg_blksfree(cg, 0), dhigh, dmax - dhigh); 553 /* Initialize summary info */ 554 cg->cg_cs.cs_ndir = 0; 555 cg->cg_cs.cs_nifree = newsb->fs_ipg; 556 cg->cg_cs.cs_nbfree = dlow / newsb->fs_frag; 557 cg->cg_cs.cs_nffree = 0; 558 559 /* This is the simplest way of doing this; we perhaps could 560 * compute the correct cg_blktot()[] and cg_blks()[] values 561 * other ways, but it would be complicated and hardly seems 562 * worth the effort. (The reason there isn't 563 * frag-at-beginning and frag-at-end code here, like the code 564 * below for the post-inode data area, is that the pre-sb data 565 * area always starts at 0, and thus is block-aligned, and 566 * always ends at the sb, which is block-aligned.) */ 567 if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) { 568 int64_t di; 569 570 for (di = 0; di < dlow; di += newsb->fs_frag) { 571 old_cg_blktot(cg, 0)[old_cbtocylno(newsb, di)]++; 572 old_cg_blks(newsb, cg, 573 old_cbtocylno(newsb, di), 574 0)[old_cbtorpos(newsb, di)]++; 575 } 576 } 577 578 /* Deal with a partial block at the beginning of the post-inode area. 579 * I'm not convinced this can happen - I think the inodes are always 580 * block-aligned and always an integral number of blocks - but it's 581 * cheap to do the right thing just in case. */ 582 if (dhigh % newsb->fs_frag) { 583 n = newsb->fs_frag - (dhigh % newsb->fs_frag); 584 cg->cg_frsum[n]++; 585 cg->cg_cs.cs_nffree += n; 586 dhigh += n; 587 } 588 n = (dmax - dhigh) / newsb->fs_frag; 589 /* We have n full-size blocks in the post-inode data area. */ 590 if (n > 0) { 591 cg->cg_cs.cs_nbfree += n; 592 if (newsb->fs_contigsumsize > 0) { 593 i = dhigh / newsb->fs_frag; 594 set_bits(cg_clustersfree(cg, 0), i, n); 595 cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ? 596 newsb->fs_contigsumsize : n]++; 597 } 598 for (i = n; i > 0; i--) { 599 if (is_ufs2 == 0) { 600 old_cg_blktot(cg, 0)[old_cbtocylno(newsb, 601 dhigh)]++; 602 old_cg_blks(newsb, cg, 603 old_cbtocylno(newsb, dhigh), 604 0)[old_cbtorpos(newsb, 605 dhigh)]++; 606 } 607 dhigh += newsb->fs_frag; 608 } 609 } 610 /* Deal with any leftover frag at the end of the cg. */ 611 i = dmax - dhigh; 612 if (i) { 613 cg->cg_frsum[i]++; 614 cg->cg_cs.cs_nffree += i; 615 } 616 /* Update the csum info. */ 617 csums[cgn] = cg->cg_cs; 618 newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree; 619 newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree; 620 newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree; 621 if (is_ufs2) { 622 /* Write out the cleared inodes. */ 623 writeat(FFS_FSBTODB(newsb, cgimin(newsb, cgn)), zinodes2, 624 cg->cg_initediblk * sizeof(*zinodes2)); 625 } else { 626 /* Write out the cleared inodes. */ 627 writeat(FFS_FSBTODB(newsb, cgimin(newsb, cgn)), zinodes1, 628 newsb->fs_ipg * sizeof(*zinodes1)); 629 } 630 /* Dirty the cg. */ 631 cgflags[cgn] |= CGF_DIRTY; 632 } 633 /* 634 * Find free space, at least nfrags consecutive frags of it. Pays no 635 * attention to block boundaries, but refuses to straddle cg 636 * boundaries, even if the disk blocks involved are in fact 637 * consecutive. Return value is the frag number of the first frag of 638 * the block, or -1 if no space was found. Uses newsb for sb values, 639 * and assumes the cgs[] structures correctly describe the area to be 640 * searched. 641 * 642 * XXX is there a bug lurking in the ignoring of block boundaries by 643 * the routine used by fragmove() in evict_data()? Can an end-of-file 644 * frag legally straddle a block boundary? If not, this should be 645 * cloned and fixed to stop at block boundaries for that use. The 646 * current one may still be needed for csum info motion, in case that 647 * takes up more than a whole block (is the csum info allowed to begin 648 * partway through a block and continue into the following block?). 649 * 650 * If we wrap off the end of the file system back to the beginning, we 651 * can end up searching the end of the file system twice. I ignore 652 * this inefficiency, since if that happens we're going to croak with 653 * a no-space error anyway, so it happens at most once. 654 */ 655 static int 656 find_freespace(unsigned int nfrags) 657 { 658 static int hand = 0; /* hand rotates through all frags in the fs */ 659 int cgsize; /* size of the cg hand currently points into */ 660 int cgn; /* number of cg hand currently points into */ 661 int fwc; /* frag-within-cg number of frag hand points 662 * to */ 663 unsigned int run; /* length of run of free frags seen so far */ 664 int secondpass; /* have we wrapped from end of fs to 665 * beginning? */ 666 unsigned char *bits; /* cg_blksfree()[] for cg hand points into */ 667 668 cgn = dtog(newsb, hand); 669 fwc = dtogd(newsb, hand); 670 secondpass = (hand == 0); 671 run = 0; 672 bits = cg_blksfree(cgs[cgn], 0); 673 cgsize = cgs[cgn]->cg_ndblk; 674 while (1) { 675 if (bit_is_set(bits, fwc)) { 676 run++; 677 if (run >= nfrags) 678 return (hand + 1 - run); 679 } else { 680 run = 0; 681 } 682 hand++; 683 fwc++; 684 if (fwc >= cgsize) { 685 fwc = 0; 686 cgn++; 687 if (cgn >= newsb->fs_ncg) { 688 hand = 0; 689 if (secondpass) 690 return (-1); 691 secondpass = 1; 692 cgn = 0; 693 } 694 bits = cg_blksfree(cgs[cgn], 0); 695 cgsize = cgs[cgn]->cg_ndblk; 696 run = 0; 697 } 698 } 699 } 700 /* 701 * Find a free block of disk space. Finds an entire block of frags, 702 * all of which are free. Return value is the frag number of the 703 * first frag of the block, or -1 if no space was found. Uses newsb 704 * for sb values, and assumes the cgs[] structures correctly describe 705 * the area to be searched. 706 * 707 * See find_freespace(), above, for remarks about hand wrapping around. 708 */ 709 static int 710 find_freeblock(void) 711 { 712 static int hand = 0; /* hand rotates through all frags in fs */ 713 int cgn; /* cg number of cg hand points into */ 714 int fwc; /* frag-within-cg number of frag hand points 715 * to */ 716 int cgsize; /* size of cg hand points into */ 717 int secondpass; /* have we wrapped from end to beginning? */ 718 unsigned char *bits; /* cg_blksfree()[] for cg hand points into */ 719 720 cgn = dtog(newsb, hand); 721 fwc = dtogd(newsb, hand); 722 secondpass = (hand == 0); 723 bits = cg_blksfree(cgs[cgn], 0); 724 cgsize = ffs_blknum(newsb, cgs[cgn]->cg_ndblk); 725 while (1) { 726 if (blk_is_set(bits, fwc, newsb->fs_frag)) 727 return (hand); 728 fwc += newsb->fs_frag; 729 hand += newsb->fs_frag; 730 if (fwc >= cgsize) { 731 fwc = 0; 732 cgn++; 733 if (cgn >= newsb->fs_ncg) { 734 hand = 0; 735 if (secondpass) 736 return (-1); 737 secondpass = 1; 738 cgn = 0; 739 } 740 bits = cg_blksfree(cgs[cgn], 0); 741 cgsize = ffs_blknum(newsb, cgs[cgn]->cg_ndblk); 742 } 743 } 744 } 745 /* 746 * Find a free inode, returning its inumber or -1 if none was found. 747 * Uses newsb for sb values, and assumes the cgs[] structures 748 * correctly describe the area to be searched. 