xref: /netbsd-src/sbin/resize_ffs/resize_ffs.c (revision 23c8222edbfb0f0932d88a8351d3a0cf817dfb9e)
1 /*	$NetBSD: resize_ffs.c,v 1.7 2004/03/21 21:02:01 dsl Exp $	*/
2 /* From sources sent on February 17, 2003 */
3 /*-
4  * As its sole author, I explicitly place this code in the public
5  *  domain.  Anyone may use it for any purpose (though I would
6  *  appreciate credit where it is due).
7  *
8  *					der Mouse
9  *
10  *			       mouse@rodents.montreal.qc.ca
11  *		     7D C8 61 52 5D E7 2D 39  4E F1 31 3E E8 B3 27 4B
12  */
13 /*
14  * resize_ffs:
15  *
16  * Resize a filesystem.  Is capable of both growing and shrinking.
17  *
18  * Usage: resize_ffs filesystem newsize
19  *
20  * Example: resize_ffs /dev/rsd1e 29574
21  *
22  * newsize is in DEV_BSIZE units (ie, disk sectors, usually 512 bytes
23  *  each).
24  *
25  * Note: this currently requires gcc to build, since it is written
26  *  depending on gcc-specific features, notably nested function
27  *  definitions (which in at least a few cases depend on the lexical
28  *  scoping gcc provides, so they can't be trivially moved outside).
29  *
30  * It will not do anything useful with filesystems in other than
31  *  host-native byte order.  This really should be fixed (it's largely
32  *  a historical accident; the original version of this program is
33  *  older than bi-endian support in FFS).
34  *
35  * Many thanks go to John Kohl <jtk@NetBSD.org> for finding bugs: the
36  *  one responsible for the "realloccgblk: can't find blk in cyl"
37  *  problem and a more minor one which left fs_dsize wrong when
38  *  shrinking.  (These actually indicate bugs in fsck too - it should
39  *  have caught and fixed them.)
40  *
41  */
42 
43 #include <stdio.h>
44 #include <errno.h>
45 #include <fcntl.h>
46 #include <stdlib.h>
47 #include <unistd.h>
48 #include <strings.h>
49 #include <err.h>
50 #include <sys/stat.h>
51 #include <sys/mman.h>
52 #include <sys/param.h>		/* MAXFRAG */
53 #include <ufs/ffs/fs.h>
54 #include <ufs/ufs/dir.h>
55 #include <ufs/ufs/dinode.h>
56 #include <ufs/ufs/ufs_bswap.h>	/* ufs_rw32 */
57 
58 /* Suppress warnings about unused arguments */
59 #if	defined(__GNUC__) &&				\
60 	( (__GNUC__ > 2) ||				\
61 	  ( (__GNUC__ == 2) &&				\
62 	    defined(__GNUC_MINOR__) &&			\
63 	    (__GNUC_MINOR__ >= 7) ) )
64 #define UNUSED_ARG(x) x __attribute__((__unused__))
65 #define INLINE inline
66 #else
67 #define UNUSED_ARG(x) x
68 #define INLINE			/**/
69 #endif
70 
71 /* new size of filesystem, in sectors */
72 static int newsize;
73 
74 /* fd open onto disk device */
75 static int fd;
76 
77 /* must we break up big I/O operations - see checksmallio() */
78 static int smallio;
79 
80 /* size of a cg, in bytes, rounded up to a frag boundary */
81 static int cgblksz;
82 
83 /* possible superblock localtions */
84 static int search[] = SBLOCKSEARCH;
85 /* location of the superblock */
86 static off_t where;
87 
88 /* Superblocks. */
89 static struct fs *oldsb;	/* before we started */
90 static struct fs *newsb;	/* copy to work with */
91 /* Buffer to hold the above.  Make sure it's aligned correctly. */
92 static char sbbuf[2 * SBLOCKSIZE] __attribute__((__aligned__(__alignof__(struct fs))));
93 
94 /* a cg's worth of brand new squeaky-clean inodes */
95 static struct ufs1_dinode *zinodes;
96 
97 /* pointers to the in-core cgs, read off disk and possibly modified */
98 static struct cg **cgs;
99 
100 /* pointer to csum array - the stuff pointed to on-disk by fs_csaddr */
101 static struct csum *csums;
102 
103 /* per-cg flags, indexed by cg number */
104 static unsigned char *cgflags;
105 #define CGF_DIRTY   0x01	/* needs to be written to disk */
106 #define CGF_BLKMAPS 0x02	/* block bitmaps need rebuilding */
107 #define CGF_INOMAPS 0x04	/* inode bitmaps need rebuilding */
108 
109 /* when shrinking, these two arrays record how we want blocks to move.	 */
110 /*  if blkmove[i] is j, the frag that started out as frag #i should end	 */
111 /*  up as frag #j.  inomove[i]=j means, similarly, that the inode that	 */
112 /*  started out as inode i should end up as inode j.			 */
113 static unsigned int *blkmove;
114 static unsigned int *inomove;
115 
116 /* in-core copies of all inodes in the fs, indexed by inumber */
117 static struct ufs1_dinode *inodes;
118 
119 /* per-inode flags, indexed by inumber */
120 static unsigned char *iflags;
121 #define IF_DIRTY  0x01		/* needs to be written to disk */
122 #define IF_BDIRTY 0x02		/* like DIRTY, but is set on first inode in a
123 				 * block of inodes, and applies to the whole
124 				 * block. */
125 
126 /* Old FFS1 macros */
127 #define cg_blktot(cgp, ns) \
128     (cg_chkmagic(cgp, ns) ? \
129     ((int32_t *)((u_int8_t *)(cgp) + ufs_rw32((cgp)->cg_old_btotoff, (ns)))) \
130     : (((struct ocg *)(cgp))->cg_btot))
131 #define cg_blks(fs, cgp, cylno, ns) \
132     (cg_chkmagic(cgp, ns) ? \
133     ((int16_t *)((u_int8_t *)(cgp) + ufs_rw32((cgp)->cg_old_boff, (ns))) + \
134 	(cylno) * (fs)->fs_old_nrpos) \
135     : (((struct ocg *)(cgp))->cg_b[cylno]))
136 #define cbtocylno(fs, bno) \
137    (fsbtodb(fs, bno) / (fs)->fs_old_spc)
138 #define cbtorpos(fs, bno) \
139     ((fs)->fs_old_nrpos <= 1 ? 0 : \
140      (fsbtodb(fs, bno) % (fs)->fs_old_spc / \
141       (fs)->fs_old_nsect * (fs)->fs_old_trackskew + \
142       fsbtodb(fs, bno) % (fs)->fs_old_spc % \
143       (fs)->fs_old_nsect * (fs)->fs_old_interleave) %\
144     (fs)->fs_old_nsect * (fs)->fs_old_nrpos / (fs)->fs_old_npsect)
145 #define dblksize(fs, dip, lbn) \
146     (((lbn) >= NDADDR || (dip)->di_size >= lblktosize(fs, (lbn) + 1)) \
147     ? (fs)->fs_bsize \
148     : (fragroundup(fs, blkoff(fs, (dip)->di_size))))
149 
150 
151 /*
152  * Number of disk sectors per block/fragment; assumes DEV_BSIZE byte
153  * sector size.
154  */
155 #define NSPB(fs)	((fs)->fs_old_nspf << (fs)->fs_fragshift)
156 #define NSPF(fs)	((fs)->fs_old_nspf)
157 
158 /*
159  * See if we need to break up large I/O operations.  This should never
160  *  be needed, but under at least one <version,platform> combination,
161  *  large enough disk transfers to the raw device hang.  So if we're
162  *  talking to a character special device, play it safe; in this case,
163  *  readat() and writeat() break everything up into pieces no larger
164  *  than 8K, doing multiple syscalls for larger operations.
165  */
166 static void
167 checksmallio(void)
168 {
169 	struct stat stb;
170 
171 	fstat(fd, &stb);
172 	smallio = ((stb.st_mode & S_IFMT) == S_IFCHR);
173 }
174 /*
175  * Read size bytes starting at blkno into buf.  blkno is in DEV_BSIZE
176  *  units, ie, after fsbtodb(); size is in bytes.
177  */
178 static void
179 readat(off_t blkno, void *buf, int size)
180 {
181 	/* Seek to the correct place. */
182 	if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
183 		err(1, "lseek failed");
184 
185 	/* See if we have to break up the transfer... */
186 	if (smallio) {
187 		char *bp;	/* pointer into buf */
188 		int left;	/* bytes left to go */
189 		int n;		/* number to do this time around */
190 		int rv;		/* syscall return value */
191 		bp = buf;
192 		left = size;
193 		while (left > 0) {
194 			n = (left > 8192) ? 8192 : left;
195 			rv = read(fd, bp, n);
196 			if (rv < 0)
197 				err(1, "read failed");
198 			if (rv != n)
199 				errx(1, "read: wanted %d, got %d", n, rv);
200 			bp += n;
201 			left -= n;
202 		}
203 	} else {
204 		int rv;
205 		rv = read(fd, buf, size);
206 		if (rv < 0)
207 			err(1, "read failed");
208 		if (rv != size)
209 			errx(1, "read: wanted %d, got %d", size, rv);
210 	}
211 }
212 /*
213  * Write size bytes from buf starting at blkno.  blkno is in DEV_BSIZE
214  *  units, ie, after fsbtodb(); size is in bytes.
215  */
216 static void
217 writeat(off_t blkno, const void *buf, int size)
218 {
219 	/* Seek to the correct place. */
220 	if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
221 		err(1, "lseek failed");
222 	/* See if we have to break up the transfer... */
223 	if (smallio) {
224 		const char *bp;	/* pointer into buf */
225 		int left;	/* bytes left to go */
226 		int n;		/* number to do this time around */
227 		int rv;		/* syscall return value */
228 		bp = buf;
229 		left = size;
230 		while (left > 0) {
231 			n = (left > 8192) ? 8192 : left;
232 			rv = write(fd, bp, n);
233 			if (rv < 0)
234 				err(1, "write failed");
235 			if (rv != n)
236 				errx(1, "write: wanted %d, got %d", n, rv);
237 			bp += n;
238 			left -= n;
239 		}
240 	} else {
241 		int rv;
242 		rv = write(fd, buf, size);
243 		if (rv < 0)
244 			err(1, "write failed");
245 		if (rv != size)
246 			errx(1, "write: wanted %d, got %d", size, rv);
247 	}
248 }
249 /*
250  * Never-fail versions of malloc() and realloc(), and an allocation
251  *  routine (which also never fails) for allocating memory that will
252  *  never be freed until exit.
