1 /* 2 * Copyright (c) 1980, 1989 The Regents of the University of California. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #ifndef lint 35 /* from: static char sccsid[] = "@(#)mkfs.c 6.18 (Berkeley) 7/3/91"; */ 36 static char rcsid[] = "$Id: mkfs.c,v 1.4 1993/07/28 00:57:23 cgd Exp $"; 37 #endif /* not lint */ 38 39 #ifndef STANDALONE 40 #include <stdio.h> 41 #include <a.out.h> 42 #endif 43 44 #include <sys/param.h> 45 #include <sys/time.h> 46 #include <sys/wait.h> 47 #include <sys/resource.h> 48 #include <ufs/dinode.h> 49 #include <ufs/fs.h> 50 #include <ufs/dir.h> 51 #include <sys/disklabel.h> 52 #include <machine/endian.h> 53 54 /* 55 * make file system for cylinder-group style file systems 56 */ 57 58 /* 59 * The size of a cylinder group is calculated by CGSIZE. The maximum size 60 * is limited by the fact that cylinder groups are at most one block. 61 * Its size is derived from the size of the maps maintained in the 62 * cylinder group and the (struct cg) size. 63 */ 64 #define CGSIZE(fs) \ 65 /* base cg */ (sizeof(struct cg) + \ 66 /* blktot size */ (fs)->fs_cpg * sizeof(long) + \ 67 /* blks size */ (fs)->fs_cpg * (fs)->fs_nrpos * sizeof(short) + \ 68 /* inode map */ howmany((fs)->fs_ipg, NBBY) + \ 69 /* block map */ howmany((fs)->fs_cpg * (fs)->fs_spc / NSPF(fs), NBBY)) 70 71 /* 72 * We limit the size of the inode map to be no more than a 73 * third of the cylinder group space, since we must leave at 74 * least an equal amount of space for the block map. 75 * 76 * N.B.: MAXIPG must be a multiple of INOPB(fs). 77 */ 78 #define MAXIPG(fs) roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs)) 79 80 #define UMASK 0755 81 #define MAXINOPB (MAXBSIZE / sizeof(struct dinode)) 82 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 83 84 /* 85 * variables set up by front end. 86 */ 87 extern int mfs; /* run as the memory based filesystem */ 88 extern int Nflag; /* run mkfs without writing file system */ 89 extern int fssize; /* file system size */ 90 extern int ntracks; /* # tracks/cylinder */ 91 extern int nsectors; /* # sectors/track */ 92 extern int nphyssectors; /* # sectors/track including spares */ 93 extern int secpercyl; /* sectors per cylinder */ 94 extern int sectorsize; /* bytes/sector */ 95 extern int rpm; /* revolutions/minute of drive */ 96 extern int interleave; /* hardware sector interleave */ 97 extern int trackskew; /* sector 0 skew, per track */ 98 extern int headswitch; /* head switch time, usec */ 99 extern int trackseek; /* track-to-track seek, usec */ 100 extern int fsize; /* fragment size */ 101 extern int bsize; /* block size */ 102 extern int cpg; /* cylinders/cylinder group */ 103 extern int cpgflg; /* cylinders/cylinder group flag was given */ 104 extern int minfree; /* free space threshold */ 105 extern int opt; /* optimization preference (space or time) */ 106 extern int density; /* number of bytes per inode */ 107 extern int maxcontig; /* max contiguous blocks to allocate */ 108 extern int rotdelay; /* rotational delay between blocks */ 109 extern int maxbpg; /* maximum blocks per file in a cyl group */ 110 extern int nrpos; /* # of distinguished rotational positions */ 111 extern int bbsize; /* boot block size */ 112 extern int sbsize; /* superblock size */ 113 extern u_long memleft; /* virtual memory available */ 114 extern caddr_t membase; /* start address of memory based filesystem */ 115 extern caddr_t malloc(), calloc(); 116 117 union { 118 struct fs fs; 119 char pad[SBSIZE]; 120 } fsun; 121 #define sblock fsun.fs 122 struct csum *fscs; 123 124 union { 125 struct cg cg; 126 char pad[MAXBSIZE]; 127 } cgun; 128 #define acg cgun.cg 129 130 struct dinode zino[MAXBSIZE / sizeof(struct dinode)]; 131 132 int fsi, fso; 133 daddr_t alloc(); 134 135 mkfs(pp, fsys, fi, fo) 136 struct partition *pp; 137 char *fsys; 138 int fi, fo; 139 { 140 register long i, mincpc, mincpg, inospercg; 141 long cylno, rpos, blk, j, warn = 0; 142 long used, mincpgcnt, bpcg; 143 long mapcramped, inodecramped; 144 long postblsize, rotblsize, totalsbsize; 145 int ppid, status; 146 time_t utime; 147 void started(); 148 149 #ifndef STANDALONE 150 time(&utime); 151 #endif 152 if (mfs) { 153 ppid = getpid(); 154 (void) signal(SIGUSR1, started); 155 if (i = fork()) { 156 if (i == -1) { 157 perror("mount_mfs"); 158 exit(10); 159 } 160 if (waitpid(i, &status, 0) != -1 && WIFEXITED(status)) 161 exit(WEXITSTATUS(status)); 162 exit(11); 163 /* NOTREACHED */ 164 } 165 (void)malloc(0); 166 if (fssize * sectorsize > memleft) 167 fssize = (memleft - 16384) / sectorsize; 168 if ((membase = malloc(fssize * sectorsize)) == 0) 169 exit(12); 170 } 171 fsi = fi; 172 fso = fo; 173 /* 174 * Validate the given file system size. 175 * Verify that its last block can actually be accessed. 