xref: /netbsd-src/sbin/newfs/mkfs.c (revision bcc8ec9959e7b01e313d813067bfb43a3ad70551)
1 /*	$NetBSD: mkfs.c,v 1.42 2000/12/23 12:32:12 enami Exp $	*/
2 
3 /*
4  * Copyright (c) 1980, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 
36 #include <sys/cdefs.h>
37 #ifndef lint
38 #if 0
39 static char sccsid[] = "@(#)mkfs.c	8.11 (Berkeley) 5/3/95";
40 #else
41 __RCSID("$NetBSD: mkfs.c,v 1.42 2000/12/23 12:32:12 enami Exp $");
42 #endif
43 #endif /* not lint */
44 
45 #include <sys/param.h>
46 #include <sys/time.h>
47 #include <sys/resource.h>
48 #include <ufs/ufs/dinode.h>
49 #include <ufs/ufs/dir.h>
50 #include <ufs/ufs/ufs_bswap.h>
51 #include <ufs/ffs/fs.h>
52 #include <ufs/ffs/ffs_extern.h>
53 #include <sys/disklabel.h>
54 
55 #include <string.h>
56 #include <unistd.h>
57 #include <stdlib.h>
58 
59 #ifndef STANDALONE
60 #include <stdio.h>
61 #endif
62 
63 #include "extern.h"
64 
65 
66 static void initcg(int, time_t);
67 static void fsinit(time_t);
68 static int makedir(struct direct *, int);
69 static daddr_t alloc(int, int);
70 static void iput(struct dinode *, ino_t);
71 static void rdfs(daddr_t, int, void *);
72 static void wtfs(daddr_t, int, void *);
73 static int isblock(struct fs *, unsigned char *, int);
74 static void clrblock(struct fs *, unsigned char *, int);
75 static void setblock(struct fs *, unsigned char *, int);
76 static int32_t calcipg(int32_t, int32_t, off_t *);
77 static void swap_cg(struct cg *, struct cg *);
78 
79 static int count_digits(int);
80 
81 /*
82  * make file system for cylinder-group style file systems
83  */
84 
85 /*
86  * We limit the size of the inode map to be no more than a
87  * third of the cylinder group space, since we must leave at
88  * least an equal amount of space for the block map.
89  *
90  * N.B.: MAXIPG must be a multiple of INOPB(fs).
91  */
92 #define MAXIPG(fs)	roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
93 
94 #define UMASK		0755
95 #define MAXINOPB	(MAXBSIZE / DINODE_SIZE)
96 #define POWEROF2(num)	(((num) & ((num) - 1)) == 0)
97 
98 union {
99 	struct fs fs;
100 	char pad[SBSIZE];
101 } fsun;
102 #define	sblock	fsun.fs
103 struct	csum *fscs;
104 
105 union {
106 	struct cg cg;
107 	char pad[MAXBSIZE];
108 } cgun;
109 #define	acg	cgun.cg
110 
111 struct dinode zino[MAXBSIZE / DINODE_SIZE];
112 
113 char writebuf[MAXBSIZE];
114 
115 int	fsi, fso;
116 
117 void
118 mkfs(struct partition *pp, char *fsys, int fi, int fo)
119 {
120 	int32_t i, mincpc, mincpg, inospercg;
121 	int32_t cylno, rpos, blk, j, warn = 0;
122 	int32_t used, mincpgcnt, bpcg;
123 	off_t usedb;
124 	int32_t mapcramped, inodecramped;
125 	int32_t postblsize, rotblsize, totalsbsize;
126 	time_t utime;
127 	quad_t sizepb;
128 	char *writebuf2;		/* dynamic buffer */
129 	int nprintcols, printcolwidth;
130 
131 #ifndef STANDALONE
132 	time(&utime);
133 #endif
134 	if (mfs) {
135 		(void)malloc(0);
136 		if (fssize * sectorsize > memleft)
137 			fssize = (memleft - 16384) / sectorsize;
138 		if ((membase = malloc(fssize * sectorsize)) == 0)
139 			exit(12);
140 	}
141 	fsi = fi;
142 	fso = fo;
143 	if (Oflag) {
144 		sblock.fs_inodefmt = FS_42INODEFMT;
145 		sblock.fs_maxsymlinklen = 0;
146 	} else {
147 		sblock.fs_inodefmt = FS_44INODEFMT;
148 		sblock.fs_maxsymlinklen = MAXSYMLINKLEN;
149 	}
150 	/*
151 	 * Validate the given file system size.