749 * 750 * See find_freespace(), above, for remarks about hand wrapping around. 751 */ 752 static int 753 find_freeinode(void) 754 { 755 static int hand = 0; /* hand rotates through all inodes in fs */ 756 int cgn; /* cg number of cg hand points into */ 757 int iwc; /* inode-within-cg number of inode hand points 758 * to */ 759 int secondpass; /* have we wrapped from end to beginning? */ 760 unsigned char *bits; /* cg_inosused()[] for cg hand points into */ 761 762 cgn = hand / newsb->fs_ipg; 763 iwc = hand % newsb->fs_ipg; 764 secondpass = (hand == 0); 765 bits = cg_inosused(cgs[cgn], 0); 766 while (1) { 767 if (bit_is_clr(bits, iwc)) 768 return (hand); 769 hand++; 770 iwc++; 771 if (iwc >= newsb->fs_ipg) { 772 iwc = 0; 773 cgn++; 774 if (cgn >= newsb->fs_ncg) { 775 hand = 0; 776 if (secondpass) 777 return (-1); 778 secondpass = 1; 779 cgn = 0; 780 } 781 bits = cg_inosused(cgs[cgn], 0); 782 } 783 } 784 } 785 /* 786 * Mark a frag as free. Sets the frag's bit in the cg_blksfree bitmap 787 * for the appropriate cg, and marks the cg as dirty. 788 */ 789 static void 790 free_frag(int fno) 791 { 792 int cgn; 793 794 cgn = dtog(newsb, fno); 795 set_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1); 796 cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS; 797 } 798 /* 799 * Allocate a frag. Clears the frag's bit in the cg_blksfree bitmap 800 * for the appropriate cg, and marks the cg as dirty. 801 */ 802 static void 803 alloc_frag(int fno) 804 { 805 int cgn; 806 807 cgn = dtog(newsb, fno); 808 clr_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1); 809 cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS; 810 } 811 /* 812 * Fix up the csum array. If shrinking, this involves freeing zero or 813 * more frags; if growing, it involves allocating them, or if the 814 * frags being grown into aren't free, finding space elsewhere for the 815 * csum info. (If the number of occupied frags doesn't change, 816 * nothing happens here.) 817 */ 818 static void 819 csum_fixup(void) 820 { 821 int nold; /* # frags in old csum info */ 822 int ntot; /* # frags in new csum info */ 823 int nnew; /* ntot-nold */ 824 int newloc; /* new location for csum info, if necessary */ 825 int i; /* generic loop index */ 826 int j; /* generic loop index */ 827 int f; /* "from" frag number, if moving */ 828 int t; /* "to" frag number, if moving */ 829 int cgn; /* cg number, used when shrinking */ 830 831 ntot = howmany(newsb->fs_cssize, newsb->fs_fsize); 832 nold = howmany(oldsb->fs_cssize, newsb->fs_fsize); 833 nnew = ntot - nold; 834 /* First, if there's no change in frag counts, it's easy. */ 835 if (nnew == 0) 836 return; 837 /* Next, if we're shrinking, it's almost as easy. Just free up any 838 * frags in the old area we no longer need. */ 839 if (nnew < 0) { 840 for ((i = newsb->fs_csaddr + ntot - 1), (j = nnew); 841 j < 0; 842 i--, j++) { 843 free_frag(i); 844 } 845 return; 846 } 847 /* We must be growing. Check to see that the new csum area fits 848 * within the file system. I think this can never happen, since for 849 * the csum area to grow, we must be adding at least one cg, so the 850 * old csum area can't be this close to the end of the new file system. 851 * But it's a cheap check. */ 852 /* XXX what if csum info is at end of cg and grows into next cg, what 853 * if it spills over onto the next cg's backup superblock? Can this 854 * happen? */ 855 if (newsb->fs_csaddr + ntot <= newsb->fs_size) { 856 /* Okay, it fits - now, see if the space we want is free. */ 857 for ((i = newsb->fs_csaddr + nold), (j = nnew); 858 j > 0; 859 i++, j--) { 860 cgn = dtog(newsb, i); 861 if (bit_is_clr(cg_blksfree(cgs[cgn], 0), 862 dtogd(newsb, i))) 863 break; 864 } 865 if (j <= 0) { 866 /* Win win - all the frags we want are free. Allocate 867 * 'em and we're all done. */ 868 for ((i = newsb->fs_csaddr + ntot - nnew), 869 (j = nnew); j > 0; i++, j--) { 870 alloc_frag(i); 871 } 872 return; 873 } 874 } 875 /* We have to move the csum info, sigh. Look for new space, free old 876 * space, and allocate new. Update fs_csaddr. We don't copy anything 877 * on disk at this point; the csum info will be written to the 878 * then-current fs_csaddr as part of the final flush. */ 879 newloc = find_freespace(ntot); 880 if (newloc < 0) 881 errx(EXIT_FAILURE, "Sorry, no space available for new csums"); 882 for (i = 0, f = newsb->fs_csaddr, t = newloc; i < ntot; i++, f++, t++) { 883 if (i < nold) { 884 free_frag(f); 885 } 886 alloc_frag(t); 887 } 888 newsb->fs_csaddr = newloc; 889 } 890 /* 891 * Recompute newsb->fs_dsize. Just scans all cgs, adding the number of 892 * data blocks in that cg to the total. 893 */ 894 static void 895 recompute_fs_dsize(void) 896 { 897 int i; 898 899 newsb->fs_dsize = 0; 900 for (i = 0; i < newsb->fs_ncg; i++) { 901 int64_t dlow; /* size of before-sb data area */ 902 int64_t dhigh; /* offset of post-inode data area */ 903 int64_t dmax; /* total size of cg */ 904 int64_t base; /* base of cg, since cgsblock() etc add it in */ 905 base = cgbase(newsb, i); 906 dlow = cgsblock(newsb, i) - base; 907 dhigh = cgdmin(newsb, i) - base; 908 dmax = newsb->fs_size - base; 909 if (dmax > newsb->fs_fpg) 910 dmax = newsb->fs_fpg; 911 newsb->fs_dsize += dlow + dmax - dhigh; 912 } 913 /* Space in cg 0 before cgsblock is boot area, not free space! */ 914 newsb->fs_dsize -= cgsblock(newsb, 0) - cgbase(newsb, 0); 915 /* And of course the csum info takes up space. */ 916 newsb->fs_dsize -= howmany(newsb->fs_cssize, newsb->fs_fsize); 917 } 918 /* 919 * Return the current time. We call this and assign, rather than 920 * calling time() directly, as insulation against OSes where fs_time 921 * is not a time_t. 922 */ 923 static time_t 924 timestamp(void) 925 { 926 time_t t; 927 928 time(&t); 929 return (t); 930 } 931 932 /* 933 * Calculate new filesystem geometry 934 * return 0 if geometry actually changed 935 */ 936 static int 937 makegeometry(int chatter) 938 { 939 940 /* Update the size. */ 941 newsb->fs_size = FFS_DBTOFSB(newsb, newsize); 942 if (is_ufs2) 943 newsb->fs_ncg = howmany(newsb->fs_size, newsb->fs_fpg); 944 else { 945 /* Update fs_old_ncyl and fs_ncg. */ 946 newsb->fs_old_ncyl = howmany(newsb->fs_size * NSPF(newsb), 947 newsb->fs_old_spc); 948 newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg); 949 } 950 951 /* Does the last cg end before the end of its inode area? There is no 952 * reason why this couldn't be handled, but it would complicate a lot 953 * of code (in all file system code - fsck, kernel, etc) because of the 954 * potential partial inode area, and the gain in space would be 955 * minimal, at most the pre-sb data area. */ 956 if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) { 957 newsb->fs_ncg--; 958 if (is_ufs2) 959 newsb->fs_size = newsb->fs_ncg * newsb->fs_fpg; 960 else { 961 newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg; 962 newsb->fs_size = (newsb->fs_old_ncyl * 963 newsb->fs_old_spc) / NSPF(newsb); 964 } 965 if (chatter || verbose) { 966 printf("Warning: last cylinder group is too small;\n"); 967 printf(" dropping it. New size = %lu.