176 */ 177 if (fssize <= 0) 178 printf("preposterous size %d\n", fssize), exit(13); 179 wtfs(fssize - 1, sectorsize, (char *)&sblock); 180 /* 181 * collect and verify the sector and track info 182 */ 183 sblock.fs_nsect = nsectors; 184 sblock.fs_ntrak = ntracks; 185 if (sblock.fs_ntrak <= 0) 186 printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14); 187 if (sblock.fs_nsect <= 0) 188 printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15); 189 /* 190 * collect and verify the block and fragment sizes 191 */ 192 sblock.fs_bsize = bsize; 193 sblock.fs_fsize = fsize; 194 if (!POWEROF2(sblock.fs_bsize)) { 195 printf("block size must be a power of 2, not %d\n", 196 sblock.fs_bsize); 197 exit(16); 198 } 199 if (!POWEROF2(sblock.fs_fsize)) { 200 printf("fragment size must be a power of 2, not %d\n", 201 sblock.fs_fsize); 202 exit(17); 203 } 204 if (sblock.fs_fsize < sectorsize) { 205 printf("fragment size %d is too small, minimum is %d\n", 206 sblock.fs_fsize, sectorsize); 207 exit(18); 208 } 209 if (sblock.fs_bsize < MINBSIZE) { 210 printf("block size %d is too small, minimum is %d\n", 211 sblock.fs_bsize, MINBSIZE); 212 exit(19); 213 } 214 if (sblock.fs_bsize < sblock.fs_fsize) { 215 printf("block size (%d) cannot be smaller than fragment size (%d)\n", 216 sblock.fs_bsize, sblock.fs_fsize); 217 exit(20); 218 } 219 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 220 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 221 /* 222 * Planning now for future expansion. 223 */ 224 # if (BYTE_ORDER == BIG_ENDIAN) 225 sblock.fs_qbmask.val[0] = 0; 226 sblock.fs_qbmask.val[1] = ~sblock.fs_bmask; 227 sblock.fs_qfmask.val[0] = 0; 228 sblock.fs_qfmask.val[1] = ~sblock.fs_fmask; 229 # endif /* BIG_ENDIAN */ 230 # if (BYTE_ORDER == LITTLE_ENDIAN) 231 sblock.fs_qbmask.val[0] = ~sblock.fs_bmask; 232 sblock.fs_qbmask.val[1] = 0; 233 sblock.fs_qfmask.val[0] = ~sblock.fs_fmask; 234 sblock.fs_qfmask.val[1] = 0; 235 # endif /* LITTLE_ENDIAN */ 236 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1) 237 sblock.fs_bshift++; 238 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1) 239 sblock.fs_fshift++; 240 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 241 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1) 242 sblock.fs_fragshift++; 243 if (sblock.fs_frag > MAXFRAG) { 244 printf("fragment size %d is too small, minimum with block size %d is %d\n", 245 sblock.fs_fsize, sblock.fs_bsize, 246 sblock.fs_bsize / MAXFRAG); 247 exit(21); 248 } 249 sblock.fs_nrpos = nrpos; 250 sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t); 251 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct dinode); 252 sblock.fs_nspf = sblock.fs_fsize / sectorsize; 253 for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1) 254 sblock.fs_fsbtodb++; 255 sblock.fs_sblkno = 256 roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag); 257 sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno + 258 roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag)); 259 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 260 sblock.fs_cgoffset = roundup( 261 howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag); 262 for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1) 263 sblock.fs_cgmask <<= 1; 264 if (!POWEROF2(sblock.fs_ntrak)) 265 sblock.fs_cgmask <<= 1; 266 /* 267 * Validate specified/determined secpercyl 268 * and calculate minimum cylinders per group. 