152 	 * Verify that its last block can actually be accessed.
153 	 */
154 	if (fssize <= 0)
155 		printf("preposterous size %d\n", fssize), exit(13);
156 	wtfs(fssize - 1, sectorsize, (char *)&sblock);
157 
158 	/*
159 	 * collect and verify the sector and track info
160 	 */
161 	sblock.fs_nsect = nsectors;
162 	sblock.fs_ntrak = ntracks;
163 	if (sblock.fs_ntrak <= 0)
164 		printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
165 	if (sblock.fs_nsect <= 0)
166 		printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
167 	/*
168 	 * collect and verify the block and fragment sizes
169 	 */
170 	sblock.fs_bsize = bsize;
171 	sblock.fs_fsize = fsize;
172 	if (!POWEROF2(sblock.fs_bsize)) {
173 		printf("block size must be a power of 2, not %d\n",
174 		    sblock.fs_bsize);
175 		exit(16);
176 	}
177 	if (!POWEROF2(sblock.fs_fsize)) {
178 		printf("fragment size must be a power of 2, not %d\n",
179 		    sblock.fs_fsize);
180 		exit(17);
181 	}
182 	if (sblock.fs_fsize < sectorsize) {
183 		printf("fragment size %d is too small, minimum is %d\n",
184 		    sblock.fs_fsize, sectorsize);
185 		exit(18);
186 	}
187 	if (sblock.fs_bsize < MINBSIZE) {
188 		printf("block size %d is too small, minimum is %d\n",
189 		    sblock.fs_bsize, MINBSIZE);
190 		exit(19);
191 	}
192 	if (sblock.fs_bsize < sblock.fs_fsize) {
193 		printf("block size (%d) cannot be smaller than fragment size (%d)\n",
194 		    sblock.fs_bsize, sblock.fs_fsize);
195 		exit(20);
196 	}
197 	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
198 	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
199 	sblock.fs_qbmask = ~sblock.fs_bmask;
200 	sblock.fs_qfmask = ~sblock.fs_fmask;
201 	for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
202 		sblock.fs_bshift++;
203 	for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
204 		sblock.fs_fshift++;
205 	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
206 	for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
207 		sblock.fs_fragshift++;
208 	if (sblock.fs_frag > MAXFRAG) {
209 		printf("fragment size %d is too small, "
210 			"minimum with block size %d is %d\n",
211 		    sblock.fs_fsize, sblock.fs_bsize,
212 		    sblock.fs_bsize / MAXFRAG);
213 		exit(21);
214 	}
215 	sblock.fs_nrpos = nrpos;
216 	sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
217 	sblock.fs_inopb = sblock.fs_bsize / DINODE_SIZE;
218 	sblock.fs_nspf = sblock.fs_fsize / sectorsize;
219 	for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
220 		sblock.fs_fsbtodb++;
221 	sblock.fs_sblkno =
222 	    roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
223 	sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
224 	    roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
225 	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
226 	sblock.fs_cgoffset = roundup(
227 	    howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
228 	for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
229 		sblock.fs_cgmask <<= 1;
230 	if (!POWEROF2(sblock.fs_ntrak))
231 		sblock.fs_cgmask <<= 1;
232 	sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
233 	for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
234 		sizepb *= NINDIR(&sblock);
235 		sblock.fs_maxfilesize += sizepb;
236 	}
237 	/*
238 	 * Validate specified/determined secpercyl
239 	 * and calculate minimum cylinders per group.
240 	 */
241 	sblock.fs_spc = secpercyl;
242 	for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
243 	     sblock.fs_cpc > 1 && (i & 1) == 0;
244 	     sblock.fs_cpc >>= 1, i >>= 1)
245 		/* void */;
246 	mincpc = sblock.fs_cpc;
247 	bpcg = sblock.fs_spc * sectorsize;
248 	inospercg = roundup(bpcg / DINODE_SIZE, INOPB(&sblock));
249 	if (inospercg > MAXIPG(&sblock))
250 		inospercg = MAXIPG(&sblock);
251 	used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
252 	mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
253 	    sblock.fs_spc);
254 	mincpg = roundup(mincpgcnt, mincpc);
255 	/*
256 	 * Ensure that cylinder group with mincpg has enough space
257 	 * for block maps.