253  */
254 
255 /*
256  * Never-fail malloc.
257  */
258 static void *
259 nfmalloc(size_t nb, const char *tag)
260 {
261 	void *rv;
262 
263 	rv = malloc(nb);
264 	if (rv)
265 		return (rv);
266 	err(1, "Can't allocate %lu bytes for %s",
267 	    (unsigned long int) nb, tag);
268 }
269 /*
270  * Never-fail realloc.
271  */
272 static void *
273 nfrealloc(void *blk, size_t nb, const char *tag)
274 {
275 	void *rv;
276 
277 	rv = realloc(blk, nb);
278 	if (rv)
279 		return (rv);
280 	err(1, "Can't re-allocate %lu bytes for %s",
281 	    (unsigned long int) nb, tag);
282 }
283 /*
284  * Allocate memory that will never be freed or reallocated.  Arguably
285  *  this routine should handle small allocations by chopping up pages,
286  *  but that's not worth the bother; it's not called more than a
287  *  handful of times per run, and if the allocations are that small the
288  *  waste in giving each one its own page is ignorable.
289  */
290 static void *
291 alloconce(size_t nb, const char *tag)
292 {
293 	void *rv;
294 
295 	rv = mmap(0, nb, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
296 	if (rv != MAP_FAILED)
297 		return (rv);
298 	err(1, "Can't map %lu bytes for %s",
299 	    (unsigned long int) nb, tag);
300 }
301 /*
302  * Load the cgs and csums off disk.  Also allocates the space to load
303  *  them into and initializes the per-cg flags.
304  */
305 static void
306 loadcgs(void)
307 {
308 	int cg;
309 	char *cgp;
310 
311 	cgblksz = roundup(oldsb->fs_cgsize, oldsb->fs_fsize);
312 	cgs = nfmalloc(oldsb->fs_ncg * sizeof(struct cg *), "cg pointers");
313 	cgp = alloconce(oldsb->fs_ncg * cgblksz, "cgs");
314 	cgflags = nfmalloc(oldsb->fs_ncg, "cg flags");
315 	csums = nfmalloc(oldsb->fs_cssize, "cg summary");
316 	for (cg = 0; cg < oldsb->fs_ncg; cg++) {
317 		cgs[cg] = (struct cg *) cgp;
318 		readat(fsbtodb(oldsb, cgtod(oldsb, cg)), cgp, cgblksz);
319 		cgflags[cg] = 0;
320 		cgp += cgblksz;
321 	}
322 	readat(fsbtodb(oldsb, oldsb->fs_csaddr), csums, oldsb->fs_cssize);
323 }
324 /*
325  * Set n bits, starting with bit #base, in the bitmap pointed to by
326  *  bitvec (which is assumed to be large enough to include bits base
327  *  through base+n-1).
328  */
329 static void
330 set_bits(unsigned char *bitvec, unsigned int base, unsigned int n)
331 {
332 	if (n < 1)
333 		return;		/* nothing to do */
334 	if (base & 7) {		/* partial byte at beginning */
335 		if (n <= 8 - (base & 7)) {	/* entirely within one byte */
336 			bitvec[base >> 3] |= (~((~0U) << n)) << (base & 7);
337 			return;
338 		}
339 		bitvec[base >> 3] |= (~0U) << (base & 7);
340 		n -= 8 - (base & 7);
341 		base = (base & ~7) + 8;
342 	}
343 	if (n >= 8) {		/* do full bytes */
344 		memset(bitvec + (base >> 3), 0xff, n >> 3);
345 		base += n & ~7;
346 		n &= 7;
347 	}
348 	if (n) {		/* partial byte at end */
349 		bitvec[base >> 3] |= ~((~0U) << n);
350 	}
351 }
352 /*
353  * Clear n bits, starting with bit #base, in the bitmap pointed to by
354  *  bitvec (which is assumed to be large enough to include bits base
355  *  through base+n-1).  Code parallels set_bits().
356  */
357 static void
358 clr_bits(unsigned char *bitvec, int base, int n)
359 {
360 	if (n < 1)
361 		return;
362 	if (base & 7) {
363 		if (n <= 8 - (base & 7)) {
364 			bitvec[base >> 3] &= ~((~((~0U) << n)) << (base & 7));
365 			return;
366 		}
367 		bitvec[base >> 3] &= ~((~0U) << (base & 7));
368 		n -= 8 - (base & 7);
369 		base = (base & ~7) + 8;
370 	}
371 	if (n >= 8) {
372 		bzero(bitvec + (base >> 3), n >> 3);
373 		base += n & ~7;
374 		n &= 7;
375 	}
376 	if (n) {
377 		bitvec[base >> 3] &= (~0U) << n;
378 	}
379 }
380 /*
381  * Test whether bit #bit is set in the bitmap pointed to by bitvec.
382  */
383 INLINE static int
384 bit_is_set(unsigned char *bitvec, int bit)
385 {
386 	return (bitvec[bit >> 3] & (1 << (bit & 7)));
387 }
388 /*
389  * Test whether bit #bit is clear in the bitmap pointed to by bitvec.
390  */
391 INLINE static int
392 bit_is_clr(unsigned char *bitvec, int bit)
393 {
394 	return (!bit_is_set(bitvec, bit));
395 }
396 /*
397  * Test whether a whole block of bits is set in a bitmap.  This is
398  *  designed for testing (aligned) disk blocks in a bit-per-frag
399  *  bitmap; it has assumptions wired into it based on that, essentially
400  *  that the entire block fits into a single byte.  This returns true
401  *  iff _all_ the bits are set; it is not just the complement of
402  *  blk_is_clr on the same arguments (unless blkfrags==1).
403  */
404 INLINE static int
405 blk_is_set(unsigned char *bitvec, int blkbase, int blkfrags)
406 {
407 	unsigned int mask;
408 
409 	mask = (~((~0U) << blkfrags)) << (blkbase & 7);
410 	return ((bitvec[blkbase >> 3] & mask) == mask);
411 }
412 /*
413  * Test whether a whole block of bits is clear in a bitmap.  See
414  *  blk_is_set (above) for assumptions.  This returns true iff _all_
415  *  the bits are clear; it is not just the complement of blk_is_set on
416  *  the same arguments (unless blkfrags==1).
417  */
418 INLINE static int
419 blk_is_clr(unsigned char *bitvec, int blkbase, int blkfrags)
420 {
421 	unsigned int mask;
422 
423 	mask = (~((~0U) << blkfrags)) << (blkbase & 7);
424 	return ((bitvec[blkbase >> 3] & mask) == 0);
425 }
426 /*
427  * Initialize a new cg.  Called when growing.  Assumes memory has been
428  *  allocated but not otherwise set up.  This code sets the fields of
429  *  the cg, initializes the bitmaps (and cluster summaries, if
430  *  applicable), updates both per-cylinder summary info and the global
431  *  summary info in newsb; it also writes out new inodes for the cg.
432  *
433  * This code knows it can never be called for cg 0, which makes it a
434  *  bit simpler than it would otherwise be.
435  */
436 static void
437 initcg(int cgn)
438 {
439 	struct cg *cg;		/* The in-core cg, of course */
440 	int base;		/* Disk address of cg base */
441 	int dlow;		/* Size of pre-cg data area */
442 	int dhigh;		/* Offset of post-inode data area, from base */
443 	int dmax;		/* Offset of end of post-inode data area */
444 	int i;			/* Generic loop index */
445 	int n;			/* Generic count */
446 
447 	cg = cgs[cgn];
448 	/* Place the data areas */
449 	base = cgbase(newsb, cgn);
450 	dlow = cgsblock(newsb, cgn) - base;
451 	dhigh = cgdmin(newsb, cgn) - base;
452 	dmax = newsb->fs_size - base;
453 	if (dmax > newsb->fs_fpg)
454 		dmax = newsb->fs_fpg;
455 	/*
456          * Clear out the cg - assumes all-0-bytes is the correct way
457          * to initialize fields we don't otherwise touch, which is
458          * perhaps not the right thing to do, but it's what fsck and
459          * mkfs do.