\n", 968 (unsigned long int) FFS_FSBTODB(newsb, newsb->fs_size)); 969 } 970 } 971 972 /* Did we actually not grow? (This can happen if newsize is less than 973 * a frag larger than the old size - unlikely, but no excuse to 974 * misbehave if it happens.) */ 975 if (newsb->fs_size == oldsb->fs_size) 976 return 1; 977 978 return 0; 979 } 980 981 982 /* 983 * Grow the file system. 984 */ 985 static void 986 grow(void) 987 { 988 int i; 989 990 if (makegeometry(1)) { 991 printf("New fs size %"PRIu64" = old fs size %"PRIu64 992 ", not growing.\n", newsb->fs_size, oldsb->fs_size); 993 return; 994 } 995 996 if (verbose) { 997 printf("Growing fs from %"PRIu64" blocks to %"PRIu64 998 " blocks.\n", oldsb->fs_size, newsb->fs_size); 999 } 1000 1001 /* Update the timestamp. */ 1002 newsb->fs_time = timestamp(); 1003 /* Allocate and clear the new-inode area, in case we add any cgs. */ 1004 if (is_ufs2) { 1005 zinodes2 = alloconce(newsb->fs_ipg * sizeof(*zinodes2), 1006 "zeroed inodes"); 1007 memset(zinodes2, 0, newsb->fs_ipg * sizeof(*zinodes2)); 1008 } else { 1009 zinodes1 = alloconce(newsb->fs_ipg * sizeof(*zinodes1), 1010 "zeroed inodes"); 1011 memset(zinodes1, 0, newsb->fs_ipg * sizeof(*zinodes1)); 1012 } 1013 1014 /* Check that the new last sector (frag, actually) is writable. Since 1015 * it's at least one frag larger than it used to be, we know we aren't 1016 * overwriting anything important by this. (The choice of sbbuf as 1017 * what to write is irrelevant; it's just something handy that's known 1018 * to be at least one frag in size.) */ 1019 writeat(FFS_FSBTODB(newsb,newsb->fs_size - 1), &sbbuf, newsb->fs_fsize); 1020 1021 /* Find out how big the csum area is, and realloc csums if bigger. */ 1022 newsb->fs_cssize = ffs_fragroundup(newsb, 1023 newsb->fs_ncg * sizeof(struct csum)); 1024 if (newsb->fs_cssize > oldsb->fs_cssize) 1025 csums = nfrealloc(csums, newsb->fs_cssize, "new cg summary"); 1026 /* If we're adding any cgs, realloc structures and set up the new 1027 cgs. */ 1028 if (newsb->fs_ncg > oldsb->fs_ncg) { 1029 char *cgp; 1030 cgs = nfrealloc(cgs, newsb->fs_ncg * sizeof(*cgs), 1031 "cg pointers"); 1032 cgflags = nfrealloc(cgflags, newsb->fs_ncg, "cg flags"); 1033 memset(cgflags + oldsb->fs_ncg, 0, 1034 newsb->fs_ncg - oldsb->fs_ncg); 1035 cgp = alloconce((newsb->fs_ncg - oldsb->fs_ncg) * cgblksz, 1036 "cgs"); 1037 for (i = oldsb->fs_ncg; i < newsb->fs_ncg; i++) { 1038 cgs[i] = (struct cg *) cgp; 1039 progress_bar(special, "grow cg", 1040 i - oldsb->fs_ncg, newsb->fs_ncg - oldsb->fs_ncg); 1041 initcg(i); 1042 cgp += cgblksz; 1043 } 1044 cgs[oldsb->fs_ncg - 1]->cg_old_ncyl = oldsb->fs_old_cpg; 1045 cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY; 1046 } 1047 /* If the old fs ended partway through a cg, we have to update the old 1048 * last cg (though possibly not to a full cg!). */ 1049 if (oldsb->fs_size % oldsb->fs_fpg) { 1050 struct cg *cg; 1051 int64_t newcgsize; 1052 int64_t prevcgtop; 1053 int64_t oldcgsize; 1054 cg = cgs[oldsb->fs_ncg - 1]; 1055 cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY | CGF_BLKMAPS; 1056 prevcgtop = oldsb->fs_fpg * (oldsb->fs_ncg - 1); 1057 newcgsize = newsb->fs_size - prevcgtop; 1058 if (newcgsize > newsb->fs_fpg) 1059 newcgsize = newsb->fs_fpg; 1060 oldcgsize = oldsb->fs_size % oldsb->fs_fpg; 1061 set_bits(cg_blksfree(cg, 0), oldcgsize, newcgsize - oldcgsize); 1062 cg->cg_old_ncyl = oldsb->fs_old_cpg; 1063 cg->cg_ndblk = newcgsize; 1064 } 1065 /* Fix up the csum info, if necessary. */ 1066 csum_fixup(); 1067 /* Make fs_dsize match the new reality. */ 1068 recompute_fs_dsize(); 1069 1070 progress_done(); 1071 } 1072 /* 1073 * Call (*fn)() for each inode, passing the inode and its inumber. The 1074 * number of cylinder groups is pased in, so this can be used to map 1075 * over either the old or the new file system's set of inodes. 1076 */ 1077 static void 1078 map_inodes(void (*fn) (union dinode * di, unsigned int, void *arg), 1079 int ncg, void *cbarg) { 1080 int i; 1081 int ni; 1082 1083 ni = oldsb->fs_ipg * ncg; 1084 for (i = 0; i < ni; i++) 1085 (*fn) (inodes + i, i, cbarg); 1086 } 1087 /* Values for the third argument to the map function for 1088 * map_inode_data_blocks. MDB_DATA indicates the block is contains 1089 * file data; MDB_INDIR_PRE and MDB_INDIR_POST indicate that it's an 1090 * indirect block. The MDB_INDIR_PRE call is made before the indirect 1091 * block pointers are followed and the pointed-to blocks scanned, 1092 * MDB_INDIR_POST after. 1093 */ 1094 #define MDB_DATA 1 1095 #define MDB_INDIR_PRE 2 1096 #define MDB_INDIR_POST 3 1097 1098 typedef void (*mark_callback_t) (off_t blocknum, unsigned int nfrags, 1099 unsigned int blksize, int opcode); 1100 1101 /* Helper function - handles a data block. Calls the callback 1102 * function and returns number of bytes occupied in file (actually, 1103 * rounded up to a frag boundary). The name is historical. */ 1104 static int 1105 markblk(mark_callback_t fn, union dinode * di, off_t bn, off_t o) 1106 { 1107 int sz; 1108 int nb; 1109 off_t filesize; 1110 1111 filesize = DIP(di,di_size); 1112 if (o >= filesize) 1113 return (0); 1114 sz = dblksize(newsb, di, ffs_lblkno(newsb, o), filesize); 1115 nb = (sz > filesize - o) ? filesize - o : sz; 1116 if (bn) 1117 (*fn) (bn, ffs_numfrags(newsb, sz), nb, MDB_DATA); 1118 return (sz); 1119 } 1120 /* Helper function - handles an indirect block. Makes the 1121 * MDB_INDIR_PRE callback for the indirect block, loops over the 1122 * pointers and recurses, and makes the MDB_INDIR_POST callback. 1123 * Returns the number of bytes occupied in file, as does markblk(). 1124 * For the sake of update_for_data_move(), we read the indirect block 1125 * _after_ making the _PRE callback. The name is historical. */ 1126 static off_t 1127 markiblk(mark_callback_t fn, union dinode * di, off_t bn, off_t o, int lev) 1128 { 1129 int i; 1130 unsigned k; 1131 off_t j, tot; 1132 static int32_t indirblk1[howmany(MAXBSIZE, sizeof(int32_t))]; 1133 static int32_t indirblk2[howmany(MAXBSIZE, sizeof(int32_t))]; 1134 static int32_t indirblk3[howmany(MAXBSIZE, sizeof(int32_t))]; 1135 static int32_t *indirblks[3] = { 1136 &indirblk1[0], &indirblk2[0], &indirblk3[0] 1137 }; 1138 1139 if (lev < 0) 1140 return (markblk(fn, di, bn, o)); 1141 if (bn == 0) { 1142 for (j = newsb->fs_bsize; 1143 lev >= 0; 1144 j *= FFS_NINDIR(newsb), lev--); 1145 return (j); 1146 } 1147 (*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_PRE); 1148 readat(FFS_FSBTODB(newsb, bn), indirblks[lev], newsb->fs_bsize); 1149 if (needswap) 1150 for (k = 0; k < howmany(MAXBSIZE, sizeof(int32_t)); k++) 1151 indirblks[lev][k] = bswap32(indirblks[lev][k]); 1152 tot = 0; 1153 for (i = 0; i < FFS_NINDIR(newsb); i++) { 1154 j = markiblk(fn, di, indirblks[lev][i], o, lev - 1); 1155 if (j == 0) 1156 break; 1157 o += j; 1158 tot += j; 1159 } 1160 (*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_POST); 1161 return (tot); 1162 } 1163 1164 1165 /* 1166 * Call (*fn)() for each data block for an inode. This routine assumes 1167 * the inode is known to be of a type that has data blocks (file, 1168 * directory, or non-fast symlink). The called function is: 1169 * 1170 * (*fn)(unsigned int blkno, unsigned int nf, unsigned int nb, int op) 1171 * 1172 * where blkno is the frag number, nf is the number of frags starting 1173 * at blkno (always <= fs_frag), nb is the number of bytes that belong 1174 * to the file (usually nf*fs_frag, often less for the last block/frag 1175 * of a file). 