269 */ 270 sblock.fs_spc = secpercyl; 271 for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc; 272 sblock.fs_cpc > 1 && (i & 1) == 0; 273 sblock.fs_cpc >>= 1, i >>= 1) 274 /* void */; 275 mincpc = sblock.fs_cpc; 276 bpcg = sblock.fs_spc * sectorsize; 277 inospercg = roundup(bpcg / sizeof(struct dinode), INOPB(&sblock)); 278 if (inospercg > MAXIPG(&sblock)) 279 inospercg = MAXIPG(&sblock); 280 used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock); 281 mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used, 282 sblock.fs_spc); 283 mincpg = roundup(mincpgcnt, mincpc); 284 /* 285 * Insure that cylinder group with mincpg has enough space 286 * for block maps 287 */ 288 sblock.fs_cpg = mincpg; 289 sblock.fs_ipg = inospercg; 290 mapcramped = 0; 291 while (CGSIZE(&sblock) > sblock.fs_bsize) { 292 mapcramped = 1; 293 if (sblock.fs_bsize < MAXBSIZE) { 294 sblock.fs_bsize <<= 1; 295 if ((i & 1) == 0) { 296 i >>= 1; 297 } else { 298 sblock.fs_cpc <<= 1; 299 mincpc <<= 1; 300 mincpg = roundup(mincpgcnt, mincpc); 301 sblock.fs_cpg = mincpg; 302 } 303 sblock.fs_frag <<= 1; 304 sblock.fs_fragshift += 1; 305 if (sblock.fs_frag <= MAXFRAG) 306 continue; 307 } 308 if (sblock.fs_fsize == sblock.fs_bsize) { 309 printf("There is no block size that"); 310 printf(" can support this disk\n"); 311 exit(22); 312 } 313 sblock.fs_frag >>= 1; 314 sblock.fs_fragshift -= 1; 315 sblock.fs_fsize <<= 1; 316 sblock.fs_nspf <<= 1; 317 } 318 /* 319 * Insure that cylinder group with mincpg has enough space for inodes 320 */ 321 inodecramped = 0; 322 used *= sectorsize; 323 inospercg = roundup((mincpg * bpcg - used) / density, INOPB(&sblock)); 324 sblock.fs_ipg = inospercg; 325 while (inospercg > MAXIPG(&sblock)) { 326 inodecramped = 1; 327 if (mincpc == 1 || sblock.fs_frag == 1 || 328 sblock.fs_bsize == MINBSIZE) 329 break; 330 printf("With a block size of %d %s %d\n", sblock.fs_bsize, 331 "minimum bytes per inode is", 332 (mincpg * bpcg - used) / MAXIPG(&sblock) + 1); 333 sblock.fs_bsize >>= 1; 334 sblock.fs_frag >>= 1; 335 sblock.fs_fragshift -= 1; 336 mincpc >>= 1; 337 sblock.fs_cpg = roundup(mincpgcnt, mincpc); 338 if (CGSIZE(&sblock) > sblock.fs_bsize) { 339 sblock.fs_bsize <<= 1; 340 break; 341 } 342 mincpg = sblock.fs_cpg; 343 inospercg = 344 roundup((mincpg * bpcg - used) / density, INOPB(&sblock)); 345 sblock.fs_ipg = inospercg; 346 } 347 if (inodecramped) { 348 if (inospercg > MAXIPG(&sblock)) { 349 printf("Minimum bytes per inode is %d\n", 350 (mincpg * bpcg - used) / MAXIPG(&sblock) + 1); 351 } else if (!mapcramped) { 352 printf("With %d bytes per inode, ", density); 353 printf("minimum cylinders per group is %d\n", mincpg); 354 } 355 } 356 if (mapcramped) { 357 printf("With %d sectors per cylinder, ", sblock.fs_spc); 358 printf("minimum cylinders per group is %d\n", mincpg); 359 } 360 if (inodecramped || mapcramped) { 361 if (sblock.fs_bsize != bsize) 362 printf("%s to be changed from %d to %d\n", 363 "This requires the block size", 364 bsize, sblock.fs_bsize); 365 if (sblock.fs_fsize != fsize) 366 printf("\t%s to be changed from %d to %d\n", 367 "and the fragment size", 368 fsize, sblock.fs_fsize); 369 exit(23); 370 } 371 /* 372 * Calculate the number of cylinders per group 373 */ 374 sblock.fs_cpg = cpg; 375 if (sblock.fs_cpg % mincpc != 0) { 376 printf("%s groups must have a multiple of %d cylinders\n", 377 cpgflg ? "Cylinder" : "Warning: cylinder", mincpc); 378 sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc); 379 if (!cpgflg) 380 cpg = sblock.fs_cpg; 381 } 382 /* 383 * Must insure there is enough space for inodes 384 */ 385 sblock.fs_ipg = roundup((sblock.fs_cpg * bpcg - used) / density, 386 INOPB(&sblock)); 387 while (sblock.fs_ipg > MAXIPG(&sblock)) { 388 inodecramped = 1; 389 sblock.fs_cpg -= mincpc; 390 sblock.fs_ipg = roundup((sblock.fs_cpg * bpcg - used) / density, 391 INOPB(&sblock)); 392 } 393 /* 394 * Must insure there is enough space to hold block map 395 */ 396 while (CGSIZE(&sblock) > sblock.fs_bsize) { 397 mapcramped = 1; 398 sblock.fs_cpg -= mincpc; 399 sblock.fs_ipg = roundup((sblock.fs_cpg * bpcg - used) / density, 400 INOPB(&sblock)); 401 } 402 sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock); 403 if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) { 404 printf("panic (fs_cpg * fs_spc) % NSPF != 0"); 405 exit(24); 406 } 407 if (sblock.fs_cpg < mincpg) { 408 printf("cylinder groups must have at least %d cylinders\n", 409 mincpg); 410 exit(25); 411 } else if (sblock.fs_cpg != cpg) { 412 if (!cpgflg) 413 printf("Warning: "); 414 else if (!mapcramped && !inodecramped) 415 exit(26); 416 if (mapcramped && inodecramped) 417 printf("Block size and bytes per inode restrict"); 418 else if (mapcramped) 419 printf("Block size restricts"); 420 else 421 printf("Bytes per inode restrict"); 422 printf(" cylinders per group to %d.