258 	 */
259 	sblock.fs_cpg = mincpg;
260 	sblock.fs_ipg = inospercg;
261 	if (maxcontig > 1)
262 		sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG);
263 	mapcramped = 0;
264 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
265 		mapcramped = 1;
266 		if (sblock.fs_bsize < MAXBSIZE) {
267 			sblock.fs_bsize <<= 1;
268 			if ((i & 1) == 0) {
269 				i >>= 1;
270 			} else {
271 				sblock.fs_cpc <<= 1;
272 				mincpc <<= 1;
273 				mincpg = roundup(mincpgcnt, mincpc);
274 				sblock.fs_cpg = mincpg;
275 			}
276 			sblock.fs_frag <<= 1;
277 			sblock.fs_fragshift += 1;
278 			if (sblock.fs_frag <= MAXFRAG)
279 				continue;
280 		}
281 		if (sblock.fs_fsize == sblock.fs_bsize) {
282 			printf("There is no block size that");
283 			printf(" can support this disk\n");
284 			exit(22);
285 		}
286 		sblock.fs_frag >>= 1;
287 		sblock.fs_fragshift -= 1;
288 		sblock.fs_fsize <<= 1;
289 		sblock.fs_nspf <<= 1;
290 	}
291 	/*
292 	 * Ensure that cylinder group with mincpg has enough space for inodes.
293 	 */
294 	inodecramped = 0;
295 	inospercg = calcipg(mincpg, bpcg, &usedb);
296 	sblock.fs_ipg = inospercg;
297 	while (inospercg > MAXIPG(&sblock)) {
298 		inodecramped = 1;
299 		if (mincpc == 1 || sblock.fs_frag == 1 ||
300 		    sblock.fs_bsize == MINBSIZE)
301 			break;
302 		printf("With a block size of %d %s %d\n", sblock.fs_bsize,
303 		       "minimum bytes per inode is",
304 		       (int)((mincpg * (off_t)bpcg - usedb)
305 			     / MAXIPG(&sblock) + 1));
306 		sblock.fs_bsize >>= 1;
307 		sblock.fs_frag >>= 1;
308 		sblock.fs_fragshift -= 1;
309 		mincpc >>= 1;
310 		sblock.fs_cpg = roundup(mincpgcnt, mincpc);
311 		if (CGSIZE(&sblock) > sblock.fs_bsize) {
312 			sblock.fs_bsize <<= 1;
313 			break;
314 		}
315 		mincpg = sblock.fs_cpg;
316 		inospercg = calcipg(mincpg, bpcg, &usedb);
317 		sblock.fs_ipg = inospercg;
318 	}
319 	if (inodecramped) {
320 		if (inospercg > MAXIPG(&sblock)) {
321 			printf("Minimum bytes per inode is %d\n",
322 			       (int)((mincpg * (off_t)bpcg - usedb)
323 				     / MAXIPG(&sblock) + 1));
324 		} else if (!mapcramped) {
325 			printf("With %d bytes per inode, ", density);
326 			printf("minimum cylinders per group is %d\n", mincpg);
327 		}
328 	}
329 	if (mapcramped) {
330 		printf("With %d sectors per cylinder, ", sblock.fs_spc);
331 		printf("minimum cylinders per group is %d\n", mincpg);
332 	}
333 	if (inodecramped || mapcramped) {
334 		if (sblock.fs_bsize != bsize)
335 			printf("%s to be changed from %d to %d\n",
336 			    "This requires the block size",
337 			    bsize, sblock.fs_bsize);
338 		if (sblock.fs_fsize != fsize)
339 			printf("\t%s to be changed from %d to %d\n",
340 			    "and the fragment size",
341 			    fsize, sblock.fs_fsize);
342 		exit(23);
343 	}
344 	/*
345 	 * Calculate the number of cylinders per group
346 	 */
347 	sblock.fs_cpg = cpg;
348 	if (sblock.fs_cpg % mincpc != 0) {
349 		printf("%s groups must have a multiple of %d cylinders\n",
350 			cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
351 		sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
352 		if (!cpgflg)
353 			cpg = sblock.fs_cpg;
354 	}
355 	/*
356 	 * Must ensure there is enough space for inodes.
357 	 */
358 	sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
359 	while (sblock.fs_ipg > MAXIPG(&sblock)) {
360 		inodecramped = 1;
361 		sblock.fs_cpg -= mincpc;
362 		sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
363 	}
364 	/*
365 	 * Must ensure there is enough space to hold block map.