460          */
461 	bzero(cg, newsb->fs_cgsize);
462 	cg->cg_time = newsb->fs_time;
463 	cg->cg_magic = CG_MAGIC;
464 	cg->cg_cgx = cgn;
465 	cg->cg_old_ncyl = newsb->fs_old_cpg;
466 	/* fsck whines if the cg->cg_old_ncyl value in the last cg is fs_old_cpg
467 	 * instead of zero, when fs_old_cpg is the correct value. */
468 	/* XXX fix once fsck is fixed */
469 	if ((cgn == newsb->fs_ncg - 1) /* && (newsb->fs_old_ncyl % newsb->fs_old_cpg) */ ) {
470 		cg->cg_old_ncyl = newsb->fs_old_ncyl % newsb->fs_old_cpg;
471 	}
472 	cg->cg_niblk = newsb->fs_ipg;
473 	cg->cg_ndblk = dmax;
474 	/* Set up the bitmap pointers.  We have to be careful to lay out the
475 	 * cg _exactly_ the way mkfs and fsck do it, since fsck compares the
476 	 * _entire_ cg against a recomputed cg, and whines if there is any
477 	 * mismatch, including the bitmap offsets. */
478 	/* XXX update this comment when fsck is fixed */
479 	cg->cg_old_btotoff = &cg->cg_space[0] - (unsigned char *) cg;
480 	cg->cg_old_boff = cg->cg_old_btotoff
481 	    + (newsb->fs_old_cpg * sizeof(int32_t));
482 	cg->cg_iusedoff = cg->cg_old_boff +
483 	    (newsb->fs_old_cpg * newsb->fs_old_nrpos * sizeof(int16_t));
484 	cg->cg_freeoff = cg->cg_iusedoff + howmany(newsb->fs_ipg, NBBY);
485 	if (newsb->fs_contigsumsize > 0) {
486 		cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
487 		cg->cg_clustersumoff = cg->cg_freeoff +
488 		    howmany(newsb->fs_old_cpg * newsb->fs_old_spc / NSPF(newsb),
489 		    NBBY) - sizeof(int32_t);
490 		cg->cg_clustersumoff =
491 		    roundup(cg->cg_clustersumoff, sizeof(int32_t));
492 		cg->cg_clusteroff = cg->cg_clustersumoff +
493 		    ((newsb->fs_contigsumsize + 1) * sizeof(int32_t));
494 		cg->cg_nextfreeoff = cg->cg_clusteroff +
495 		    howmany(newsb->fs_old_cpg * newsb->fs_old_spc / NSPB(newsb),
496 		    NBBY);
497 		n = dlow / newsb->fs_frag;
498 		if (n > 0) {
499 			set_bits(cg_clustersfree(cg, 0), 0, n);
500 			cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
501 			    newsb->fs_contigsumsize : n]++;
502 		}
503 	} else {
504 		cg->cg_nextfreeoff = cg->cg_freeoff +
505 		    howmany(newsb->fs_old_cpg * newsb->fs_old_spc / NSPF(newsb),
506 		    NBBY);
507 	}
508 	/* Mark the data areas as free; everything else is marked busy by the
509 	 * bzero up at the top. */
510 	set_bits(cg_blksfree(cg, 0), 0, dlow);
511 	set_bits(cg_blksfree(cg, 0), dhigh, dmax - dhigh);
512 	/* Initialize summary info */
513 	cg->cg_cs.cs_ndir = 0;
514 	cg->cg_cs.cs_nifree = newsb->fs_ipg;
515 	cg->cg_cs.cs_nbfree = dlow / newsb->fs_frag;
516 	cg->cg_cs.cs_nffree = 0;
517 
518 	/* This is the simplest way of doing this; we perhaps could compute
519 	 * the correct cg_blktot()[] and cg_blks()[] values other ways, but it
520 	 * would be complicated and hardly seems worth the effort.  (The
521 	 * reason there isn't frag-at-beginning and frag-at-end code here,
522 	 * like the code below for the post-inode data area, is that the
523 	 * pre-sb data area always starts at 0, and thus is block-aligned, and
524 	 * always ends at the sb, which is block-aligned.) */
525 	for (i = 0; i < dlow; i += newsb->fs_frag) {
526 		cg_blktot(cg, 0)[cbtocylno(newsb, i)]++;
527 		cg_blks(newsb, cg, cbtocylno(newsb, i), 0)[cbtorpos(newsb, i)]++;
528 	}
529 	/* Deal with a partial block at the beginning of the post-inode area.
530 	 * I'm not convinced this can happen - I think the inodes are always
531 	 * block-aligned and always an integral number of blocks - but it's
532 	 * cheap to do the right thing just in case. */
533 	if (dhigh % newsb->fs_frag) {
534 		n = newsb->fs_frag - (dhigh % newsb->fs_frag);
535 		cg->cg_frsum[n]++;
536 		cg->cg_cs.cs_nffree += n;
537 		dhigh += n;
538 	}
539 	n = (dmax - dhigh) / newsb->fs_frag;
540 	/* We have n full-size blocks in the post-inode data area. */
541 	if (n > 0) {
542 		cg->cg_cs.cs_nbfree += n;
543 		if (newsb->fs_contigsumsize > 0) {
544 			i = dhigh / newsb->fs_frag;
545 			set_bits(cg_clustersfree(cg, 0), i, n);
546 			cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
547 			    newsb->fs_contigsumsize : n]++;
548 		}
549 		for (i = n; i > 0; i--) {
550 			cg_blktot(cg, 0)[cbtocylno(newsb, dhigh)]++;
551 			cg_blks(newsb, cg,
552 			    cbtocylno(newsb, dhigh), 0)[cbtorpos(newsb,
553 				dhigh)]++;
554 			dhigh += newsb->fs_frag;
555 		}
556 	}
557 	/* Deal with any leftover frag at the end of the cg. */
558 	i = dmax - dhigh;
559 	if (i) {
560 		cg->cg_frsum[i]++;
561 		cg->cg_cs.cs_nffree += i;
562 	}
563 	/* Update the csum info. */
564 	csums[cgn] = cg->cg_cs;
565 	newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
566 	newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
567 	newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
568 	/* Write out the cleared inodes. */
569 	writeat(fsbtodb(newsb, cgimin(newsb, cgn)), zinodes,
570 	    newsb->fs_ipg * sizeof(struct ufs1_dinode));
571 	/* Dirty the cg. */
572 	cgflags[cgn] |= CGF_DIRTY;
573 }
574 /*
575  * Find free space, at least nfrags consecutive frags of it.  Pays no
576  *  attention to block boundaries, but refuses to straddle cg
577  *  boundaries, even if the disk blocks involved are in fact
578  *  consecutive.  Return value is the frag number of the first frag of
579  *  the block, or -1 if no space was found.  Uses newsb for sb values,
580  *  and assumes the cgs[] structures correctly describe the area to be
581  *  searched.
582  *
583  * XXX is there a bug lurking in the ignoring of block boundaries by
584  *  the routine used by fragmove() in evict_data()?  Can an end-of-file
585  *  frag legally straddle a block boundary?  If not, this should be
586  *  cloned and fixed to stop at block boundaries for that use.  The
587  *  current one may still be needed for csum info motion, in case that
588  *  takes up more than a whole block (is the csum info allowed to begin
589  *  partway through a block and continue into the following block?).
590  *
591  * If we wrap off the end of the filesystem back to the beginning, we
592  *  can end up searching the end of the filesystem twice.  I ignore
593  *  this inefficiency, since if that happens we're going to croak with
594  *  a no-space error anyway, so it happens at most once.
595  */
596 static int
597 find_freespace(unsigned int nfrags)
598 {
599 	static int hand = 0;	/* hand rotates through all frags in the fs */
600 	int cgsize;		/* size of the cg hand currently points into */
601 	int cgn;		/* number of cg hand currently points into */
602 	int fwc;		/* frag-within-cg number of frag hand points
603 				 * to */
604 	int run;		/* length of run of free frags seen so far */
605 	int secondpass;		/* have we wrapped from end of fs to
606 				 * beginning? */
607 	unsigned char *bits;	/* cg_blksfree()[] for cg hand points into */
608 
609 	cgn = dtog(newsb, hand);
610 	fwc = dtogd(newsb, hand);
611 	secondpass = (hand == 0);
612 	run = 0;
613 	bits = cg_blksfree(cgs[cgn], 0);
614 	cgsize = cgs[cgn]->cg_ndblk;
615 	while (1) {
616 		if (bit_is_set(bits, fwc)) {
617 			run++;
618 			if (run >= nfrags)
619 				return (hand + 1 - run);
620 		} else {
621 			run = 0;
622 		}
623 		hand++;
624 		fwc++;
625 		if (fwc >= cgsize) {
626 			fwc = 0;
627 			cgn++;
628 			if (cgn >= newsb->fs_ncg) {
629 				hand = 0;
630 				if (secondpass)
631 					return (-1);
632 				secondpass = 1;
633 				cgn = 0;
634 			}
635 			bits = cg_blksfree(cgs[cgn], 0);
636 			cgsize = cgs[cgn]->cg_ndblk;
637 			run = 0;
638 		}
639 	}
640 }
641 /*
642  * Find a free block of disk space.  Finds an entire block of frags,
643  *  all of which are free.  Return value is the frag number of the
644  *  first frag of the block, or -1 if no space was found.  Uses newsb
645  *  for sb values, and assumes the cgs[] structures correctly describe
646  *  the area to be searched.
647  *
648  * See find_freespace(), above, for remarks about hand wrapping around.
649  */
650 static int
651 find_freeblock(void)
652 {
653 	static int hand = 0;	/* hand rotates through all frags in fs */
654 	int cgn;		/* cg number of cg hand points into */
655 	int fwc;		/* frag-within-cg number of frag hand points
656 				 * to */
657 	int cgsize;		/* size of cg hand points into */
658 	int secondpass;		/* have we wrapped from end to beginning? */
659 	unsigned char *bits;	/* cg_blksfree()[] for cg hand points into */
660 
661 	cgn = dtog(newsb, hand);
662 	fwc = dtogd(newsb, hand);
663 	secondpass = (hand == 0);
664 	bits = cg_blksfree(cgs[cgn], 0);
665 	cgsize = blknum(newsb, cgs[cgn]->cg_ndblk);
666 	while (1) {
667 		if (blk_is_set(bits, fwc, newsb->fs_frag))
668 			return (hand);
669 		fwc += newsb->fs_frag;
670 		hand += newsb->fs_frag;
671 		if (fwc >= cgsize) {
672 			fwc = 0;
673 			cgn++;
674 			if (cgn >= newsb->fs_ncg) {
675 				hand = 0;
676 				if (secondpass)
677 					return (-1);
678 				secondpass = 1;
679 				cgn = 0;
680 			}
681 			bits = cg_blksfree(cgs[cgn], 0);
682 			cgsize = blknum(newsb, cgs[cgn]->cg_ndblk);
683 		}
684 	}
685 }
686 /*
687  * Find a free inode, returning its inumber or -1 if none was found.
688  *  Uses newsb for sb values, and assumes the cgs[] structures
689  *  correctly describe the area to be searched.
690  *
691  * See find_freespace(), above, for remarks about hand wrapping around.