\n", sblock.fs_cpg); 423 if (cpgflg) 424 exit(27); 425 } 426 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 427 /* 428 * Now have size for file system and nsect and ntrak. 429 * Determine number of cylinders and blocks in the file system. 430 */ 431 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 432 sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc; 433 if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) { 434 sblock.fs_ncyl++; 435 warn = 1; 436 } 437 if (sblock.fs_ncyl < 1) { 438 printf("file systems must have at least one cylinder\n"); 439 exit(28); 440 } 441 /* 442 * Determine feasability/values of rotational layout tables. 443 * 444 * The size of the rotational layout tables is limited by the 445 * size of the superblock, SBSIZE. The amount of space available 446 * for tables is calculated as (SBSIZE - sizeof (struct fs)). 447 * The size of these tables is inversely proportional to the block 448 * size of the file system. The size increases if sectors per track 449 * are not powers of two, because more cylinders must be described 450 * by the tables before the rotational pattern repeats (fs_cpc). 451 */ 452 sblock.fs_interleave = interleave; 453 sblock.fs_trackskew = trackskew; 454 sblock.fs_npsect = nphyssectors; 455 sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT; 456 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 457 if (sblock.fs_ntrak == 1) { 458 sblock.fs_cpc = 0; 459 goto next; 460 } 461 postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(short); 462 rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock); 463 totalsbsize = sizeof(struct fs) + rotblsize; 464 if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) { 465 /* use old static table space */ 466 sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) - 467 (char *)(&sblock.fs_link); 468 sblock.fs_rotbloff = &sblock.fs_space[0] - 469 (u_char *)(&sblock.fs_link); 470 } else { 471 /* use dynamic table space */ 472 sblock.fs_postbloff = &sblock.fs_space[0] - 473 (u_char *)(&sblock.fs_link); 474 sblock.fs_rotbloff = sblock.fs_postbloff + postblsize; 475 totalsbsize += postblsize; 476 } 477 if (totalsbsize > SBSIZE || 478 sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) { 479 printf("%s %s %d %s %d.%s", 480 "Warning: insufficient space in super block for\n", 481 "rotational layout tables with nsect", sblock.fs_nsect, 482 "and ntrak", sblock.fs_ntrak, 483 "\nFile system performance may be impaired.\n"); 484 sblock.fs_cpc = 0; 485 goto next; 486 } 487 sblock.fs_sbsize = fragroundup(&sblock, totalsbsize); 488 /* 489 * calculate the available blocks for each rotational position 490 */ 491 for (cylno = 0; cylno < sblock.fs_cpc; cylno++) 492 for (rpos = 0; rpos < sblock.fs_nrpos; rpos++) 493 fs_postbl(&sblock, cylno)[rpos] = -1; 494 for (i = (rotblsize - 1) * sblock.fs_frag; 495 i >= 0; i -= sblock.fs_frag) { 496 cylno = cbtocylno(&sblock, i); 497 rpos = cbtorpos(&sblock, i); 498 blk = fragstoblks(&sblock, i); 499 if (fs_postbl(&sblock, cylno)[rpos] == -1) 500 fs_rotbl(&sblock)[blk] = 0; 501 else 502 fs_rotbl(&sblock)[blk] = 503 fs_postbl(&sblock, cylno)[rpos] - blk; 504 fs_postbl(&sblock, cylno)[rpos] = blk; 505 } 506 next: 507 /* 508 * Compute/validate number of cylinder groups. 509 */ 510 sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg; 511 if (sblock.fs_ncyl % sblock.fs_cpg) 512 sblock.fs_ncg++; 513 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 514 i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1); 515 if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) { 516 printf("inode blocks/cyl group (%d) >= data blocks (%d)\n", 517 cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag, 518 sblock.fs_fpg / sblock.fs_frag); 519 printf("number of cylinders per cylinder group (%d) %s.