366 	 */
367 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
368 		mapcramped = 1;
369 		sblock.fs_cpg -= mincpc;
370 		sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
371 	}
372 	sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
373 	if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
374 		printf("panic (fs_cpg * fs_spc) %% NSPF != 0");
375 		exit(24);
376 	}
377 	if (sblock.fs_cpg < mincpg) {
378 		printf("cylinder groups must have at least %d cylinders\n",
379 			mincpg);
380 		exit(25);
381 	} else if (sblock.fs_cpg != cpg) {
382 		if (!cpgflg)
383 			printf("Warning: ");
384 		else if (!mapcramped && !inodecramped)
385 			exit(26);
386 		if (mapcramped && inodecramped)
387 			printf("Block size and bytes per inode restrict");
388 		else if (mapcramped)
389 			printf("Block size restricts");
390 		else
391 			printf("Bytes per inode restrict");
392 		printf(" cylinders per group to %d.\n", sblock.fs_cpg);
393 		if (cpgflg)
394 			exit(27);
395 	}
396 	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
397 	/*
398 	 * Now have size for file system and nsect and ntrak.
399 	 * Determine number of cylinders and blocks in the file system.
400 	 */
401 	sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
402 	sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
403 	if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
404 		sblock.fs_ncyl++;
405 		warn = 1;
406 	}
407 	if (sblock.fs_ncyl < 1) {
408 		printf("file systems must have at least one cylinder\n");
409 		exit(28);
410 	}
411 	/*
412 	 * Determine feasability/values of rotational layout tables.
413 	 *
414 	 * The size of the rotational layout tables is limited by the
415 	 * size of the superblock, SBSIZE. The amount of space available
416 	 * for tables is calculated as (SBSIZE - sizeof (struct fs)).
417 	 * The size of these tables is inversely proportional to the block
418 	 * size of the file system. The size increases if sectors per track
419 	 * are not powers of two, because more cylinders must be described
420 	 * by the tables before the rotational pattern repeats (fs_cpc).
421 	 */
422 	sblock.fs_interleave = interleave;
423 	sblock.fs_trackskew = trackskew;
424 	sblock.fs_npsect = nphyssectors;
425 	sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
426 	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
427 	if (sblock.fs_ntrak == 1) {
428 		sblock.fs_cpc = 0;
429 		goto next;
430 	}
431 	postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t);
432 	rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
433 	totalsbsize = sizeof(struct fs) + rotblsize;
434 	if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
435 		/* use old static table space */
436 		sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
437 		    (char *)(&sblock.fs_firstfield);
438 		sblock.fs_rotbloff = &sblock.fs_space[0] -
439 		    (u_char *)(&sblock.fs_firstfield);
440 	} else {
441 		/* use dynamic table space */
442 		sblock.fs_postbloff = &sblock.fs_space[0] -
443 		    (u_char *)(&sblock.fs_firstfield);
444 		sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
445 		totalsbsize += postblsize;
446 	}
447 	if (totalsbsize > SBSIZE ||
448 	    sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
449 		printf("%s %s %d %s %d.%s",
450 		    "Warning: insufficient space in super block for\n",
451 		    "rotational layout tables with nsect", sblock.fs_nsect,
452 		    "and ntrak", sblock.fs_ntrak,
453 		    "\nFile system performance may be impaired.\n");
454 		sblock.fs_cpc = 0;
455 		goto next;
456 	}
457 	sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
458 	/*
459 	 * calculate the available blocks for each rotational position
460 	 */
461 	for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
462 		for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
463 			fs_postbl(&sblock, cylno)[rpos] = -1;
464 	for (i = (rotblsize - 1) * sblock.fs_frag;
465 	     i >= 0; i -= sblock.fs_frag) {
466 		cylno = cbtocylno(&sblock, i);
467 		rpos = cbtorpos(&sblock, i);
468 		blk = fragstoblks(&sblock, i);
469 		if (fs_postbl(&sblock, cylno)[rpos] == -1)
470 			fs_rotbl(&sblock)[blk] = 0;
471 		else
472 			fs_rotbl(&sblock)[blk] = fs_postbl(&sblock, cylno)[rpos] - blk;
473 		fs_postbl(&sblock, cylno)[rpos] = blk;
474 	}
475 next:
476 	/*
477 	 * Compute/validate number of cylinder groups.