692  */
693 static int
694 find_freeinode(void)
695 {
696 	static int hand = 0;	/* hand rotates through all inodes in fs */
697 	int cgn;		/* cg number of cg hand points into */
698 	int iwc;		/* inode-within-cg number of inode hand points
699 				 * to */
700 	int secondpass;		/* have we wrapped from end to beginning? */
701 	unsigned char *bits;	/* cg_inosused()[] for cg hand points into */
702 
703 	cgn = hand / newsb->fs_ipg;
704 	iwc = hand % newsb->fs_ipg;
705 	secondpass = (hand == 0);
706 	bits = cg_inosused(cgs[cgn], 0);
707 	while (1) {
708 		if (bit_is_clr(bits, iwc))
709 			return (hand);
710 		hand++;
711 		iwc++;
712 		if (iwc >= newsb->fs_ipg) {
713 			iwc = 0;
714 			cgn++;
715 			if (cgn >= newsb->fs_ncg) {
716 				hand = 0;
717 				if (secondpass)
718 					return (-1);
719 				secondpass = 1;
720 				cgn = 0;
721 			}
722 			bits = cg_inosused(cgs[cgn], 0);
723 		}
724 	}
725 }
726 /*
727  * Mark a frag as free.  Sets the frag's bit in the cg_blksfree bitmap
728  *  for the appropriate cg, and marks the cg as dirty.
729  */
730 static void
731 free_frag(int fno)
732 {
733 	int cgn;
734 
735 	cgn = dtog(newsb, fno);
736 	set_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
737 	cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
738 }
739 /*
740  * Allocate a frag.  Clears the frag's bit in the cg_blksfree bitmap
741  *  for the appropriate cg, and marks the cg as dirty.
742  */
743 static void
744 alloc_frag(int fno)
745 {
746 	int cgn;
747 
748 	cgn = dtog(newsb, fno);
749 	clr_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
750 	cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
751 }
752 /*
753  * Fix up the csum array.  If shrinking, this involves freeing zero or
754  *  more frags; if growing, it involves allocating them, or if the
755  *  frags being grown into aren't free, finding space elsewhere for the
756  *  csum info.  (If the number of occupied frags doesn't change,
757  *  nothing happens here.)
758  */
759 static void
760 csum_fixup(void)
761 {
762 	int nold;		/* # frags in old csum info */
763 	int ntot;		/* # frags in new csum info */
764 	int nnew;		/* ntot-nold */
765 	int newloc;		/* new location for csum info, if necessary */
766 	int i;			/* generic loop index */
767 	int j;			/* generic loop index */
768 	int f;			/* "from" frag number, if moving */
769 	int t;			/* "to" frag number, if moving */
770 	int cgn;		/* cg number, used when shrinking */
771 
772 	ntot = howmany(newsb->fs_cssize, newsb->fs_fsize);
773 	nold = howmany(oldsb->fs_cssize, newsb->fs_fsize);
774 	nnew = ntot - nold;
775 	/* First, if there's no change in frag counts, it's easy. */
776 	if (nnew == 0)
777 		return;
778 	/* Next, if we're shrinking, it's almost as easy.  Just free up any
779 	 * frags in the old area we no longer need. */
780 	if (nnew < 0) {
781 		for ((i = newsb->fs_csaddr + ntot - 1), (j = nnew);
782 		    j < 0;
783 		    i--, j++) {
784 			free_frag(i);
785 		}
786 		return;
787 	}
788 	/* We must be growing.  Check to see that the new csum area fits
789 	 * within the filesystem.  I think this can never happen, since for
790 	 * the csum area to grow, we must be adding at least one cg, so the
791 	 * old csum area can't be this close to the end of the new filesystem.
792 	 * But it's a cheap check. */
793 	/* XXX what if csum info is at end of cg and grows into next cg, what
794 	 * if it spills over onto the next cg's backup superblock?  Can this
795 	 * happen? */
796 	if (newsb->fs_csaddr + ntot <= newsb->fs_size) {
797 		/* Okay, it fits - now,  see if the space we want is free. */
798 		for ((i = newsb->fs_csaddr + nold), (j = nnew);
799 		    j > 0;
800 		    i++, j--) {
801 			cgn = dtog(newsb, i);
802 			if (bit_is_clr(cg_blksfree(cgs[cgn], 0),
803 				dtogd(newsb, i)))
804 				break;
805 		}
806 		if (j <= 0) {
807 			/* Win win - all the frags we want are free. Allocate
808 			 * 'em and we're all done.  */
809 			for ((i = newsb->fs_csaddr + ntot - nnew), (j = nnew); j > 0; i++, j--) {
810 				alloc_frag(i);
811 			}
812 			return;
813 		}
814 	}
815 	/* We have to move the csum info, sigh.  Look for new space, free old
816 	 * space, and allocate new.  Update fs_csaddr.  We don't copy anything
817 	 * on disk at this point; the csum info will be written to the
818 	 * then-current fs_csaddr as part of the final flush. */
819 	newloc = find_freespace(ntot);
820 	if (newloc < 0) {
821 		printf("Sorry, no space available for new csums\n");
822 		exit(1);
823 	}
824 	for (i = 0, f = newsb->fs_csaddr, t = newloc; i < ntot; i++, f++, t++) {
825 		if (i < nold) {
826 			free_frag(f);
827 		}
828 		alloc_frag(t);
829 	}
830 	newsb->fs_csaddr = newloc;
831 }
832 /*
833  * Recompute newsb->fs_dsize.  Just scans all cgs, adding the number of
834  *  data blocks in that cg to the total.
835  */
836 static void
837 recompute_fs_dsize(void)
838 {
839 	int i;
840 
841 	newsb->fs_dsize = 0;
842 	for (i = 0; i < newsb->fs_ncg; i++) {
843 		int dlow;	/* size of before-sb data area */
844 		int dhigh;	/* offset of post-inode data area */
845 		int dmax;	/* total size of cg */
846 		int base;	/* base of cg, since cgsblock() etc add it in */
847 		base = cgbase(newsb, i);
848 		dlow = cgsblock(newsb, i) - base;
849 		dhigh = cgdmin(newsb, i) - base;
850 		dmax = newsb->fs_size - base;
851 		if (dmax > newsb->fs_fpg)
852 			dmax = newsb->fs_fpg;
853 		newsb->fs_dsize += dlow + dmax - dhigh;
854 	}
855 	/* Space in cg 0 before cgsblock is boot area, not free space! */
856 	newsb->fs_dsize -= cgsblock(newsb, 0) - cgbase(newsb, 0);
857 	/* And of course the csum info takes up space. */
858 	newsb->fs_dsize -= howmany(newsb->fs_cssize, newsb->fs_fsize);
859 }
860 /*
861  * Return the current time.  We call this and assign, rather than
862  *  calling time() directly, as insulation against OSes where fs_time
863  *  is not a time_t.
864  */
865 static time_t
866 timestamp(void)
867 {
868 	time_t t;
869 
870 	time(&t);
871 	return (t);
872 }
873 /*
874  * Grow the filesystem.
875  */
876 static void
877 grow(void)
878 {
879 	int i;
880 
881 	/* Update the timestamp. */
882 	newsb->fs_time = timestamp();
883 	/* Allocate and clear the new-inode area, in case we add any cgs. */
884 	zinodes = alloconce(newsb->fs_ipg * sizeof(struct ufs1_dinode),
885                             "zeroed inodes");
886 	bzero(zinodes, newsb->fs_ipg * sizeof(struct ufs1_dinode));
887 	/* Update the size. */
888 	newsb->fs_size = dbtofsb(newsb, newsize);
889 	/* Did we actually not grow?  (This can happen if newsize is less than
890 	 * a frag larger than the old size - unlikely, but no excuse to
891 	 * misbehave if it happens.) */
892 	if (newsb->fs_size == oldsb->fs_size)
893 		return;
894 	/* Check that the new last sector (frag, actually) is writable.  Since
895 	 * it's at least one frag larger than it used to be, we know we aren't
896 	 * overwriting anything important by this.  (The choice of sbbuf as
897 	 * what to write is irrelevant; it's just something handy that's known
898 	 * to be at least one frag in size.) */
899 	writeat(newsb->fs_size - 1, &sbbuf, newsb->fs_fsize);
900 	/* Update fs_old_ncyl and fs_ncg. */
901 	newsb->fs_old_ncyl = (newsb->fs_size * NSPF(newsb)) / newsb->fs_old_spc;
902 	newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg);
903 	/* Does the last cg end before the end of its inode area? There is no
904 	 * reason why this couldn't be handled, but it would complicate a lot
905 	 * of code (in all filesystem code - fsck, kernel, etc) because of the
906 	 * potential partial inode area, and the gain in space would be
907 	 * minimal, at most the pre-sb data area. */
908 	if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
909 		newsb->fs_ncg--;
910 		newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg;
911 		newsb->fs_size = (newsb->fs_old_ncyl * newsb->fs_old_spc) / NSPF(newsb);
912 		printf("Warning: last cylinder group is too small;\n");
913 		printf("    dropping it.  New size = %lu.\n",
914 		    (unsigned long int) fsbtodb(newsb, newsb->fs_size));
915 	}
916 	/* Find out how big the csum area is, and realloc csums if bigger. */
917 	newsb->fs_cssize = fragroundup(newsb,
918 	    newsb->fs_ncg * sizeof(struct csum));
919 	if (newsb->fs_cssize > oldsb->fs_cssize)
920 		csums = nfrealloc(csums, newsb->fs_cssize, "new cg summary");
921 	/* If we're adding any cgs, realloc structures and set up the new cgs. */
922 	if (newsb->fs_ncg > oldsb->fs_ncg) {
923 		char *cgp;
924 		cgs = nfrealloc(cgs, newsb->fs_ncg * sizeof(struct cg *),
925                                 "cg pointers");
926 		cgflags = nfrealloc(cgflags, newsb->fs_ncg, "cg flags");
927 		bzero(cgflags + oldsb->fs_ncg, newsb->fs_ncg - oldsb->fs_ncg);
928 		cgp = alloconce((newsb->fs_ncg - oldsb->fs_ncg) * cgblksz,
929                                 "cgs");
930 		for (i = oldsb->fs_ncg; i < newsb->fs_ncg; i++) {
931 			cgs[i] = (struct cg *) cgp;
932 			initcg(i);
933 			cgp += cgblksz;
934 		}
935 		cgs[oldsb->fs_ncg - 1]->cg_old_ncyl = oldsb->fs_old_cpg;
936 		cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY;
937 	}
938 	/* If the old fs ended partway through a cg, we have to update the old
939 	 * last cg (though possibly not to a full cg!). */
940 	if (oldsb->fs_size % oldsb->fs_fpg) {
941 		struct cg *cg;
942 		int newcgsize;
943 		int prevcgtop;
944 		int oldcgsize;
945 		cg = cgs[oldsb->fs_ncg - 1];
946 		cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY | CGF_BLKMAPS;
947 		prevcgtop = oldsb->fs_fpg * (oldsb->fs_ncg - 1);
948 		newcgsize = newsb->fs_size - prevcgtop;
949 		if (newcgsize > newsb->fs_fpg)
950 			newcgsize = newsb->fs_fpg;
951 		oldcgsize = oldsb->fs_size % oldsb->fs_fpg;
952 		set_bits(cg_blksfree(cg, 0), oldcgsize, newcgsize - oldcgsize);
953 		cg->cg_old_ncyl = howmany(newcgsize * NSPF(newsb), newsb->fs_old_spc);
954 		cg->cg_ndblk = newcgsize;
955 	}
956 	/* Fix up the csum info, if necessary. */
957 	csum_fixup();
958 	/* Make fs_dsize match the new reality. */
959 	recompute_fs_dsize();
960 }
961 /*
962  * Call (*fn)() for each inode, passing the inode and its inumber.  The
963  *  number of cylinder groups is pased in, so this can be used to map
964  *  over either the old or the new filesystem's set of inodes.