\n", 520 sblock.fs_cpg, "must be increased"); 521 exit(29); 522 } 523 j = sblock.fs_ncg - 1; 524 if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg && 525 cgdmin(&sblock, j) - cgbase(&sblock, j) > i) { 526 if (j == 0) { 527 printf("Filesystem must have at least %d sectors\n", 528 NSPF(&sblock) * 529 (cgdmin(&sblock, 0) + 3 * sblock.fs_frag)); 530 exit(30); 531 } 532 printf("Warning: inode blocks/cyl group (%d) >= data blocks (%d) in last\n", 533 (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag, 534 i / sblock.fs_frag); 535 printf(" cylinder group. This implies %d sector(s) cannot be allocated.\n", 536 i * NSPF(&sblock)); 537 sblock.fs_ncg--; 538 sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg; 539 sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc / 540 NSPF(&sblock); 541 warn = 0; 542 } 543 if (warn && !mfs) { 544 printf("Warning: %d sector(s) in last cylinder unallocated\n", 545 sblock.fs_spc - 546 (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1) 547 * sblock.fs_spc)); 548 } 549 /* 550 * fill in remaining fields of the super block 551 */ 552 sblock.fs_csaddr = cgdmin(&sblock, 0); 553 sblock.fs_cssize = 554 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 555 i = sblock.fs_bsize / sizeof(struct csum); 556 sblock.fs_csmask = ~(i - 1); 557 for (sblock.fs_csshift = 0; i > 1; i >>= 1) 558 sblock.fs_csshift++; 559 fscs = (struct csum *)calloc(1, sblock.fs_cssize); 560 sblock.fs_magic = FS_MAGIC; 561 sblock.fs_rotdelay = rotdelay; 562 sblock.fs_minfree = minfree; 563 sblock.fs_maxcontig = maxcontig; 564 sblock.fs_headswitch = headswitch; 565 sblock.fs_trkseek = trackseek; 566 sblock.fs_maxbpg = maxbpg; 567 sblock.fs_rps = rpm / 60; 568 sblock.fs_optim = opt; 569 sblock.fs_cgrotor = 0; 570 sblock.fs_cstotal.cs_ndir = 0; 571 sblock.fs_cstotal.cs_nbfree = 0; 572 sblock.fs_cstotal.cs_nifree = 0; 573 sblock.fs_cstotal.cs_nffree = 0; 574 sblock.fs_fmod = 0; 575 sblock.fs_ronly = 0; 576 /* 577 * Dump out summary information about file system. 578 */ 579 if (!mfs) { 580 printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n", 581 fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl, 582 "cylinders", sblock.fs_ntrak, sblock.fs_nsect); 583 printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n", 584 (float)sblock.fs_size * sblock.fs_fsize * 1e-6, 585 sblock.fs_ncg, sblock.fs_cpg, 586 (float)sblock.fs_fpg * sblock.fs_fsize * 1e-6, 587 sblock.fs_ipg); 588 } 589 /* 590 * Now build the cylinders group blocks and 591 * then print out indices of cylinder groups. 592 */ 593 if (!mfs) 594 printf("super-block backups (for fsck -b #) at:"); 595 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) { 596 initcg(cylno, utime); 597 if (mfs) 598 continue; 599 if (cylno % 9 == 0) 600 printf("\n"); 601 printf(" %d,", fsbtodb(&sblock, cgsblock(&sblock, cylno))); 602 } 603 if (!mfs) 604 printf("\n"); 605 if (Nflag && !mfs) 606 exit(0); 607 /* 608 * Now construct the initial file system, 609 * then write out the super-block. 610 */ 611 fsinit(utime); 612 sblock.fs_time = utime; 613 wtfs(SBOFF / sectorsize, sbsize, (char *)&sblock); 614 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) 615 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)), 616 sblock.fs_cssize - i < sblock.fs_bsize ? 617 sblock.fs_cssize - i : sblock.fs_bsize, 618 ((char *)fscs) + i); 619 /* 620 * Write out the duplicate super blocks 621 */ 622 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) 623 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), 624 sbsize, (char *)&sblock); 625 /* 626 * Update information about this partion in pack 627 * label, to that it may be updated on disk. 628 */ 629 pp->p_fstype = FS_BSDFFS; 630 pp->p_fsize = sblock.fs_fsize; 631 pp->p_frag = sblock.fs_frag; 632 pp->p_cpg = sblock.fs_cpg; 633 /* 634 * Notify parent process of success. 635 * Dissociate from session and tty. 636 */ 637 if (mfs) { 638 kill(ppid, SIGUSR1); 639 (void) setsid(); 640 (void) close(0); 641 (void) close(1); 642 (void) close(2); 643 (void) chdir("/"); 644 } 645 } 646 647 /* 648 * Initialize a cylinder group. 649 */ 650 initcg(cylno, utime) 651 int cylno; 652 time_t utime; 653 { 654 daddr_t cbase, d, dlower, dupper, dmax; 655 long i, j, s; 656 register struct csum *cs; 657 658 /* 659 * Determine block bounds for cylinder group. 660 * Allow space for super block summary information in first 661 * cylinder group. 