1176 */ 1177 static void 1178 map_inode_data_blocks(union dinode * di, mark_callback_t fn) 1179 { 1180 off_t o; /* offset within inode */ 1181 off_t inc; /* increment for o */ 1182 int b; /* index within di_db[] and di_ib[] arrays */ 1183 1184 /* Scan the direct blocks... */ 1185 o = 0; 1186 for (b = 0; b < UFS_NDADDR; b++) { 1187 inc = markblk(fn, di, DIP(di,di_db[b]), o); 1188 if (inc == 0) 1189 break; 1190 o += inc; 1191 } 1192 /* ...and the indirect blocks. */ 1193 if (inc) { 1194 for (b = 0; b < UFS_NIADDR; b++) { 1195 inc = markiblk(fn, di, DIP(di,di_ib[b]), o, b); 1196 if (inc == 0) 1197 return; 1198 o += inc; 1199 } 1200 } 1201 } 1202 1203 static void 1204 dblk_callback(union dinode * di, unsigned int inum, void *arg) 1205 { 1206 mark_callback_t fn; 1207 off_t filesize; 1208 1209 filesize = DIP(di,di_size); 1210 fn = (mark_callback_t) arg; 1211 switch (DIP(di,di_mode) & IFMT) { 1212 case IFLNK: 1213 if (filesize <= newsb->fs_maxsymlinklen) { 1214 break; 1215 } 1216 /* FALLTHROUGH */ 1217 case IFDIR: 1218 case IFREG: 1219 map_inode_data_blocks(di, fn); 1220 break; 1221 } 1222 } 1223 /* 1224 * Make a callback call, a la map_inode_data_blocks, for all data 1225 * blocks in the entire fs. This is used only once, in 1226 * update_for_data_move, but it's out at top level because the complex 1227 * downward-funarg nesting that would otherwise result seems to give 1228 * gcc gastric distress. 1229 */ 1230 static void 1231 map_data_blocks(mark_callback_t fn, int ncg) 1232 { 1233 map_inodes(&dblk_callback, ncg, (void *) fn); 1234 } 1235 /* 1236 * Initialize the blkmove array. 1237 */ 1238 static void 1239 blkmove_init(void) 1240 { 1241 int i; 1242 1243 blkmove = alloconce(oldsb->fs_size * sizeof(*blkmove), "blkmove"); 1244 for (i = 0; i < oldsb->fs_size; i++) 1245 blkmove[i] = i; 1246 } 1247 /* 1248 * Load the inodes off disk. Allocates the structures and initializes 1249 * them - the inodes from disk, the flags to zero. 1250 */ 1251 static void 1252 loadinodes(void) 1253 { 1254 int imax, ino, i, j; 1255 struct ufs1_dinode *dp1 = NULL; 1256 struct ufs2_dinode *dp2 = NULL; 1257 1258 /* read inodes one fs block at a time and copy them */ 1259 1260 inodes = alloconce(oldsb->fs_ncg * oldsb->fs_ipg * 1261 sizeof(union dinode), "inodes"); 1262 iflags = alloconce(oldsb->fs_ncg * oldsb->fs_ipg, "inode flags"); 1263 memset(iflags, 0, oldsb->fs_ncg * oldsb->fs_ipg); 1264 1265 ibuf = nfmalloc(oldsb->fs_bsize,"inode block buf"); 1266 if (is_ufs2) 1267 dp2 = (struct ufs2_dinode *)ibuf; 1268 else 1269 dp1 = (struct ufs1_dinode *)ibuf; 1270 1271 for (ino = 0,imax = oldsb->fs_ipg * oldsb->fs_ncg; ino < imax; ) { 1272 readat(FFS_FSBTODB(oldsb, ino_to_fsba(oldsb, ino)), ibuf, 1273 oldsb->fs_bsize); 1274 1275 for (i = 0; i < oldsb->fs_inopb; i++) { 1276 if (is_ufs2) { 1277 if (needswap) { 1278 ffs_dinode2_swap(&(dp2[i]), &(dp2[i])); 1279 for (j = 0; j < UFS_NDADDR; j++) 1280 dp2[i].di_db[j] = 1281 bswap32(dp2[i].di_db[j]); 1282 for (j = 0; j < UFS_NIADDR; j++) 1283 dp2[i].di_ib[j] = 1284 bswap32(dp2[i].di_ib[j]); 1285 } 1286 memcpy(&inodes[ino].dp2, &dp2[i], 1287 sizeof(inodes[ino].dp2)); 1288 } else { 1289 if (needswap) { 1290 ffs_dinode1_swap(&(dp1[i]), &(dp1[i])); 1291 for (j = 0; j < UFS_NDADDR; j++) 1292 dp1[i].di_db[j] = 1293 bswap32(dp1[i].di_db[j]); 1294 for (j = 0; j < UFS_NIADDR; j++) 1295 dp1[i].di_ib[j] = 1296 bswap32(dp1[i].di_ib[j]); 1297 } 1298 memcpy(&inodes[ino].dp1, &dp1[i], 1299 sizeof(inodes[ino].dp1)); 1300 } 1301 if (++ino > imax) 1302 errx(EXIT_FAILURE, 1303 "Exceeded number of inodes"); 1304 } 1305 1306 } 1307 } 1308 /* 1309 * Report a file-system-too-full problem. 1310 */ 1311 __dead static void 1312 toofull(void) 1313 { 1314 errx(EXIT_FAILURE, "Sorry, would run out of data blocks"); 1315 } 1316 /* 1317 * Record a desire to move "n" frags from "from" to "to". 1318 */ 1319 static void 1320 mark_move(unsigned int from, unsigned int to, unsigned int n) 1321 { 1322 for (; n > 0; n--) 1323 blkmove[from++] = to++; 1324 } 1325 /* Helper function - evict n frags, starting with start (cg-relative). 1326 * The free bitmap is scanned, unallocated frags are ignored, and 1327 * each block of consecutive allocated frags is moved as a unit. 1328 */ 1329 static void 1330 fragmove(struct cg * cg, int64_t base, unsigned int start, unsigned int n) 1331 { 1332 unsigned int i; 1333 int run; 1334 1335 run = 0; 1336 for (i = 0; i <= n; i++) { 1337 if ((i < n) && bit_is_clr(cg_blksfree(cg, 0), start + i)) { 1338 run++; 1339 } else { 1340 if (run > 0) { 1341 int off; 1342 off = find_freespace(run); 1343 if (off < 0) 1344 toofull(); 1345 mark_move(base + start + i - run, off, run); 1346 set_bits(cg_blksfree(cg, 0), start + i - run, 1347 run); 1348 clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0), 1349 dtogd(oldsb, off), run); 1350 } 1351 run = 0; 1352 } 1353 } 1354 } 1355 /* 1356 * Evict all data blocks from the given cg, starting at minfrag (based 1357 * at the beginning of the cg), for length nfrag. The eviction is 1358 * assumed to be entirely data-area; this should not be called with a 1359 * range overlapping the metadata structures in the cg. It also 1360 * assumes minfrag points into the given cg; it will misbehave if this 1361 * is not true. 1362 * 1363 * See the comment header on find_freespace() for one possible bug 1364 * lurking here. 1365 */ 1366 static void 1367 evict_data(struct cg * cg, unsigned int minfrag, int nfrag) 1368 { 1369 int64_t base; /* base of cg (in frags from beginning of fs) */ 1370 1371 base = cgbase(oldsb, cg->cg_cgx); 1372 /* Does the boundary fall in the middle of a block? To avoid 1373 * breaking between frags allocated as consecutive, we always 1374 * evict the whole block in this case, though one could argue 1375 * we should check to see if the frag before or after the 1376 * break is unallocated. */ 1377 if (minfrag % oldsb->fs_frag) { 1378 int n; 1379 n = minfrag % oldsb->fs_frag; 1380 minfrag -= n; 1381 nfrag += n; 1382 } 1383 /* Do whole blocks. If a block is wholly free, skip it; if 1384 * wholly allocated, move it in toto. If neither, call 1385 * fragmove() to move the frags to new locations. */ 1386 while (nfrag >= oldsb->fs_frag) { 1387 if (!blk_is_set(cg_blksfree(cg, 0), minfrag, oldsb->fs_frag)) { 1388 if (blk_is_clr(cg_blksfree(cg, 0), minfrag, 1389 oldsb->fs_frag)) { 1390 int off; 1391 off = find_freeblock(); 1392 if (off < 0) 1393 toofull(); 1394 mark_move(base + minfrag, off, oldsb->fs_frag); 1395 set_bits(cg_blksfree(cg, 0), minfrag, 1396 oldsb->fs_frag); 1397 clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0), 1398 dtogd(oldsb, off), oldsb->fs_frag); 1399 } else { 1400 fragmove(cg, base, minfrag, oldsb->fs_frag); 1401 } 1402 } 1403 minfrag += oldsb->fs_frag; 1404 nfrag -= oldsb->fs_frag; 1405 } 1406 /* Clean up any sub-block amount left over. */ 1407 if (nfrag) { 1408 fragmove(cg, base, minfrag, nfrag); 1409 } 1410 } 1411 /* 1412 * Move all data blocks according to blkmove. We have to be careful, 1413 * because we may be updating indirect blocks that will themselves be 1414 * getting moved, or inode int32_t arrays that point to indirect 1415 * blocks that will be moved. We call this before 1416 * update_for_data_move, and update_for_data_move does inodes first, 1417 * then indirect blocks in preorder, so as to make sure that the 1418 * file system is self-consistent at all points, for better crash 1419 * tolerance. (We can get away with this only because all the writes 1420 * done by perform_data_move() are writing into space that's not used 1421 * by the old file system.) If we crash, some things may point to the 1422 * old data and some to the new, but both copies are the same. The 1423 * only wrong things should be csum info and free bitmaps, which fsck 1424 * is entirely capable of cleaning up. 1425 * 1426 * Since blkmove_init() initializes all blocks to move to their current 1427 * locations, we can have two blocks marked as wanting to move to the 1428 * same location, but only two and only when one of them is the one 1429 * that was already there. So if blkmove[i]==i, we ignore that entry 1430 * entirely - for unallocated blocks, we don't want it (and may be 1431 * putting something else there), and for allocated blocks, we don't 1432 * want to copy it anywhere. 1433 */ 1434 static void 1435 perform_data_move(void) 1436 { 1437 int i; 1438 int run; 1439 int maxrun; 1440 char buf[65536]; 1441 1442 maxrun = sizeof(buf) / newsb->fs_fsize; 1443 run = 0; 1444 for (i = 0; i < oldsb->fs_size; i++) { 1445 if ((blkmove[i] == (unsigned)i /*XXX cast*/) || 1446 (run >= maxrun) || 1447 ((run > 0) && 1448 (blkmove[i] != blkmove[i - 1] + 1))) { 1449 if (run > 0) { 1450 readat(FFS_FSBTODB(oldsb, i - run), &buf[0], 1451 run << oldsb->fs_fshift); 1452 writeat(FFS_FSBTODB(oldsb, blkmove[i - run]), 1453 &buf[0], run << oldsb->fs_fshift); 1454 } 1455 run = 0; 1456 } 1457 if (blkmove[i] != (unsigned)i /*XXX cast*/) 1458 run++; 1459 } 1460 if (run > 0) { 1461 readat(FFS_FSBTODB(oldsb, i - run), &buf[0], 1462 run << oldsb->fs_fshift); 1463 writeat(FFS_FSBTODB(oldsb, blkmove[i - run]), &buf[0], 1464 run << oldsb->fs_fshift); 1465 } 1466 } 1467 /* 1468 * This modifies an array of int32_t, according to blkmove. This is 1469 * used to update inode block arrays and indirect blocks to point to 1470 * the new locations of data blocks. 1471 * 1472 * Return value is the number of int32_ts that needed updating; in 1473 * particular, the return value is zero iff nothing was modified. 1474 */ 1475 static int 1476 movemap_blocks(int32_t * vec, int n) 1477 { 1478 int rv; 1479 1480 rv = 0; 1481 for (; n > 0; n--, vec++) { 1482 if (blkmove[*vec] != (unsigned)*vec /*XXX cast*/) { 1483 *vec = blkmove[*vec]; 1484 rv++; 1485 } 1486 } 1487 return (rv); 1488 } 1489 static void 1490 moveblocks_callback(union dinode * di, unsigned int inum, void *arg) 1491 { 1492 int32_t *dblkptr, *iblkptr; 1493 1494 switch (DIP(di,di_mode) & IFMT) { 1495 case IFLNK: 1496 if ((off_t)DIP(di,di_size) <= oldsb->fs_maxsymlinklen) { 1497 break; 1498 } 1499 /* FALLTHROUGH */ 1500 case IFDIR: 1501 case IFREG: 1502 if (is_ufs2) { 1503 /* XXX these are not int32_t and this is WRONG! */ 1504 dblkptr = (void *) &(di->dp2.di_db[0]); 1505 iblkptr = (void *) &(di->dp2.di_ib[0]); 1506 } else { 1507 dblkptr = &(di->dp1.di_db[0]); 1508 iblkptr = &(di->dp1.di_ib[0]); 1509 } 1510 /* 1511 * Don't || these two calls; we need their 1512 * side-effects. 1513 */ 1514 if (movemap_blocks(dblkptr, UFS_NDADDR)) { 1515 iflags[inum] |= IF_DIRTY; 1516 } 1517 if (movemap_blocks(iblkptr, UFS_NIADDR)) { 1518 iflags[inum] |= IF_DIRTY; 1519 } 1520 break; 1521 } 1522 } 1523 1524 static void 1525 moveindir_callback(off_t off, unsigned int nfrag, unsigned int nbytes, 1526 int kind) 1527 { 1528 unsigned int i; 1529 1530 if (kind == MDB_INDIR_PRE) { 1531 int32_t blk[howmany(MAXBSIZE, sizeof(int32_t))]; 1532 readat(FFS_FSBTODB(oldsb, off), &blk[0], oldsb->fs_bsize); 1533 if (needswap) 1534 for (i = 0; i < howmany(MAXBSIZE, sizeof(int32_t)); i++) 1535 blk[i] = bswap32(blk[i]); 1536 if (movemap_blocks(&blk[0], FFS_NINDIR(oldsb))) { 1537 if (needswap) 1538 for (i = 0; i < howmany(MAXBSIZE, 1539 sizeof(int32_t)); i++) 1540 blk[i] = bswap32(blk[i]); 1541 writeat(FFS_FSBTODB(oldsb, off), &blk[0], oldsb->fs_bsize); 1542 } 1543 } 1544 } 1545 /* 1546 * Update all inode data arrays and indirect blocks to point to the new 1547 * locations of data blocks. See the comment header on 1548 * perform_data_move for some ordering considerations. 1549 */ 1550 static void 1551 update_for_data_move(void) 1552 { 1553 map_inodes(&moveblocks_callback, oldsb->fs_ncg, NULL); 1554 map_data_blocks(&moveindir_callback, oldsb->fs_ncg); 1555 } 1556 /* 1557 * Initialize the inomove array. 1558 */ 1559 static void 1560 inomove_init(void) 1561 { 1562 int i; 1563 1564 inomove = alloconce(oldsb->fs_ipg * oldsb->fs_ncg * sizeof(*inomove), 1565 "inomove"); 1566 for (i = (oldsb->fs_ipg * oldsb->fs_ncg) - 1; i >= 0; i--) 1567 inomove[i] = i; 1568 } 1569 /* 1570 * Flush all dirtied inodes to disk. Scans the inode flags array; for 1571 * each dirty inode, it sets the BDIRTY bit on the first inode in the 1572 * block containing the dirty inode. Then it scans by blocks, and for 1573 * each marked block, writes it. 1574 */ 1575 static void 1576 flush_inodes(void) 1577 { 1578 int i, j, k, ni, m; 1579 struct ufs1_dinode *dp1 = NULL; 1580 struct ufs2_dinode *dp2 = NULL; 1581 1582 ni = newsb->fs_ipg * newsb->fs_ncg; 1583 m = FFS_INOPB(newsb) - 1; 1584 for (i = 0; i < ni; i++) { 1585 if (iflags[i] & IF_DIRTY) { 1586 iflags[i & ~m] |= IF_BDIRTY; 1587 } 1588 } 1589 m++; 1590 1591 if (is_ufs2) 1592 dp2 = (struct ufs2_dinode *)ibuf; 1593 else 1594 dp1 = (struct ufs1_dinode *)ibuf; 1595 1596 for (i = 0; i < ni; i += m) { 1597 if ((iflags[i] & IF_BDIRTY) == 0) 1598 continue; 1599 if (is_ufs2) 1600 for (j = 0; j < m; j++) { 1601 dp2[j] = inodes[i + j].dp2; 1602 if (needswap) { 1603 for (k = 0; k < UFS_NDADDR; k++) 1604 dp2[j].di_db[k] = 1605 bswap32(dp2[j].di_db[k]); 1606 for (k = 0; k < UFS_NIADDR; k++) 1607 dp2[j].di_ib[k] = 1608 bswap32(dp2[j].di_ib[k]); 1609 ffs_dinode2_swap(&dp2[j], 1610 &dp2[j]); 1611 } 1612 } 1613 else 1614 for (j = 0; j < m; j++) { 1615 dp1[j] = inodes[i + j].dp1; 1616 if (needswap) { 1617 for (k = 0; k < UFS_NDADDR; k++) 1618 dp1[j].di_db[k]= 1619 bswap32(dp1[j].di_db[k]); 1620 for (k = 0; k < UFS_NIADDR; k++) 1621 dp1[j].di_ib[k]= 1622 bswap32(dp1[j].di_ib[k]); 1623 ffs_dinode1_swap(&dp1[j], 1624 &dp1[j]); 1625 } 1626 } 1627 1628 writeat(FFS_FSBTODB(newsb, ino_to_fsba(newsb, i)), 1629 ibuf, newsb->fs_bsize); 1630 } 1631 } 1632 /* 1633 * Evict all inodes from the specified cg. shrink() already checked 1634 * that there were enough free inodes, so the no-free-inodes check is 1635 * a can't-happen. If it does trip, the file system should be in good 1636 * enough shape for fsck to fix; see the comment on perform_data_move 1637 * for the considerations in question. 1638 */ 1639 static void 1640 evict_inodes(struct cg * cg) 1641 { 1642 int inum; 1643 int i; 1644 int fi; 1645 1646 inum = newsb->fs_ipg * cg->cg_cgx; 1647 for (i = 0; i < newsb->fs_ipg; i++, inum++) { 1648 if (DIP(inodes + inum,di_mode) != 0) { 1649 fi = find_freeinode(); 1650 if (fi < 0) 1651 errx(EXIT_FAILURE, "Sorry, inodes evaporated - " 1652 "file system probably needs fsck"); 1653 inomove[inum] = fi; 1654 clr_bits(cg_inosused(cg, 0), i, 1); 1655 set_bits(cg_inosused(cgs[ino_to_cg(newsb, fi)], 0), 1656 fi % newsb->fs_ipg, 1); 1657 } 1658 } 1659 } 1660 /* 1661 * Move inodes from old locations to new. Does not actually write 1662 * anything to disk; just copies in-core and sets dirty bits. 1663 * 1664 * We have to be careful here for reasons similar to those mentioned in 1665 * the comment header on perform_data_move, above: for the sake of 1666 * crash tolerance, we want to make sure everything is present at both 1667 * old and new locations before we update pointers. So we call this 1668 * first, then flush_inodes() to get them out on disk, then update 1669 * directories to match. 1670 */ 1671 static void 1672 perform_inode_move(void) 1673 { 1674 unsigned int i; 1675 unsigned int ni; 1676 1677 ni = oldsb->fs_ipg * oldsb->fs_ncg; 1678 for (i = 0; i < ni; i++) { 1679 if (inomove[i] != i) { 1680 inodes[inomove[i]] = inodes[i]; 1681 iflags[inomove[i]] = iflags[i] | IF_DIRTY; 1682 } 1683 } 1684 } 1685 /* 1686 * Update the directory contained in the nb bytes at buf, to point to 1687 * inodes' new locations. 1688 */ 1689 static int 1690 update_dirents(char *buf, int nb) 1691 { 1692 int rv; 1693 #define d ((struct direct *)buf) 1694 #define s32(x) (needswap?bswap32((x)):(x)) 1695 #define s16(x) (needswap?bswap16((x)):(x)) 1696 1697 rv = 0; 1698 while (nb > 0) { 1699 if (inomove[s32(d->d_ino)] != s32(d->d_ino)) { 1700 rv++; 1701 d->d_ino = s32(inomove[s32(d->d_ino)]); 1702 } 1703 nb -= s16(d->d_reclen); 1704 buf += s16(d->d_reclen); 1705 } 1706 return (rv); 1707 #undef d 1708 #undef s32 1709 #undef s16 1710 } 1711 /* 1712 * Callback function for map_inode_data_blocks, for updating a 1713 * directory to point to new inode locations. 1714 */ 1715 static void 1716 update_dir_data(off_t bn, unsigned int size, unsigned int nb, int kind) 1717 { 1718 if (kind == MDB_DATA) { 1719 union { 1720 struct direct d; 1721 char ch[MAXBSIZE]; 1722 } buf; 1723 readat(FFS_FSBTODB(oldsb, bn), &buf, size << oldsb->fs_fshift); 1724 if (update_dirents((char *) &buf, nb)) { 1725 writeat(FFS_FSBTODB(oldsb, bn), &buf, 1726 size << oldsb->fs_fshift); 1727 } 1728 } 1729 } 1730 static void 1731 dirmove_callback(union dinode * di, unsigned int inum, void *arg) 1732 { 1733 switch (DIP(di,di_mode) & IFMT) { 1734 case IFDIR: 1735 map_inode_data_blocks(di, &update_dir_data); 1736 break; 1737 } 1738 } 1739 /* 1740 * Update directory entries to point to new inode locations. 1741 */ 1742 static void 1743 update_for_inode_move(void) 1744 { 1745 map_inodes(&dirmove_callback, newsb->fs_ncg, NULL); 1746 } 1747 /* 1748 * Shrink the file system. 1749 */ 1750 static void 1751 shrink(void) 1752 { 1753 int i; 1754 1755 if (makegeometry(1)) { 1756 printf("New fs size %"PRIu64" = old fs size %"PRIu64 1757 ", not shrinking.\n", newsb->fs_size, oldsb->fs_size); 1758 return; 1759 } 1760 1761 /* Let's make sure we're not being shrunk into oblivion. */ 1762 if (newsb->fs_ncg < 1) 1763 errx(EXIT_FAILURE, "Size too small - file system would " 1764 "have no cylinders"); 1765 1766 if (verbose) { 1767 printf("Shrinking fs from %"PRIu64" blocks to %"PRIu64 1768 " blocks.\n", oldsb->fs_size, newsb->fs_size); 1769 } 1770 1771 /* Load the inodes off disk - we'll need 'em. */ 1772 loadinodes(); 1773 1774 /* Update the timestamp. */ 1775 newsb->fs_time = timestamp(); 1776 1777 /* Initialize for block motion. */ 1778 blkmove_init(); 1779 /* Update csum size, then fix up for the new size */ 1780 newsb->fs_cssize = ffs_fragroundup(newsb, 1781 newsb->fs_ncg * sizeof(struct csum)); 1782 csum_fixup(); 1783 /* Evict data from any cgs being wholly eliminated */ 1784 for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++) { 1785 int64_t base; 1786 int64_t dlow; 1787 int64_t dhigh; 1788 int64_t dmax; 1789 base = cgbase(oldsb, i); 1790 dlow = cgsblock(oldsb, i) - base; 1791 dhigh = cgdmin(oldsb, i) - base; 1792 dmax = oldsb->fs_size - base; 1793 if (dmax > cgs[i]->cg_ndblk) 1794 dmax = cgs[i]->cg_ndblk; 1795 evict_data(cgs[i], 0, dlow); 1796 evict_data(cgs[i], dhigh, dmax - dhigh); 1797 newsb->fs_cstotal.cs_ndir -= cgs[i]->cg_cs.cs_ndir; 1798 newsb->fs_cstotal.cs_nifree -= cgs[i]->cg_cs.cs_nifree; 1799 newsb->fs_cstotal.cs_nffree -= cgs[i]->cg_cs.cs_nffree; 1800 newsb->fs_cstotal.cs_nbfree -= cgs[i]->cg_cs.cs_nbfree; 1801 } 1802 /* Update the new last cg. */ 1803 cgs[newsb->fs_ncg - 1]->cg_ndblk = newsb->fs_size - 1804 ((newsb->fs_ncg - 1) * newsb->fs_fpg); 1805 /* Is the new last cg partial? If so, evict any data from the part 1806 * being shrunken away. */ 1807 if (newsb->fs_size % newsb->fs_fpg) { 1808 struct cg *cg; 1809 int oldcgsize; 1810 int newcgsize; 1811 cg = cgs[newsb->fs_ncg - 1]; 1812 newcgsize = newsb->fs_size % newsb->fs_fpg; 1813 oldcgsize = oldsb->fs_size - ((newsb->fs_ncg - 1) & 1814 oldsb->fs_fpg); 1815 if (oldcgsize > oldsb->fs_fpg) 1816 oldcgsize = oldsb->fs_fpg; 1817 evict_data(cg, newcgsize, oldcgsize - newcgsize); 1818 clr_bits(cg_blksfree(cg, 0), newcgsize, oldcgsize - newcgsize); 1819 } 1820 /* Find out whether we would run out of inodes. (Note we 1821 * haven't actually done anything to the file system yet; all 1822 * those evict_data calls just update blkmove.) */ 1823 { 1824 int slop; 1825 slop = 0; 1826 for (i = 0; i < newsb->fs_ncg; i++) 1827 slop += cgs[i]->cg_cs.cs_nifree; 