965  */
966 static void
967      map_inodes(void (*fn) (struct ufs1_dinode * di, unsigned int, void *arg), int ncg, void *cbarg) {
968 	int i;
969 	int ni;
970 
971 	ni = oldsb->fs_ipg * ncg;
972 	for (i = 0; i < ni; i++)
973 		(*fn) (inodes + i, i, cbarg);
974 }
975 /* Values for the third argument to the map function for
976  * map_inode_data_blocks.  MDB_DATA indicates the block is contains
977  * file data; MDB_INDIR_PRE and MDB_INDIR_POST indicate that it's an
978  * indirect block.  The MDB_INDIR_PRE call is made before the indirect
979  * block pointers are followed and the pointed-to blocks scanned,
980  * MDB_INDIR_POST after.
981  */
982 #define MDB_DATA       1
983 #define MDB_INDIR_PRE  2
984 #define MDB_INDIR_POST 3
985 
986 typedef void (*mark_callback_t) (unsigned int blocknum, unsigned int nfrags, unsigned int blksize, int opcode);
987 
988 /* Helper function - handles a data block.  Calls the callback
989  * function and returns number of bytes occupied in file (actually,
990  * rounded up to a frag boundary).  The name is historical.  */
991 static int
992 markblk(mark_callback_t fn, struct ufs1_dinode * di, int bn, off_t o)
993 {
994 	int sz;
995 	int nb;
996 	if (o >= di->di_size)
997 		return (0);
998 	sz = dblksize(newsb, di, lblkno(newsb, o));
999 	nb = (sz > di->di_size - o) ? di->di_size - o : sz;
1000 	if (bn)
1001 		(*fn) (bn, numfrags(newsb, sz), nb, MDB_DATA);
1002 	return (sz);
1003 }
1004 /* Helper function - handles an indirect block.  Makes the
1005  * MDB_INDIR_PRE callback for the indirect block, loops over the
1006  * pointers and recurses, and makes the MDB_INDIR_POST callback.
1007  * Returns the number of bytes occupied in file, as does markblk().
1008  * For the sake of update_for_data_move(), we read the indirect block
1009  * _after_ making the _PRE callback.  The name is historical.  */
1010 static int
1011 markiblk(mark_callback_t fn, struct ufs1_dinode * di, int bn, off_t o, int lev)
1012 {
1013 	int i;
1014 	int j;
1015 	int tot;
1016 	static int32_t indirblk1[howmany(MAXBSIZE, sizeof(int32_t))];
1017 	static int32_t indirblk2[howmany(MAXBSIZE, sizeof(int32_t))];
1018 	static int32_t indirblk3[howmany(MAXBSIZE, sizeof(int32_t))];
1019 	static int32_t *indirblks[3] = {
1020 		&indirblk1[0], &indirblk2[0], &indirblk3[0]
1021 	};
1022 	if (lev < 0)
1023 		return (markblk(fn, di, bn, o));
1024 	if (bn == 0) {
1025 		for (i = newsb->fs_bsize;
1026 		    lev >= 0;
1027 		    i *= NINDIR(newsb), lev--);
1028 		return (i);
1029 	}
1030 	(*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_PRE);
1031 	readat(fsbtodb(newsb, bn), indirblks[lev], newsb->fs_bsize);
1032 	tot = 0;
1033 	for (i = 0; i < NINDIR(newsb); i++) {
1034 		j = markiblk(fn, di, indirblks[lev][i], o, lev - 1);
1035 		if (j == 0)
1036 			break;
1037 		o += j;
1038 		tot += j;
1039 	}
1040 	(*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_POST);
1041 	return (tot);
1042 }
1043 
1044 
1045 /*
1046  * Call (*fn)() for each data block for an inode.  This routine assumes
1047  *  the inode is known to be of a type that has data blocks (file,
1048  *  directory, or non-fast symlink).  The called function is:
1049  *
1050  * (*fn)(unsigned int blkno, unsigned int nf, unsigned int nb, int op)
1051  *
1052  *  where blkno is the frag number, nf is the number of frags starting
1053  *  at blkno (always <= fs_frag), nb is the number of bytes that belong
1054  *  to the file (usually nf*fs_frag, often less for the last block/frag
1055  *  of a file).
1056  */
1057 static void
1058 map_inode_data_blocks(struct ufs1_dinode * di, mark_callback_t fn)
1059 {
1060 	off_t o;		/* offset within  inode */
1061 	int inc;		/* increment for o - maybe should be off_t? */
1062 	int b;			/* index within di_db[] and di_ib[] arrays */
1063 
1064 	/* Scan the direct blocks... */
1065 	o = 0;
1066 	for (b = 0; b < NDADDR; b++) {
1067 		inc = markblk(fn, di, di->di_db[b], o);
1068 		if (inc == 0)
1069 			break;
1070 		o += inc;
1071 	}
1072 	/* ...and the indirect blocks. */
1073 	if (inc) {
1074 		for (b = 0; b < NIADDR; b++) {
1075 			inc = markiblk(fn, di, di->di_ib[b], o, b);
1076 			if (inc == 0)
1077 				return;
1078 			o += inc;
1079 		}
1080 	}
1081 }
1082 
1083 static void
1084 dblk_callback(struct ufs1_dinode * di, unsigned int inum, void *arg)
1085 {
1086 	mark_callback_t fn;
1087 	fn = (mark_callback_t) arg;
1088 	switch (di->di_mode & IFMT) {
1089 	case IFLNK:
1090 		if (di->di_size > newsb->fs_maxsymlinklen) {
1091 	case IFDIR:
1092 	case IFREG:
1093 			map_inode_data_blocks(di, fn);
1094 		}
1095 		break;
1096 	}
1097 }
1098 /*
1099  * Make a callback call, a la map_inode_data_blocks, for all data
1100  *  blocks in the entire fs.  This is used only once, in
1101  *  update_for_data_move, but it's out at top level because the complex
1102  *  downward-funarg nesting that would otherwise result seems to give
1103  *  gcc gastric distress.
1104  */
1105 static void
1106 map_data_blocks(mark_callback_t fn, int ncg)
1107 {
1108 	map_inodes(&dblk_callback, ncg, (void *) fn);
1109 }
1110 /*
1111  * Initialize the blkmove array.
1112  */
1113 static void
1114 blkmove_init(void)
1115 {
1116 	int i;
1117 
1118 	blkmove = alloconce(oldsb->fs_size * sizeof(*blkmove), "blkmove");
1119 	for (i = 0; i < oldsb->fs_size; i++)
1120 		blkmove[i] = i;
1121 }
1122 /*
1123  * Load the inodes off disk.  Allocates the structures and initializes
1124  *  them - the inodes from disk, the flags to zero.
1125  */
1126 static void
1127 loadinodes(void)
1128 {
1129 	int cg;
1130 	struct ufs1_dinode *iptr;
1131 
1132 	inodes = alloconce(oldsb->fs_ncg * oldsb->fs_ipg * sizeof(struct ufs1_dinode), "inodes");
1133 	iflags = alloconce(oldsb->fs_ncg * oldsb->fs_ipg, "inode flags");
1134 	bzero(iflags, oldsb->fs_ncg * oldsb->fs_ipg);
1135 	iptr = inodes;
1136 	for (cg = 0; cg < oldsb->fs_ncg; cg++) {
1137 		readat(fsbtodb(oldsb, cgimin(oldsb, cg)), iptr,
1138 		    oldsb->fs_ipg * sizeof(struct ufs1_dinode));
1139 		iptr += oldsb->fs_ipg;
1140 	}
1141 }
1142 /*
1143  * Report a filesystem-too-full problem.
1144  */
1145 static void
1146 toofull(void)
1147 {
1148 	printf("Sorry, would run out of data blocks\n");
1149 	exit(1);
1150 }
1151 /*
1152  * Record a desire to move "n" frags from "from" to "to".
1153  */
1154 static void
1155 mark_move(unsigned int from, unsigned int to, unsigned int n)
1156 {
1157 	for (; n > 0; n--)
1158 		blkmove[from++] = to++;
1159 }
1160 /* Helper function - evict n frags, starting with start (cg-relative).
1161  * The free bitmap is scanned, unallocated frags are ignored, and
1162  * each block of consecutive allocated frags is moved as a unit.