662 */ 663 cbase = cgbase(&sblock, cylno); 664 dmax = cbase + sblock.fs_fpg; 665 if (dmax > sblock.fs_size) 666 dmax = sblock.fs_size; 667 dlower = cgsblock(&sblock, cylno) - cbase; 668 dupper = cgdmin(&sblock, cylno) - cbase; 669 if (cylno == 0) 670 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 671 cs = fscs + cylno; 672 acg.cg_time = utime; 673 acg.cg_magic = CG_MAGIC; 674 acg.cg_cgx = cylno; 675 if (cylno == sblock.fs_ncg - 1) 676 acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg; 677 else 678 acg.cg_ncyl = sblock.fs_cpg; 679 acg.cg_niblk = sblock.fs_ipg; 680 acg.cg_ndblk = dmax - cbase; 681 acg.cg_cs.cs_ndir = 0; 682 acg.cg_cs.cs_nffree = 0; 683 acg.cg_cs.cs_nbfree = 0; 684 acg.cg_cs.cs_nifree = 0; 685 acg.cg_rotor = 0; 686 acg.cg_frotor = 0; 687 acg.cg_irotor = 0; 688 acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_link); 689 acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(long); 690 acg.cg_iusedoff = acg.cg_boff + 691 sblock.fs_cpg * sblock.fs_nrpos * sizeof(short); 692 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY); 693 acg.cg_nextfreeoff = acg.cg_freeoff + 694 howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY); 695 for (i = 0; i < sblock.fs_frag; i++) { 696 acg.cg_frsum[i] = 0; 697 } 698 bzero((caddr_t)cg_inosused(&acg), acg.cg_freeoff - acg.cg_iusedoff); 699 acg.cg_cs.cs_nifree += sblock.fs_ipg; 700 if (cylno == 0) 701 for (i = 0; i < ROOTINO; i++) { 702 setbit(cg_inosused(&acg), i); 703 acg.cg_cs.cs_nifree--; 704 } 705 for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) 706 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 707 sblock.fs_bsize, (char *)zino); 708 bzero((caddr_t)cg_blktot(&acg), acg.cg_boff - acg.cg_btotoff); 709 bzero((caddr_t)cg_blks(&sblock, &acg, 0), 710 acg.cg_iusedoff - acg.cg_boff); 711 bzero((caddr_t)cg_blksfree(&acg), acg.cg_nextfreeoff - acg.cg_freeoff); 712 if (cylno > 0) { 713 /* 714 * In cylno 0, beginning space is reserved 715 * for boot and super blocks. 716 */ 717 for (d = 0; d < dlower; d += sblock.fs_frag) { 718 setblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag); 719 acg.cg_cs.cs_nbfree++; 720 cg_blktot(&acg)[cbtocylno(&sblock, d)]++; 721 cg_blks(&sblock, &acg, cbtocylno(&sblock, d)) 722 [cbtorpos(&sblock, d)]++; 723 } 724 sblock.fs_dsize += dlower; 725 } 726 sblock.fs_dsize += acg.cg_ndblk - dupper; 727 if (i = dupper % sblock.fs_frag) { 728 acg.cg_frsum[sblock.fs_frag - i]++; 729 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 730 setbit(cg_blksfree(&acg), dupper); 731 acg.cg_cs.cs_nffree++; 732 } 733 } 734 for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) { 735 setblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag); 736 acg.cg_cs.cs_nbfree++; 737 cg_blktot(&acg)[cbtocylno(&sblock, d)]++; 738 cg_blks(&sblock, &acg, cbtocylno(&sblock, d)) 739 [cbtorpos(&sblock, d)]++; 740 d += sblock.fs_frag; 741 } 742 if (d < dmax - cbase) { 743 acg.cg_frsum[dmax - cbase - d]++; 744 for (; d < dmax - cbase; d++) { 745 setbit(cg_blksfree(&acg), d); 746 acg.cg_cs.cs_nffree++; 747 } 748 } 749 sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir; 750 sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree; 751 sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree; 752 sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree; 753 *cs = acg.cg_cs; 754 wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), 755 sblock.fs_bsize, (char *)&acg); 756 } 757 758 /* 759 * initialize the file system 760 */ 761 struct dinode node; 762 763 #ifdef LOSTDIR 764 #define PREDEFDIR 3 765 #else 766 #define PREDEFDIR 2 767 #endif 768 769 struct direct root_dir[] = { 770 { ROOTINO, sizeof(struct direct), 1, "." }, 771 { ROOTINO, sizeof(struct direct), 2, ".." }, 772 #ifdef LOSTDIR 773 { LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" }, 774 #endif 775 }; 776 #ifdef LOSTDIR 777 struct direct lost_found_dir[] = { 778 { LOSTFOUNDINO, sizeof(struct direct), 1, "." }, 779 { ROOTINO, sizeof(struct direct), 2, ".." }, 780 { 0, DIRBLKSIZ, 0, 0 }, 781 }; 782 #endif 783 char buf[MAXBSIZE]; 784 785 fsinit(utime) 786 time_t utime; 787 { 788 int i; 789 790 /* 791 * initialize the node 792 */ 793 node.di_atime = utime; 794 node.di_mtime = utime; 795 node.di_ctime = utime; 796 #ifdef LOSTDIR 797 /* 798 * create the lost+found directory 799 */ 800 (void)makedir(lost_found_dir, 