1828 for (; i < oldsb->fs_ncg; i++) 1829 slop -= oldsb->fs_ipg - cgs[i]->cg_cs.cs_nifree; 1830 if (slop < 0) 1831 errx(EXIT_FAILURE, "Sorry, would run out of inodes"); 1832 } 1833 /* Copy data, then update pointers to data. See the comment 1834 * header on perform_data_move for ordering considerations. */ 1835 perform_data_move(); 1836 update_for_data_move(); 1837 /* Now do inodes. Initialize, evict, move, update - see the 1838 * comment header on perform_inode_move. */ 1839 inomove_init(); 1840 for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++) 1841 evict_inodes(cgs[i]); 1842 perform_inode_move(); 1843 flush_inodes(); 1844 update_for_inode_move(); 1845 /* Recompute all the bitmaps; most of them probably need it anyway, 1846 * the rest are just paranoia and not wanting to have to bother 1847 * keeping track of exactly which ones require it. */ 1848 for (i = 0; i < newsb->fs_ncg; i++) 1849 cgflags[i] |= CGF_DIRTY | CGF_BLKMAPS | CGF_INOMAPS; 1850 /* Update the cg_old_ncyl value for the last cylinder. */ 1851 if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) 1852 cgs[newsb->fs_ncg - 1]->cg_old_ncyl = 1853 newsb->fs_old_ncyl % newsb->fs_old_cpg; 1854 /* Make fs_dsize match the new reality. */ 1855 recompute_fs_dsize(); 1856 } 1857 /* 1858 * Recompute the block totals, block cluster summaries, and rotational 1859 * position summaries, for a given cg (specified by number), based on 1860 * its free-frag bitmap (cg_blksfree()[]). 1861 */ 1862 static void 1863 rescan_blkmaps(int cgn) 1864 { 1865 struct cg *cg; 1866 int f; 1867 int b; 1868 int blkfree; 1869 int blkrun; 1870 int fragrun; 1871 int fwb; 1872 1873 cg = cgs[cgn]; 1874 /* Subtract off the current totals from the sb's summary info */ 1875 newsb->fs_cstotal.cs_nffree -= cg->cg_cs.cs_nffree; 1876 newsb->fs_cstotal.cs_nbfree -= cg->cg_cs.cs_nbfree; 1877 /* Clear counters and bitmaps. */ 1878 cg->cg_cs.cs_nffree = 0; 1879 cg->cg_cs.cs_nbfree = 0; 1880 memset(&cg->cg_frsum[0], 0, MAXFRAG * sizeof(cg->cg_frsum[0])); 1881 memset(&old_cg_blktot(cg, 0)[0], 0, 1882 newsb->fs_old_cpg * sizeof(old_cg_blktot(cg, 0)[0])); 1883 memset(&old_cg_blks(newsb, cg, 0, 0)[0], 0, 1884 newsb->fs_old_cpg * newsb->fs_old_nrpos * 1885 sizeof(old_cg_blks(newsb, cg, 0, 0)[0])); 1886 if (newsb->fs_contigsumsize > 0) { 1887 cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag; 1888 memset(&cg_clustersum(cg, 0)[1], 0, 1889 newsb->fs_contigsumsize * 1890 sizeof(cg_clustersum(cg, 0)[1])); 1891 if (is_ufs2) 1892 memset(&cg_clustersfree(cg, 0)[0], 0, 1893 howmany(newsb->fs_fpg / NSPB(newsb), NBBY)); 1894 else 1895 memset(&cg_clustersfree(cg, 0)[0], 0, 1896 howmany((newsb->fs_old_cpg * newsb->fs_old_spc) / 1897 NSPB(newsb), NBBY)); 1898 } 1899 /* Scan the free-frag bitmap. Runs of free frags are kept 1900 * track of with fragrun, and recorded into cg_frsum[] and 1901 * cg_cs.cs_nffree; on each block boundary, entire free blocks 1902 * are recorded as well. */ 1903 blkfree = 1; 1904 blkrun = 0; 1905 fragrun = 0; 1906 f = 0; 1907 b = 0; 1908 fwb = 0; 1909 while (f < cg->cg_ndblk) { 1910 if (bit_is_set(cg_blksfree(cg, 0), f)) { 1911 fragrun++; 1912 } else { 1913 blkfree = 0; 1914 if (fragrun > 0) { 1915 cg->cg_frsum[fragrun]++; 1916 cg->cg_cs.cs_nffree += fragrun; 1917 } 1918 fragrun = 0; 1919 } 1920 f++; 1921 fwb++; 1922 if (fwb >= newsb->fs_frag) { 1923 if (blkfree) { 1924 cg->cg_cs.cs_nbfree++; 1925 if (newsb->fs_contigsumsize > 0) 1926 set_bits(cg_clustersfree(cg, 0), b, 1); 1927 if (is_ufs2 == 0) { 1928 old_cg_blktot(cg, 0)[ 1929 old_cbtocylno(newsb, 1930 f - newsb->fs_frag)]++; 1931 old_cg_blks(newsb, cg, 1932 old_cbtocylno(newsb, 1933 f - newsb->fs_frag), 1934 0)[old_cbtorpos(newsb, 1935 f - newsb->fs_frag)]++; 1936 } 1937 blkrun++; 1938 } else { 1939 if (fragrun > 0) { 1940 cg->cg_frsum[fragrun]++; 1941 cg->cg_cs.cs_nffree += fragrun; 1942 } 1943 if (newsb->fs_contigsumsize > 0) { 1944 if (blkrun > 0) { 1945 cg_clustersum(cg, 0)[(blkrun 1946 > newsb->fs_contigsumsize) 1947 ? newsb->fs_contigsumsize 1948 : blkrun]++; 1949 } 1950 } 1951 blkrun = 0; 1952 } 1953 fwb = 0; 1954 b++; 1955 blkfree = 1; 1956 fragrun = 0; 1957 } 1958 } 1959 if (fragrun > 0) { 1960 cg->cg_frsum[fragrun]++; 1961 cg->cg_cs.cs_nffree += fragrun; 1962 } 1963 if ((blkrun > 0) && (newsb->fs_contigsumsize > 0)) { 1964 cg_clustersum(cg, 0)[(blkrun > newsb->fs_contigsumsize) ? 1965 newsb->fs_contigsumsize : blkrun]++; 1966 } 1967 /* 1968 * Put the updated summary info back into csums, and add it 1969 * back into the sb's summary info. Then mark the cg dirty. 1970 */ 1971 csums[cgn] = cg->cg_cs; 1972 newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree; 1973 newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree; 1974 cgflags[cgn] |= CGF_DIRTY; 1975 } 1976 /* 1977 * Recompute the cg_inosused()[] bitmap, and the cs_nifree and cs_ndir 1978 * values, for a cg, based on the in-core inodes for that cg. 1979 */ 1980 static void 1981 rescan_inomaps(int cgn) 1982 { 1983 struct cg *cg; 1984 int inum; 1985 int iwc; 1986 1987 cg = cgs[cgn]; 1988 newsb->fs_cstotal.cs_ndir -= cg->cg_cs.cs_ndir; 1989 newsb->fs_cstotal.cs_nifree -= cg->cg_cs.cs_nifree; 1990 cg->cg_cs.cs_ndir = 0; 1991 cg->cg_cs.cs_nifree = 0; 1992 memset(&cg_inosused(cg, 0)[0], 0, howmany(newsb->fs_ipg, NBBY)); 1993 inum = cgn * newsb->fs_ipg; 1994 if (cgn == 0) { 1995 set_bits(cg_inosused(cg, 0), 0, 2); 1996 iwc = 2; 1997 inum += 2; 1998 } else { 1999 iwc = 0; 2000 } 2001 for (; iwc < newsb->fs_ipg; iwc++, inum++) { 2002 switch (DIP(inodes + inum, di_mode) & IFMT) { 2003 case 0: 2004 cg->cg_cs.cs_nifree++; 2005 break; 2006 case IFDIR: 2007 cg->cg_cs.cs_ndir++; 2008 /* FALLTHROUGH */ 2009 default: 2010 set_bits(cg_inosused(cg, 0), iwc, 1); 2011 break; 2012 } 2013 } 2014 csums[cgn] = cg->cg_cs; 2015 newsb->fs_cstotal.cs_ndir += cg->cg_cs.cs_ndir; 2016 newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree; 2017 cgflags[cgn] |= CGF_DIRTY; 2018 } 2019 /* 2020 * Flush cgs to disk, recomputing anything they're marked as needing. 2021 */ 2022 static void 2023 flush_cgs(void) 2024 { 2025 int i; 2026 2027 for (i = 0; i < newsb->fs_ncg; i++) { 2028 progress_bar(special, "flush cg", 2029 i, newsb->fs_ncg - 1); 2030 if (cgflags[i] & CGF_BLKMAPS) { 2031 rescan_blkmaps(i); 2032 } 2033 if (cgflags[i] & CGF_INOMAPS) { 2034 rescan_inomaps(i); 2035 } 2036 if (cgflags[i] & CGF_DIRTY) { 2037 cgs[i]->cg_rotor = 0; 2038 cgs[i]->cg_frotor = 0; 2039 cgs[i]->cg_irotor = 0; 2040 if (needswap) 2041 ffs_cg_swap(cgs[i],cgs[i],newsb); 2042 writeat(FFS_FSBTODB(newsb, cgtod(newsb, i)), cgs[i], 2043 cgblksz); 2044 } 2045 } 2046 if (needswap) 2047 ffs_csum_swap(csums,csums,newsb->fs_cssize); 2048 writeat(FFS_FSBTODB(newsb, newsb->fs_csaddr), csums, newsb->fs_cssize); 2049 2050 progress_done(); 2051 } 2052 /* 2053 * Write the superblock, both to the main superblock and to each cg's 2054 * alternative superblock. 