1163  */
1164 static void
1165 fragmove(struct cg * cg, int base, unsigned int start, unsigned int n)
1166 {
1167 	int i;
1168 	int run;
1169 	run = 0;
1170 	for (i = 0; i <= n; i++) {
1171 		if ((i < n) && bit_is_clr(cg_blksfree(cg, 0), start + i)) {
1172 			run++;
1173 		} else {
1174 			if (run > 0) {
1175 				int off;
1176 				off = find_freespace(run);
1177 				if (off < 0)
1178 					toofull();
1179 				mark_move(base + start + i - run, off, run);
1180 				set_bits(cg_blksfree(cg, 0), start + i - run,
1181 				    run);
1182 				clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
1183 				    dtogd(oldsb, off), run);
1184 			}
1185 			run = 0;
1186 		}
1187 	}
1188 }
1189 /*
1190  * Evict all data blocks from the given cg, starting at minfrag (based
1191  *  at the beginning of the cg), for length nfrag.  The eviction is
1192  *  assumed to be entirely data-area; this should not be called with a
1193  *  range overlapping the metadata structures in the cg.  It also
1194  *  assumes minfrag points into the given cg; it will misbehave if this
1195  *  is not true.
1196  *
1197  * See the comment header on find_freespace() for one possible bug
1198  *  lurking here.
1199  */
1200 static void
1201 evict_data(struct cg * cg, unsigned int minfrag, unsigned int nfrag)
1202 {
1203 	int base;		/* base of cg (in frags from beginning of fs) */
1204 
1205 
1206 	base = cgbase(oldsb, cg->cg_cgx);
1207 	/* Does the boundary fall in the middle of a block?  To avoid breaking
1208 	 * between frags allocated as consecutive, we always evict the whole
1209 	 * block in this case, though one could argue we should check to see
1210 	 * if the frag before or after the break is unallocated. */
1211 	if (minfrag % oldsb->fs_frag) {
1212 		int n;
1213 		n = minfrag % oldsb->fs_frag;
1214 		minfrag -= n;
1215 		nfrag += n;
1216 	}
1217 	/* Do whole blocks.  If a block is wholly free, skip it; if wholly
1218 	 * allocated, move it in toto.  If neither, call fragmove() to move
1219 	 * the frags to new locations. */
1220 	while (nfrag >= oldsb->fs_frag) {
1221 		if (!blk_is_set(cg_blksfree(cg, 0), minfrag, oldsb->fs_frag)) {
1222 			if (blk_is_clr(cg_blksfree(cg, 0), minfrag,
1223 				oldsb->fs_frag)) {
1224 				int off;
1225 				off = find_freeblock();
1226 				if (off < 0)
1227 					toofull();
1228 				mark_move(base + minfrag, off, oldsb->fs_frag);
1229 				set_bits(cg_blksfree(cg, 0), minfrag,
1230 				    oldsb->fs_frag);
1231 				clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
1232 				    dtogd(oldsb, off), oldsb->fs_frag);
1233 			} else {
1234 				fragmove(cg, base, minfrag, oldsb->fs_frag);
1235 			}
1236 		}
1237 		minfrag += oldsb->fs_frag;
1238 		nfrag -= oldsb->fs_frag;
1239 	}
1240 	/* Clean up any sub-block amount left over. */
1241 	if (nfrag) {
1242 		fragmove(cg, base, minfrag, nfrag);
1243 	}
1244 }
1245 /*
1246  * Move all data blocks according to blkmove.  We have to be careful,
1247  *  because we may be updating indirect blocks that will themselves be
1248  *  getting moved, or inode int32_t arrays that point to indirect
1249  *  blocks that will be moved.  We call this before
1250  *  update_for_data_move, and update_for_data_move does inodes first,
1251  *  then indirect blocks in preorder, so as to make sure that the
1252  *  filesystem is self-consistent at all points, for better crash
1253  *  tolerance.  (We can get away with this only because all the writes
1254  *  done by perform_data_move() are writing into space that's not used
1255  *  by the old filesystem.)  If we crash, some things may point to the
1256  *  old data and some to the new, but both copies are the same.  The
1257  *  only wrong things should be csum info and free bitmaps, which fsck
1258  *  is entirely capable of cleaning up.
1259  *
1260  * Since blkmove_init() initializes all blocks to move to their current
1261  *  locations, we can have two blocks marked as wanting to move to the
1262  *  same location, but only two and only when one of them is the one
1263  *  that was already there.  So if blkmove[i]==i, we ignore that entry
1264  *  entirely - for unallocated blocks, we don't want it (and may be
1265  *  putting something else there), and for allocated blocks, we don't
1266  *  want to copy it anywhere.
1267  */
1268 static void
1269 perform_data_move(void)
1270 {
1271 	int i;
1272 	int run;
1273 	int maxrun;
1274 	char buf[65536];
1275 
1276 	maxrun = sizeof(buf) / newsb->fs_fsize;
1277 	run = 0;
1278 	for (i = 0; i < oldsb->fs_size; i++) {
1279 		if ((blkmove[i] == i) ||
1280 		    (run >= maxrun) ||
1281 		    ((run > 0) &&
1282 			(blkmove[i] != blkmove[i - 1] + 1))) {
1283 			if (run > 0) {
1284 				readat(fsbtodb(oldsb, i - run), &buf[0],
1285 				    run << oldsb->fs_fshift);
1286 				writeat(fsbtodb(oldsb, blkmove[i - run]),
1287 				    &buf[0], run << oldsb->fs_fshift);
1288 			}
1289 			run = 0;
1290 		}
1291 		if (blkmove[i] != i)
1292 			run++;
1293 	}
1294 	if (run > 0) {
1295 		readat(fsbtodb(oldsb, i - run), &buf[0],
1296 		    run << oldsb->fs_fshift);
1297 		writeat(fsbtodb(oldsb, blkmove[i - run]), &buf[0],
1298 		    run << oldsb->fs_fshift);
1299 	}
1300 }
1301 /*
1302  * This modifies an array of int32_t, according to blkmove.  This is
1303  *  used to update inode block arrays and indirect blocks to point to
1304  *  the new locations of data blocks.
1305  *
1306  * Return value is the number of int32_ts that needed updating; in
1307  *  particular, the return value is zero iff nothing was modified.
1308  */
1309 static int
1310 movemap_blocks(int32_t * vec, int n)
1311 {
1312 	int rv;
1313 
1314 	rv = 0;
1315 	for (; n > 0; n--, vec++) {
1316 		if (blkmove[*vec] != *vec) {
1317 			*vec = blkmove[*vec];
1318 			rv++;
1319 		}
1320 	}
1321 	return (rv);
1322 }
1323 static void
1324 moveblocks_callback(struct ufs1_dinode * di, unsigned int inum, void *arg)
1325 {
1326 	switch (di->di_mode & IFMT) {
1327 	case IFLNK:
1328 		if (di->di_size > oldsb->fs_maxsymlinklen) {
1329 	case IFDIR:
1330 	case IFREG:
1331 			/* don't || these two calls; we need their
1332 			 * side-effects */
1333 			if (movemap_blocks(&di->di_db[0], NDADDR)) {
1334 				iflags[inum] |= IF_DIRTY;
1335 			}
1336 			if (movemap_blocks(&di->di_ib[0], NIADDR)) {
1337 				iflags[inum] |= IF_DIRTY;
1338 			}
1339 		}
1340 		break;
1341 	}
1342 }
1343 
1344 static void
1345 moveindir_callback(unsigned int off, unsigned int nfrag, unsigned int nbytes, int kind)
1346 {
1347 	if (kind == MDB_INDIR_PRE) {
1348 		int32_t blk[howmany(MAXBSIZE, sizeof(int32_t))];
1349 		readat(fsbtodb(oldsb, off), &blk[0], oldsb->fs_bsize);
1350 		if (movemap_blocks(&blk[0], NINDIR(oldsb))) {
1351 			writeat(fsbtodb(oldsb, off), &blk[0], oldsb->fs_bsize);
1352 		}
1353 	}
1354 }
1355 /*
1356  * Update all inode data arrays and indirect blocks to point to the new
1357  *  locations of data blocks.  See the comment header on
1358  *  perform_data_move for some ordering considerations.
1359  */
1360 static void
1361 update_for_data_move(void)
1362 {
1363 	map_inodes(&moveblocks_callback, oldsb->fs_ncg, NULL);
1364 	map_data_blocks(&moveindir_callback, oldsb->fs_ncg);
1365 }
1366 /*
1367  * Initialize the inomove array.
1368  */
1369 static void
1370 inomove_init(void)
1371 {
1372 	int i;
1373 
1374 	inomove = alloconce(oldsb->fs_ipg * oldsb->fs_ncg * sizeof(*inomove),
1375                             "inomove");
1376 	for (i = (oldsb->fs_ipg * oldsb->fs_ncg) - 1; i >= 0; i--)
1377 		inomove[i] = i;
1378 }
1379 /*
1380  * Flush all dirtied inodes to disk.  Scans the inode flags array; for
1381  *  each dirty inode, it sets the BDIRTY bit on the first inode in the
1382  *  block containing the dirty inode.  Then it scans by blocks, and for
1383  *  each marked block, writes it.
1384  */
1385 static void
1386 flush_inodes(void)
1387 {
1388 	int i;
1389 	int ni;
1390 	int m;
1391 
1392 	ni = newsb->fs_ipg * newsb->fs_ncg;
1393 	m = INOPB(newsb) - 1;
1394 	for (i = 0; i < ni; i++) {
1395 		if (iflags[i] & IF_DIRTY) {
1396 			iflags[i & ~m] |= IF_BDIRTY;
1397 		}
1398 	}
1399 	m++;
1400 	for (i = 0; i < ni; i += m) {
1401 		if (iflags[i] & IF_BDIRTY) {
1402 			writeat(fsbtodb(newsb, ino_to_fsba(newsb, i)),
1403 			    inodes + i, newsb->fs_bsize);
1404 		}
1405 	}
1406 }
1407 /*
1408  * Evict all inodes from the specified cg.  shrink() already checked
1409  *  that there were enough free inodes, so the no-free-inodes check is
1410  *  a can't-happen.  If it does trip, the filesystem should be in good
1411  *  enough shape for fsck to fix; see the comment on perform_data_move
1412  *  for the considerations in question.