2); 801 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ) 802 bcopy(&lost_found_dir[2], &buf[i], DIRSIZ(&lost_found_dir[2])); 803 node.di_mode = IFDIR | UMASK; 804 node.di_nlink = 2; 805 node.di_size = sblock.fs_bsize; 806 node.di_db[0] = alloc(node.di_size, node.di_mode); 807 node.di_blocks = btodb(fragroundup(&sblock, node.di_size)); 808 wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf); 809 iput(&node, LOSTFOUNDINO); 810 #endif 811 /* 812 * create the root directory 813 */ 814 if (mfs) 815 node.di_mode = IFDIR | 01777; 816 else 817 node.di_mode = IFDIR | UMASK; 818 node.di_nlink = PREDEFDIR; 819 node.di_size = makedir(root_dir, PREDEFDIR); 820 node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode); 821 node.di_blocks = btodb(fragroundup(&sblock, node.di_size)); 822 wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf); 823 iput(&node, ROOTINO); 824 } 825 826 /* 827 * construct a set of directory entries in "buf". 828 * return size of directory. 829 */ 830 makedir(protodir, entries) 831 register struct direct *protodir; 832 int entries; 833 { 834 char *cp; 835 int i, spcleft; 836 837 spcleft = DIRBLKSIZ; 838 for (cp = buf, i = 0; i < entries - 1; i++) { 839 protodir[i].d_reclen = DIRSIZ(&protodir[i]); 840 bcopy(&protodir[i], cp, protodir[i].d_reclen); 841 cp += protodir[i].d_reclen; 842 spcleft -= protodir[i].d_reclen; 843 } 844 protodir[i].d_reclen = spcleft; 845 bcopy(&protodir[i], cp, DIRSIZ(&protodir[i])); 846 return (DIRBLKSIZ); 847 } 848 849 /* 850 * allocate a block or frag 851 */ 852 daddr_t 853 alloc(size, mode) 854 int size; 855 int mode; 856 { 857 int i, frag; 858 daddr_t d; 859 860 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 861 (char *)&acg); 862 if (acg.cg_magic != CG_MAGIC) { 863 printf("cg 0: bad magic number\n"); 864 return (0); 865 } 866 if (acg.cg_cs.cs_nbfree == 0) { 867 printf("first cylinder group ran out of space\n"); 868 return (0); 869 } 870 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) 871 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) 872 goto goth; 873 printf("internal error: can't find block in cyl 0\n"); 874 return (0); 875 goth: 876 clrblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag); 877 acg.cg_cs.cs_nbfree--; 878 sblock.fs_cstotal.cs_nbfree--; 879 fscs[0].cs_nbfree--; 880 if (mode & IFDIR) { 881 acg.cg_cs.cs_ndir++; 882 sblock.fs_cstotal.cs_ndir++; 883 fscs[0].cs_ndir++; 884 } 885 cg_blktot(&acg)[cbtocylno(&sblock, d)]--; 886 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--; 887 if (size != sblock.fs_bsize) { 888 frag = howmany(size, sblock.fs_fsize); 889 fscs[0].cs_nffree += sblock.fs_frag - frag; 890 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; 891 acg.cg_cs.cs_nffree += sblock.fs_frag - frag; 892 acg.cg_frsum[sblock.fs_frag - frag]++; 893 for (i = frag; i < sblock.fs_frag; i++) 894 setbit(cg_blksfree(&acg), d + i); 895 } 896 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 897 (char *)&acg); 898 return (d); 899 } 900 901 /* 902 * Allocate an inode on the disk 903 */ 904 iput(ip, ino) 905 register struct dinode *ip; 906 register ino_t ino; 907 { 908 struct dinode buf[MAXINOPB]; 909 daddr_t d; 910 int c; 911 912 c = itog(&sblock, ino); 913 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 914 (char *)&acg); 915 if (acg.cg_magic != CG_MAGIC) { 916 printf("cg 0: bad magic number\n"); 917 exit(31); 918 } 919 acg.cg_cs.cs_nifree--; 920 setbit(cg_inosused(&acg), ino); 921 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 922 (char *)&acg); 923 sblock.fs_cstotal.cs_nifree--; 924 fscs[0].cs_nifree--; 925 if (ino >= sblock.fs_ipg * sblock.fs_ncg) { 926 printf("fsinit: inode value out of range (%d).\n", ino); 927 exit(32); 928 } 929 d = fsbtodb(&sblock, itod(&sblock, ino)); 930 rdfs(d, sblock.fs_bsize, buf); 931 buf[itoo(&sblock, ino)] = *ip; 932 wtfs(d, sblock.fs_bsize, buf); 933 } 934 935 /* 936 * Notify parent process that the filesystem has created itself successfully. 937 */ 938 void 939 started() 940 { 941 942 exit(0); 943 } 944 945 /* 946 * Replace libc function with one suited to our needs. 