478 	 */
479 	sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
480 	if (sblock.fs_ncyl % sblock.fs_cpg)
481 		sblock.fs_ncg++;
482 	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
483 	i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
484 	if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
485 		printf("inode blocks/cyl group (%d) >= data blocks (%d)\n",
486 		    cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
487 		    sblock.fs_fpg / sblock.fs_frag);
488 		printf("number of cylinders per cylinder group (%d) %s.\n",
489 		    sblock.fs_cpg, "must be increased");
490 		exit(29);
491 	}
492 	j = sblock.fs_ncg - 1;
493 	if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
494 	    cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
495 		if (j == 0) {
496 			printf("Filesystem must have at least %d sectors\n",
497 			    NSPF(&sblock) *
498 			    (cgdmin(&sblock, 0) + 3 * sblock.fs_frag));
499 			exit(30);
500 		}
501 		printf("Warning: inode blocks/cyl group (%d) >= "
502 			"data blocks (%d) in last\n",
503 		    (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
504 		    i / sblock.fs_frag);
505 		printf("    cylinder group. This implies %d sector(s) "
506 			"cannot be allocated.\n",
507 		    i * NSPF(&sblock));
508 		sblock.fs_ncg--;
509 		sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
510 		sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
511 		    NSPF(&sblock);
512 		warn = 0;
513 	}
514 	if (warn && !mfs) {
515 		printf("Warning: %d sector(s) in last cylinder unallocated\n",
516 		    sblock.fs_spc -
517 		    (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
518 		    * sblock.fs_spc));
519 	}
520 	/*
521 	 * fill in remaining fields of the super block
522 	 */
523 	sblock.fs_csaddr = cgdmin(&sblock, 0);
524 	sblock.fs_cssize =
525 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
526 	if (sblock.fs_cssize / sblock.fs_bsize > MAXCSBUFS) {
527 		printf("With %d cylinder groups %d cylinder group sumary "
528 		    "area are needed.\n",
529 		    sblock.fs_ncg, sblock.fs_cssize / sblock.fs_bsize);
530 		printf("Only %ld are available, reduce the number of cylinder "
531 		    "groups.\n", (long)MAXCSBUFS);
532 		exit(38);
533 	}
534 	i = sblock.fs_bsize / sizeof(struct csum);
535 	sblock.fs_csmask = ~(i - 1);
536 	for (sblock.fs_csshift = 0; i > 1; i >>= 1)
537 		sblock.fs_csshift++;
538 	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
539 	sblock.fs_magic = FS_MAGIC;
540 	sblock.fs_rotdelay = rotdelay;
541 	sblock.fs_minfree = minfree;
542 	sblock.fs_maxcontig = maxcontig;
543 	sblock.fs_headswitch = headswitch;
544 	sblock.fs_trkseek = trackseek;
545 	sblock.fs_maxbpg = maxbpg;
546 	sblock.fs_rps = rpm / 60;
547 	sblock.fs_optim = opt;
548 	sblock.fs_cgrotor = 0;
549 	sblock.fs_cstotal.cs_ndir = 0;
550 	sblock.fs_cstotal.cs_nbfree = 0;
551 	sblock.fs_cstotal.cs_nifree = 0;
552 	sblock.fs_cstotal.cs_nffree = 0;
553 	sblock.fs_fmod = 0;
554 	sblock.fs_clean = FS_ISCLEAN;
555 	sblock.fs_ronly = 0;
556 	sblock.fs_clean = 1;
557 	/*
558 	 * Dump out summary information about file system.
559 	 */
560 	if (!mfs) {
561 		printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n",
562 		    fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
563 		    "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
564 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
565 		printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
566 		    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
567 		    sblock.fs_ncg, sblock.fs_cpg,
568 		    (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
569 		    sblock.fs_ipg);
570 #undef B2MBFACTOR
571 	}
572 	/*
573 	 * Now determine how wide each column will be, and calculate how
574 	 * many columns will fit in a 76 char line. 76 is the width of the
575 	 * subwindows in sysinst.
576 	 */
577 	printcolwidth = count_digits(
578 			fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg -1)));
579 	nprintcols = 76 / (printcolwidth + 2);
580 	/*
581 	 * Now build the cylinders group blocks and
582 	 * then print out indices of cylinder groups.