1413  */
1414 static void
1415 evict_inodes(struct cg * cg)
1416 {
1417 	int inum;
1418 	int i;
1419 	int fi;
1420 
1421 	inum = newsb->fs_ipg * cg->cg_cgx;
1422 	for (i = 0; i < newsb->fs_ipg; i++, inum++) {
1423 		if (inodes[inum].di_mode != 0) {
1424 			fi = find_freeinode();
1425 			if (fi < 0) {
1426 				printf("Sorry, inodes evaporated - "
1427 				    "filesystem probably needs fsck\n");
1428 				exit(1);
1429 			}
1430 			inomove[inum] = fi;
1431 			clr_bits(cg_inosused(cg, 0), i, 1);
1432 			set_bits(cg_inosused(cgs[ino_to_cg(newsb, fi)], 0),
1433 			    fi % newsb->fs_ipg, 1);
1434 		}
1435 	}
1436 }
1437 /*
1438  * Move inodes from old locations to new.  Does not actually write
1439  *  anything to disk; just copies in-core and sets dirty bits.
1440  *
1441  * We have to be careful here for reasons similar to those mentioned in
1442  *  the comment header on perform_data_move, above: for the sake of
1443  *  crash tolerance, we want to make sure everything is present at both
1444  *  old and new locations before we update pointers.  So we call this
1445  *  first, then flush_inodes() to get them out on disk, then update
1446  *  directories to match.
1447  */
1448 static void
1449 perform_inode_move(void)
1450 {
1451 	int i;
1452 	int ni;
1453 
1454 	ni = oldsb->fs_ipg * oldsb->fs_ncg;
1455 	for (i = 0; i < ni; i++) {
1456 		if (inomove[i] != i) {
1457 			inodes[inomove[i]] = inodes[i];
1458 			iflags[inomove[i]] = iflags[i] | IF_DIRTY;
1459 		}
1460 	}
1461 }
1462 /*
1463  * Update the directory contained in the nb bytes at buf, to point to
1464  *  inodes' new locations.
1465  */
1466 static int
1467 update_dirents(char *buf, int nb)
1468 {
1469 	int rv;
1470 #define d ((struct direct *)buf)
1471 
1472 	rv = 0;
1473 	while (nb > 0) {
1474 		if (inomove[d->d_ino] != d->d_ino) {
1475 			rv++;
1476 			d->d_ino = inomove[d->d_ino];
1477 		}
1478 		nb -= d->d_reclen;
1479 		buf += d->d_reclen;
1480 	}
1481 	return (rv);
1482 #undef d
1483 }
1484 /*
1485  * Callback function for map_inode_data_blocks, for updating a
1486  *  directory to point to new inode locations.
1487  */
1488 static void
1489 update_dir_data(unsigned int bn, unsigned int size, unsigned int nb, int kind)
1490 {
1491 	if (kind == MDB_DATA) {
1492 		union {
1493 			struct direct d;
1494 			char ch[MAXBSIZE];
1495 		}     buf;
1496 		readat(fsbtodb(oldsb, bn), &buf, size << oldsb->fs_fshift);
1497 		if (update_dirents((char *) &buf, nb)) {
1498 			writeat(fsbtodb(oldsb, bn), &buf,
1499 			    size << oldsb->fs_fshift);
1500 		}
1501 	}
1502 }
1503 static void
1504 dirmove_callback(struct ufs1_dinode * di, unsigned int inum, void *arg)
1505 {
1506 	switch (di->di_mode & IFMT) {
1507 	case IFDIR:
1508 		map_inode_data_blocks(di, &update_dir_data);
1509 		break;
1510 	}
1511 }
1512 /*
1513  * Update directory entries to point to new inode locations.
1514  */
1515 static void
1516 update_for_inode_move(void)
1517 {
1518 	map_inodes(&dirmove_callback, newsb->fs_ncg, NULL);
1519 }
1520 /*
1521  * Shrink the filesystem.
1522  */
1523 static void
1524 shrink(void)
1525 {
1526 	int i;
1527 
1528 	/* Load the inodes off disk - we'll need 'em. */
1529 	loadinodes();
1530 	/* Update the timestamp. */
1531 	newsb->fs_time = timestamp();
1532 	/* Update the size figures. */
1533 	newsb->fs_size = dbtofsb(newsb, newsize);
1534 	newsb->fs_old_ncyl = (newsb->fs_size * NSPF(newsb)) / newsb->fs_old_spc;
1535 	newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg);
1536 	/* Does the (new) last cg end before the end of its inode area?  See
1537 	 * the similar code in grow() for more on this. */
1538 	if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
1539 		newsb->fs_ncg--;
1540 		newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg;
1541 		newsb->fs_size = (newsb->fs_old_ncyl * newsb->fs_old_spc) / NSPF(newsb);
1542 		printf("Warning: last cylinder group is too small;\n");
1543 		printf("    dropping it.  New size = %lu.\n",
1544 		    (unsigned long int) fsbtodb(newsb, newsb->fs_size));
1545 	}
1546 	/* Let's make sure we're not being shrunk into oblivion. */
1547 	if (newsb->fs_ncg < 1) {
1548 		printf("Size too small - filesystem would have no cylinders\n");
1549 		exit(1);
1550 	}
1551 	/* Initialize for block motion. */
1552 	blkmove_init();
1553 	/* Update csum size, then fix up for the new size */
1554 	newsb->fs_cssize = fragroundup(newsb,
1555 	    newsb->fs_ncg * sizeof(struct csum));
1556 	csum_fixup();
1557 	/* Evict data from any cgs being wholly eliminiated */
1558 	for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++) {
1559 		int base;
1560 		int dlow;
1561 		int dhigh;
1562 		int dmax;
1563 		base = cgbase(oldsb, i);
1564 		dlow = cgsblock(oldsb, i) - base;
1565 		dhigh = cgdmin(oldsb, i) - base;
1566 		dmax = oldsb->fs_size - base;
1567 		if (dmax > cgs[i]->cg_ndblk)
1568 			dmax = cgs[i]->cg_ndblk;
1569 		evict_data(cgs[i], 0, dlow);
1570 		evict_data(cgs[i], dhigh, dmax - dhigh);
1571 		newsb->fs_cstotal.cs_ndir -= cgs[i]->cg_cs.cs_ndir;
1572 		newsb->fs_cstotal.cs_nifree -= cgs[i]->cg_cs.cs_nifree;
1573 		newsb->fs_cstotal.cs_nffree -= cgs[i]->cg_cs.cs_nffree;
1574 		newsb->fs_cstotal.cs_nbfree -= cgs[i]->cg_cs.cs_nbfree;
1575 	}
1576 	/* Update the new last cg. */
1577 	cgs[newsb->fs_ncg - 1]->cg_ndblk = newsb->fs_size -
1578 	    ((newsb->fs_ncg - 1) * newsb->fs_fpg);
1579 	/* Is the new last cg partial?  If so, evict any data from the part
1580 	 * being shrunken away. */
1581 	if (newsb->fs_size % newsb->fs_fpg) {
1582 		struct cg *cg;
1583 		int oldcgsize;
1584 		int newcgsize;
1585 		cg = cgs[newsb->fs_ncg - 1];
1586 		newcgsize = newsb->fs_size % newsb->fs_fpg;
1587 		oldcgsize = oldsb->fs_size - ((newsb->fs_ncg - 1) & oldsb->fs_fpg);
1588 		if (oldcgsize > oldsb->fs_fpg)
1589 			oldcgsize = oldsb->fs_fpg;
1590 		evict_data(cg, newcgsize, oldcgsize - newcgsize);
1591 		clr_bits(cg_blksfree(cg, 0), newcgsize, oldcgsize - newcgsize);
1592 	}
1593 	/* Find out whether we would run out of inodes.  (Note we haven't
1594 	 * actually done anything to the filesystem yet; all those evict_data
1595 	 * calls just update blkmove.) */
1596 	{
1597 		int slop;
1598 		slop = 0;
1599 		for (i = 0; i < newsb->fs_ncg; i++)
1600 			slop += cgs[i]->cg_cs.cs_nifree;
1601 		for (; i < oldsb->fs_ncg; i++)
1602 			slop -= oldsb->fs_ipg - cgs[i]->cg_cs.cs_nifree;
1603 		if (slop < 0) {
1604 			printf("Sorry, would run out of inodes\n");
1605 			exit(1);
1606 		}
1607 	}
1608 	/* Copy data, then update pointers to data.  See the comment header on
1609 	 * perform_data_move for ordering considerations. */
1610 	perform_data_move();
1611 	update_for_data_move();
1612 	/* Now do inodes.  Initialize, evict, move, update - see the comment
1613 	 * header on perform_inode_move. */
1614 	inomove_init();
1615 	for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++)
1616 		evict_inodes(cgs[i]);
1617 	perform_inode_move();
1618 	flush_inodes();
1619 	update_for_inode_move();
1620 	/* Recompute all the bitmaps; most of them probably need it anyway,
1621 	 * the rest are just paranoia and not wanting to have to bother
1622 	 * keeping track of exactly which ones require it. */
1623 	for (i = 0; i < newsb->fs_ncg; i++)
1624 		cgflags[i] |= CGF_DIRTY | CGF_BLKMAPS | CGF_INOMAPS;
1625 	/* Update the cg_old_ncyl value for the last cylinder.  The condition is
1626 	 * commented out because fsck whines if not - see the similar
1627 	 * condition in grow() for more. */
1628 	/* XXX fix once fsck is fixed */
1629 	/* if (newsb->fs_old_ncyl % newsb->fs_old_cpg) XXX */
1630 /*XXXJTK*/
1631 	cgs[newsb->fs_ncg - 1]->cg_old_ncyl =
1632 	    newsb->fs_old_ncyl % newsb->fs_old_cpg;
1633 	/* Make fs_dsize match the new reality. */
1634 	recompute_fs_dsize();
1635 }
1636 /*
1637  * Recompute the block totals, block cluster summaries, and rotational
1638  *  position summaries, for a given cg (specified by number), based on
1639  *  its free-frag bitmap (cg_blksfree()[]).