2055 */ 2056 static void 2057 write_sbs(void) 2058 { 2059 int i; 2060 2061 if (newsb->fs_magic == FS_UFS1_MAGIC && 2062 (newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) { 2063 newsb->fs_old_time = newsb->fs_time; 2064 newsb->fs_old_size = newsb->fs_size; 2065 /* we don't update fs_csaddr */ 2066 newsb->fs_old_dsize = newsb->fs_dsize; 2067 newsb->fs_old_cstotal.cs_ndir = newsb->fs_cstotal.cs_ndir; 2068 newsb->fs_old_cstotal.cs_nbfree = newsb->fs_cstotal.cs_nbfree; 2069 newsb->fs_old_cstotal.cs_nifree = newsb->fs_cstotal.cs_nifree; 2070 newsb->fs_old_cstotal.cs_nffree = newsb->fs_cstotal.cs_nffree; 2071 /* fill fs_old_postbl_start with 256 bytes of 0xff? */ 2072 } 2073 /* copy newsb back to oldsb, so we can use it for offsets if 2074 newsb has been swapped for writing to disk */ 2075 memcpy(oldsb, newsb, SBLOCKSIZE); 2076 if (needswap) 2077 ffs_sb_swap(newsb,newsb); 2078 writeat(where / DEV_BSIZE, newsb, SBLOCKSIZE); 2079 for (i = 0; i < oldsb->fs_ncg; i++) { 2080 progress_bar(special, "write sb", 2081 i, oldsb->fs_ncg - 1); 2082 writeat(FFS_FSBTODB(oldsb, cgsblock(oldsb, i)), newsb, SBLOCKSIZE); 2083 } 2084 2085 progress_done(); 2086 } 2087 2088 /* 2089 * Check to see whether new size changes the filesystem 2090 * return exit code 2091 */ 2092 static int 2093 checkonly(void) 2094 { 2095 if (makegeometry(0)) { 2096 if (verbose) { 2097 printf("Wouldn't change: already %" PRId64 2098 " blocks\n", (int64_t)oldsb->fs_size); 2099 } 2100 return 1; 2101 } 2102 2103 if (verbose) { 2104 printf("Would change: newsize: %" PRId64 " oldsize: %" 2105 PRId64 " fsdb: %" PRId64 "\n", FFS_DBTOFSB(oldsb, newsize), 2106 (int64_t)oldsb->fs_size, 2107 (int64_t)oldsb->fs_fsbtodb); 2108 } 2109 return 0; 2110 } 2111 2112 static off_t 2113 get_dev_size(char *dev_name) 2114 { 2115 struct dkwedge_info dkw; 2116 struct partition *pp; 2117 struct disklabel lp; 2118 struct stat st; 2119 size_t ptn; 2120 2121 /* Get info about partition/wedge */ 2122 if (ioctl(fd, DIOCGWEDGEINFO, &dkw) != -1) 2123 return dkw.dkw_size; 2124 if (ioctl(fd, DIOCGDINFO, &lp) != -1) { 2125 ptn = strchr(dev_name, '\0')[-1] - 'a'; 2126 if (ptn >= lp.d_npartitions) 2127 return 0; 2128 pp = &lp.d_partitions[ptn]; 2129 return pp->p_size; 2130 } 2131 if (fstat(fd, &st) != -1 && S_ISREG(st.st_mode)) 2132 return st.st_size / DEV_BSIZE; 2133 2134 return 0; 2135 } 2136 2137 /* 2138 * main(). 2139 */ 2140 int 2141 main(int argc, char **argv) 2142 { 2143 int ch; 2144 int CheckOnlyFlag; 2145 int ExpertFlag; 2146 int SFlag; 2147 size_t i; 2148 2149 char reply[5]; 2150 2151 newsize = 0; 2152 ExpertFlag = 0; 2153 SFlag = 0; 2154 CheckOnlyFlag = 0; 2155 2156 while ((ch = getopt(argc, argv, "cps:vy")) != -1) { 2157 switch (ch) { 2158 case 'c': 2159 CheckOnlyFlag = 1; 2160 break; 2161 case 'p': 2162 progress = 1; 2163 break; 2164 case 's': 2165 SFlag = 1; 2166 newsize = strtoll(optarg, NULL, 10); 2167 if(newsize < 1) { 2168 usage(); 2169 } 2170 break; 2171 case 'v': 2172 verbose = 1; 2173 break; 2174 case 'y': 2175 ExpertFlag = 1; 2176 break; 2177 case '?': 2178 /* FALLTHROUGH */ 2179 default: 2180 usage(); 2181 } 2182 } 2183 argc -= optind; 2184 argv += optind; 2185 2186 if (argc != 1) { 2187 usage(); 2188 } 2189 2190 special = *argv; 2191 2192 if (ExpertFlag == 0 && CheckOnlyFlag == 0) { 2193 printf("It's required to manually run fsck on file system " 2194 "before you can resize it\n\n" 2195 " Did you run fsck on your disk (Yes/No) ? "); 2196 fgets(reply, (int)sizeof(reply), stdin); 2197 if (strcasecmp(reply, "Yes\n")) { 2198 printf("\n Nothing done \n"); 2199 exit(EXIT_SUCCESS); 2200 } 2201 } 2202 2203 fd = open(special, O_RDWR, 0); 2204 if (fd < 0) 2205 err(EXIT_FAILURE, "Can't open `%s'", special); 2206 checksmallio(); 2207 2208 if (SFlag == 0) { 2209 newsize = get_dev_size(special); 2210 if (newsize == 0) 2211 err(EXIT_FAILURE, 2212 "Can't resize file system, newsize not known."); 2213 } 2214 2215 oldsb = (struct fs *) & sbbuf; 2216 newsb = (struct fs *) (SBLOCKSIZE + (char *) &sbbuf); 2217 for (where = search[i = 0]; search[i] != -1; where = search[++i]) { 2218 readat(where / DEV_BSIZE, oldsb, SBLOCKSIZE); 2219 switch (oldsb->fs_magic) { 2220 case FS_UFS2_MAGIC: 2221 is_ufs2 = 1; 2222 /* FALLTHROUGH */ 2223 case FS_UFS1_MAGIC: 2224 needswap = 0; 2225 break; 2226 case FS_UFS2_MAGIC_SWAPPED: 2227 is_ufs2 = 1; 2228 /* FALLTHROUGH */ 2229 case FS_UFS1_MAGIC_SWAPPED: 2230 needswap = 1; 2231 break; 2232 default: 2233 continue; 2234 } 2235 if (!is_ufs2 && where == SBLOCK_UFS2) 2236 continue; 2237 break; 2238 } 2239 if (where == (off_t)-1) 2240 errx(EXIT_FAILURE, "Bad magic number"); 2241 if (needswap) 2242 ffs_sb_swap(oldsb,oldsb); 2243 if (oldsb->fs_magic == FS_UFS1_MAGIC && 2244 (oldsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) { 2245 oldsb->fs_csaddr = oldsb->fs_old_csaddr; 2246 oldsb->fs_size = oldsb->fs_old_size; 2247 oldsb->fs_dsize = oldsb->fs_old_dsize; 2248 oldsb->fs_cstotal.cs_ndir = oldsb->fs_old_cstotal.cs_ndir; 2249 oldsb->fs_cstotal.cs_nbfree = oldsb->fs_old_cstotal.cs_nbfree; 2250 oldsb->fs_cstotal.cs_nifree = oldsb->fs_old_cstotal.cs_nifree; 2251 oldsb->fs_cstotal.cs_nffree = oldsb->fs_old_cstotal.cs_nffree; 2252 /* any others? */ 2253 printf("Resizing with ffsv1 superblock\n"); 2254 } 2255 2256 oldsb->fs_qbmask = ~(int64_t) oldsb->fs_bmask; 2257 oldsb->fs_qfmask = ~(int64_t) oldsb->fs_fmask; 2258 if (oldsb->fs_ipg % FFS_INOPB(oldsb)) 2259 errx(EXIT_FAILURE, "ipg[%d] %% FFS_INOPB[%d] != 0", 2260 (int) oldsb->fs_ipg, (int) FFS_INOPB(oldsb)); 2261 /* The superblock is bigger than struct fs (there are trailing 2262 * tables, of non-fixed size); make sure we copy the whole 2263 * thing. SBLOCKSIZE may be an over-estimate, but we do this 2264 * just once, so being generous is cheap. */ 2265 memcpy(newsb, oldsb, SBLOCKSIZE); 2266 2267 if (progress) { 2268 progress_ttywidth(0); 2269 signal(SIGWINCH, progress_ttywidth); 2270 } 2271 2272 loadcgs(); 2273 2274 if (progress && !CheckOnlyFlag) { 2275 progress_switch(progress); 2276 progress_init(); 2277 } 2278 2279 if (newsize > FFS_FSBTODB(oldsb, oldsb->fs_size)) { 2280 if (CheckOnlyFlag) 2281 exit(checkonly()); 2282 grow(); 2283 } else if (newsize < FFS_FSBTODB(oldsb, oldsb->fs_size)) { 2284 if (is_ufs2) 2285 errx(EXIT_FAILURE,"shrinking not supported for ufs2"); 2286 if (CheckOnlyFlag) 2287 exit(checkonly()); 2288 shrink(); 2289 } else { 2290 if (CheckOnlyFlag) 2291 exit(checkonly()); 2292 if (verbose) 2293 printf("No change requested: already %" PRId64 2294 " blocks\n", (int64_t)oldsb->fs_size); 2295 } 2296 2297 flush_cgs(); 2298 write_sbs(); 2299 if (isplainfile()) 2300 ftruncate(fd,newsize * DEV_BSIZE); 2301 return 0; 2302 } 2303 2304 static void 2305 usage(void) 2306 { 2307 2308 (void)fprintf(stderr, "usage: %s [-cpvy] [-s size] special\n", 2309 getprogname()); 2310 exit(EXIT_FAILURE); 2311 } 2312