947 */ 948 caddr_t 949 malloc(size) 950 register u_long size; 951 { 952 u_long base, i; 953 static u_long pgsz; 954 struct rlimit rlp; 955 956 if (pgsz == 0) { 957 base = sbrk(0); 958 pgsz = getpagesize() - 1; 959 i = (base + pgsz) &~ pgsz; 960 base = sbrk(i - base); 961 if (getrlimit(RLIMIT_DATA, &rlp) < 0) 962 perror("getrlimit"); 963 rlp.rlim_cur = rlp.rlim_max; 964 if (setrlimit(RLIMIT_DATA, &rlp) < 0) 965 perror("setrlimit"); 966 memleft = rlp.rlim_max - base; 967 } 968 size = (size + pgsz) &~ pgsz; 969 if (size > memleft) 970 size = memleft; 971 memleft -= size; 972 if (size == 0) 973 return (0); 974 return ((caddr_t)sbrk(size)); 975 } 976 977 /* 978 * Replace libc function with one suited to our needs. 979 */ 980 caddr_t 981 realloc(ptr, size) 982 char *ptr; 983 u_long size; 984 { 985 986 /* always fail for now */ 987 return ((caddr_t)0); 988 } 989 990 /* 991 * Replace libc function with one suited to our needs. 992 */ 993 char * 994 calloc(size, numelm) 995 u_long size, numelm; 996 { 997 caddr_t base; 998 999 size *= numelm; 1000 base = malloc(size); 1001 bzero(base, size); 1002 return (base); 1003 } 1004 1005 /* 1006 * Replace libc function with one suited to our needs. 1007 */ 1008 free(ptr) 1009 char *ptr; 1010 { 1011 1012 /* do not worry about it for now */ 1013 } 1014 1015 /* 1016 * read a block from the file system 1017 */ 1018 rdfs(bno, size, bf) 1019 daddr_t bno; 1020 int size; 1021 char *bf; 1022 { 1023 int n; 1024 1025 if (mfs) { 1026 bcopy(membase + bno * sectorsize, bf, size); 1027 return; 1028 } 1029 if (lseek(fsi, bno * sectorsize, 0) < 0) { 1030 printf("seek error: %ld\n", bno); 1031 perror("rdfs"); 1032 exit(33); 1033 } 1034 n = read(fsi, bf, size); 1035 if(n != size) { 1036 printf("read error: %ld\n", bno); 1037 perror("rdfs"); 1038 exit(34); 1039 } 1040 } 1041 1042 /* 1043 * write a block to the file system 1044 */ 1045 wtfs(bno, size, bf) 1046 daddr_t bno; 1047 int size; 1048 char *bf; 1049 { 1050 int n; 1051 1052 if (mfs) { 1053 bcopy(bf, membase + bno * sectorsize, size); 1054 return; 1055 } 1056 if (Nflag) 1057 return; 1058 if (lseek(fso, bno * sectorsize, 0) < 0) { 1059 printf("seek error: %ld\n", bno); 1060 perror("wtfs"); 1061 exit(35); 1062 } 1063 n = write(fso, bf, size); 1064 if(n != size) { 1065 printf("write error: %ld\n", bno); 1066 perror("wtfs"); 1067 exit(36); 1068 } 1069 } 1070 1071 /* 1072 * check if a block is available 1073 */ 1074 isblock(fs, cp, h) 1075 struct fs *fs; 1076 unsigned char *cp; 1077 int h; 1078 { 1079 unsigned char mask; 1080 1081 switch (fs->fs_frag) { 1082 case 8: 1083 return (cp[h] == 0xff); 1084 case 4: 1085 mask = 0x0f << ((h & 0x1) << 2); 1086 return ((cp[h >> 1] & mask) == mask); 1087 case 2: 1088 mask = 0x03 << ((h & 0x3) << 1); 1089 return ((cp[h >> 2] & mask) == mask); 1090 case 1: 1091 mask = 0x01 << (h & 0x7); 1092 return ((cp[h >> 3] & mask) == mask); 1093 default: 1094 #ifdef STANDALONE 1095 printf("isblock bad fs_frag %d\n", fs->fs_frag); 1096 #else 1097 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 1098 #endif 1099 return (0); 1100 } 1101 } 1102 1103 /* 1104 * take a block out of the map 1105 */ 1106 clrblock(fs, cp, h) 1107 struct fs *fs; 1108 unsigned char *cp; 1109 int h; 1110 { 1111 switch ((fs)->fs_frag) { 1112 case 8: 1113 cp[h] = 0; 1114 return; 1115 case 4: 1116 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 1117 return; 1118 case 2: 1119 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 1120 return; 1121 case 1: 1122 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 1123 return; 1124 default: 1125 #ifdef STANDALONE 1126 printf("clrblock bad fs_frag %d\n", fs->fs_frag); 1127 #else 1128 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag); 1129 #endif 1130 return; 1131 } 1132 } 1133 1134 /* 1135 * put a block into the map 1136 */ 1137 setblock(fs, cp, h) 1138 struct fs *fs; 1139 unsigned char *cp; 1140 int h; 1141 { 1142 switch (fs->fs_frag) { 1143 case 8: 1144 cp[h] = 0xff; 1145 return; 1146 case 4: 1147 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 1148 return; 1149 case 2: 1150 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 1151 return; 1152 case 1: 1153 cp[h >> 3] |= (0x01 << (h & 0x7)); 1154 return; 1155 default: 1156 #ifdef STANDALONE 1157 printf("setblock bad fs_frag %d\n", fs->fs_frag); 1158 #else 1159 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag); 1160 #endif 1161 return; 1162 } 1163 } 1164