1640  */
1641 static void
1642 rescan_blkmaps(int cgn)
1643 {
1644 	struct cg *cg;
1645 	int f;
1646 	int b;
1647 	int blkfree;
1648 	int blkrun;
1649 	int fragrun;
1650 	int fwb;
1651 
1652 	cg = cgs[cgn];
1653 	/* Subtract off the current totals from the sb's summary info */
1654 	newsb->fs_cstotal.cs_nffree -= cg->cg_cs.cs_nffree;
1655 	newsb->fs_cstotal.cs_nbfree -= cg->cg_cs.cs_nbfree;
1656 	/* Clear counters and bitmaps. */
1657 	cg->cg_cs.cs_nffree = 0;
1658 	cg->cg_cs.cs_nbfree = 0;
1659 	bzero(&cg->cg_frsum[0], MAXFRAG * sizeof(cg->cg_frsum[0]));
1660 	bzero(&cg_blktot(cg, 0)[0],
1661 	    newsb->fs_old_cpg * sizeof(cg_blktot(cg, 0)[0]));
1662 	bzero(&cg_blks(newsb, cg, 0, 0)[0],
1663 	    newsb->fs_old_cpg * newsb->fs_old_nrpos *
1664 	    sizeof(cg_blks(newsb, cg, 0, 0)[0]));
1665 	if (newsb->fs_contigsumsize > 0) {
1666 		cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
1667 		bzero(&cg_clustersum(cg, 0)[1],
1668 		    newsb->fs_contigsumsize *
1669 		    sizeof(cg_clustersum(cg, 0)[1]));
1670 		bzero(&cg_clustersfree(cg, 0)[0],
1671 		    howmany((newsb->fs_old_cpg * newsb->fs_old_spc) / NSPB(newsb),
1672 			NBBY));
1673 	}
1674 	/* Scan the free-frag bitmap.  Runs of free frags are kept track of
1675 	 * with fragrun, and recorded into cg_frsum[] and cg_cs.cs_nffree; on
1676 	 * each block boundary, entire free blocks are recorded as well. */
1677 	blkfree = 1;
1678 	blkrun = 0;
1679 	fragrun = 0;
1680 	f = 0;
1681 	b = 0;
1682 	fwb = 0;
1683 	while (f < cg->cg_ndblk) {
1684 		if (bit_is_set(cg_blksfree(cg, 0), f)) {
1685 			fragrun++;
1686 		} else {
1687 			blkfree = 0;
1688 			if (fragrun > 0) {
1689 				cg->cg_frsum[fragrun]++;
1690 				cg->cg_cs.cs_nffree += fragrun;
1691 			}
1692 			fragrun = 0;
1693 		}
1694 		f++;
1695 		fwb++;
1696 		if (fwb >= newsb->fs_frag) {
1697 			if (blkfree) {
1698 				cg->cg_cs.cs_nbfree++;
1699 				if (newsb->fs_contigsumsize > 0)
1700 					set_bits(cg_clustersfree(cg, 0), b, 1);
1701 				cg_blktot(cg, 0)[cbtocylno(newsb, f - newsb->fs_frag)]++;
1702 				cg_blks(newsb, cg,
1703 				    cbtocylno(newsb, f - newsb->fs_frag),
1704 				    0)[cbtorpos(newsb, f - newsb->fs_frag)]++;
1705 				blkrun++;
1706 			} else {
1707 				if (fragrun > 0) {
1708 					cg->cg_frsum[fragrun]++;
1709 					cg->cg_cs.cs_nffree += fragrun;
1710 				}
1711 				if (newsb->fs_contigsumsize > 0) {
1712 					if (blkrun > 0) {
1713 						cg_clustersum(cg, 0)[(blkrun > newsb->fs_contigsumsize) ? newsb->fs_contigsumsize : blkrun]++;
1714 					}
1715 				}
1716 				blkrun = 0;
1717 			}
1718 			fwb = 0;
1719 			b++;
1720 			blkfree = 1;
1721 			fragrun = 0;
1722 		}
1723 	}
1724 	if (fragrun > 0) {
1725 		cg->cg_frsum[fragrun]++;
1726 		cg->cg_cs.cs_nffree += fragrun;
1727 	}
1728 	if ((blkrun > 0) && (newsb->fs_contigsumsize > 0)) {
1729 		cg_clustersum(cg, 0)[(blkrun > newsb->fs_contigsumsize) ?
1730 		    newsb->fs_contigsumsize : blkrun]++;
1731 	}
1732 	/*
1733          * Put the updated summary info back into csums, and add it
1734          * back into the sb's summary info.  Then mark the cg dirty.
1735          */
1736 	csums[cgn] = cg->cg_cs;
1737 	newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
1738 	newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
1739 	cgflags[cgn] |= CGF_DIRTY;
1740 }
1741 /*
1742  * Recompute the cg_inosused()[] bitmap, and the cs_nifree and cs_ndir
1743  *  values, for a cg, based on the in-core inodes for that cg.
1744  */
1745 static void
1746 rescan_inomaps(int cgn)
1747 {
1748 	struct cg *cg;
1749 	int inum;
1750 	int iwc;
1751 
1752 	cg = cgs[cgn];
1753 	newsb->fs_cstotal.cs_ndir -= cg->cg_cs.cs_ndir;
1754 	newsb->fs_cstotal.cs_nifree -= cg->cg_cs.cs_nifree;
1755 	cg->cg_cs.cs_ndir = 0;
1756 	cg->cg_cs.cs_nifree = 0;
1757 	bzero(&cg_inosused(cg, 0)[0], howmany(newsb->fs_ipg, NBBY));
1758 	inum = cgn * newsb->fs_ipg;
1759 	if (cgn == 0) {
1760 		set_bits(cg_inosused(cg, 0), 0, 2);
1761 		iwc = 2;
1762 		inum += 2;
1763 	} else {
1764 		iwc = 0;
1765 	}
1766 	for (; iwc < newsb->fs_ipg; iwc++, inum++) {
1767 		switch (inodes[inum].di_mode & IFMT) {
1768 		case 0:
1769 			cg->cg_cs.cs_nifree++;
1770 			break;
1771 		case IFDIR:
1772 			cg->cg_cs.cs_ndir++;
1773 			/* fall through */
1774 		default:
1775 			set_bits(cg_inosused(cg, 0), iwc, 1);
1776 			break;
1777 		}
1778 	}
1779 	csums[cgn] = cg->cg_cs;
1780 	newsb->fs_cstotal.cs_ndir += cg->cg_cs.cs_ndir;
1781 	newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
1782 	cgflags[cgn] |= CGF_DIRTY;
1783 }
1784 /*
1785  * Flush cgs to disk, recomputing anything they're marked as needing.
1786  */
1787 static void
1788 flush_cgs(void)
1789 {
1790 	int i;
1791 
1792 	for (i = 0; i < newsb->fs_ncg; i++) {
1793 		if (cgflags[i] & CGF_BLKMAPS) {
1794 			rescan_blkmaps(i);
1795 		}
1796 		if (cgflags[i] & CGF_INOMAPS) {
1797 			rescan_inomaps(i);
1798 		}
1799 		if (cgflags[i] & CGF_DIRTY) {
1800 			cgs[i]->cg_rotor = 0;
1801 			cgs[i]->cg_frotor = 0;
1802 			cgs[i]->cg_irotor = 0;
1803 			writeat(fsbtodb(newsb, cgtod(newsb, i)), cgs[i],
1804 			    cgblksz);
1805 		}
1806 	}
1807 	writeat(fsbtodb(newsb, newsb->fs_csaddr), csums, newsb->fs_cssize);
1808 }
1809 /*
1810  * Write the superblock, both to the main superblock and to each cg's
1811  *  alternative superblock.
1812  */
1813 static void
1814 write_sbs(void)
1815 {
1816 	int i;
1817 
1818 	writeat(where, newsb, SBLOCKSIZE);
1819 	for (i = 0; i < newsb->fs_ncg; i++) {
1820 		writeat(fsbtodb(newsb, cgsblock(newsb, i)), newsb, SBLOCKSIZE);
1821 	}
1822 }
1823 /*
1824  * main().
1825  */
1826 int main(int, char **);
1827 int
1828 main(int ac, char **av)
1829 {
1830 	size_t i;
1831 	if (ac != 3) {
1832 		fprintf(stderr, "usage: %s filesystem new-size\n",
1833 		    getprogname());
1834 		exit(1);
1835 	}
1836 	fd = open(av[1], O_RDWR, 0);
1837 	if (fd < 0)
1838 		err(1, "Cannot open `%s'", av[1]);
1839 	checksmallio();
1840 	newsize = atoi(av[2]);
1841 	oldsb = (struct fs *) & sbbuf;
1842 	newsb = (struct fs *) (SBLOCKSIZE + (char *) &sbbuf);
1843 	for (where = search[i = 0]; search[i] != -1; where = search[++i]) {
1844 		readat(where, oldsb, SBLOCKSIZE);
1845 		if (oldsb->fs_magic == FS_UFS1_MAGIC)
1846 			break;
1847 		if (where == SBLOCK_UFS2)
1848 			continue;
1849 		if (oldsb->fs_old_flags & FS_FLAGS_UPDATED)
1850 			err(1, "Cannot resize ffsv2 format suberblock!");
1851 	}
1852 	if (where == (off_t)-1)
1853 		errx(1, "Bad magic number");
1854 	oldsb->fs_qbmask = ~(int64_t) oldsb->fs_bmask;
1855 	oldsb->fs_qfmask = ~(int64_t) oldsb->fs_fmask;
1856 	if (oldsb->fs_ipg % INOPB(oldsb)) {
1857 		printf("ipg[%d] %% INOPB[%d] != 0\n", (int) oldsb->fs_ipg,
1858 		    (int) INOPB(oldsb));
1859 		exit(1);
1860 	}
1861 	/* The superblock is bigger than struct fs (there are trailing tables,
1862 	 * of non-fixed size); make sure we copy the whole thing.  SBLOCKSIZE may
1863 	 * be an over-estimate, but we do this just once, so being generous is
1864 	 * cheap. */
1865 	bcopy(oldsb, newsb, SBLOCKSIZE);
1866 	loadcgs();
1867 	if (newsize > fsbtodb(oldsb, oldsb->fs_size)) {
1868 		grow();
1869 	} else if (newsize < fsbtodb(oldsb, oldsb->fs_size)) {
1870 		shrink();
1871 	}
1872 	flush_cgs();
1873 	write_sbs();
1874 	exit(0);
1875 }
1876