583 	 */
584 	if (!mfs)
585 		printf("super-block backups (for fsck -b #) at:");
586 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
587 		initcg(cylno, utime);
588 		if (mfs)
589 			continue;
590 		if (cylno % nprintcols == 0)
591 			printf("\n");
592 		printf(" %*d,", printcolwidth,
593 				fsbtodb(&sblock, cgsblock(&sblock, cylno)));
594 		fflush(stdout);
595 	}
596 	if (!mfs)
597 		printf("\n");
598 	if (Nflag && !mfs)
599 		exit(0);
600 	/*
601 	 * Now construct the initial file system,
602 	 * then write out the super-block.
603 	 */
604 	fsinit(utime);
605 	sblock.fs_time = utime;
606 	memcpy(writebuf, &sblock, sbsize);
607 	if (needswap)
608 		ffs_sb_swap(&sblock, (struct fs*)writebuf, 1);
609 	wtfs((int)SBOFF / sectorsize, sbsize, writebuf);
610 	/*
611 	 * Write out the duplicate super blocks
612 	 */
613 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
614 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
615 		    sbsize, writebuf);
616 
617 	/*
618 	 * if we need to swap, create a buffer for the cylinder summaries
619 	 * to get swapped to.
620 	 */
621 	if (needswap) {
622 		if ((writebuf2=malloc(sblock.fs_cssize)) == NULL)
623 			exit(12);
624 		ffs_csum_swap(fscs, (struct csum*)writebuf2, sblock.fs_cssize);
625 	} else
626 		writebuf2 = (char *)fscs;
627 
628 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
629 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
630 			sblock.fs_cssize - i < sblock.fs_bsize ?
631 			    sblock.fs_cssize - i : sblock.fs_bsize,
632 			((char *)writebuf2) + i);
633 	if (writebuf2 != (char *)fscs)
634 		free(writebuf2);
635 
636 	/*
637 	 * Update information about this partion in pack
638 	 * label, to that it may be updated on disk.
639 	 */
640 	pp->p_fstype = FS_BSDFFS;
641 	pp->p_fsize = sblock.fs_fsize;
642 	pp->p_frag = sblock.fs_frag;
643 	pp->p_cpg = sblock.fs_cpg;
644 }
645 
646 /*
647  * Initialize a cylinder group.
648  */
649 void
650 initcg(int cylno, time_t utime)
651 {
652 	daddr_t cbase, d, dlower, dupper, dmax, blkno;
653 	int32_t i;
654 	struct csum *cs;
655 
656 	/*
657 	 * Determine block bounds for cylinder group.
658 	 * Allow space for super block summary information in first
659 	 * cylinder group.
660 	 */
661 	cbase = cgbase(&sblock, cylno);
662 	dmax = cbase + sblock.fs_fpg;
663 	if (dmax > sblock.fs_size)
664 		dmax = sblock.fs_size;
665 	dlower = cgsblock(&sblock, cylno) - cbase;
666 	dupper = cgdmin(&sblock, cylno) - cbase;
667 	if (cylno == 0)
668 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
669 	cs = fscs + cylno;
670 	memset(&acg, 0, sblock.fs_cgsize);
671 	acg.cg_time = utime;
672 	acg.cg_magic = CG_MAGIC;
673 	acg.cg_cgx = cylno;
674 	if (cylno == sblock.fs_ncg - 1)
675 		acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
676 	else
677 		acg.cg_ncyl = sblock.fs_cpg;
678 	acg.cg_niblk = sblock.fs_ipg;
679 	acg.cg_ndblk = dmax - cbase;
680 	if (sblock.fs_contigsumsize > 0)
681 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
682 	acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
683 	acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
684 	acg.cg_iusedoff = acg.cg_boff +
685 		sblock.fs_cpg * sblock.fs_nrpos * sizeof(int16_t);
686 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
687 	if (sblock.fs_contigsumsize <= 0) {
688 		acg.cg_nextfreeoff = acg.cg_freeoff +
689 		   howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
690 	} else {
691 		acg.cg_clustersumoff = acg.cg_freeoff + howmany
692 		    (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
693 		    sizeof(int32_t);
694 		acg.cg_clustersumoff =
695 		    roundup(acg.cg_clustersumoff, sizeof(int32_t));
696 		acg.cg_clusteroff = acg.cg_clustersumoff +
697 		    (sblock.fs_contigsumsize + 1) * sizeof(int32_t);
698 		acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
699 		    (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
700 	}
701 	if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
702 		printf("Panic: cylinder group too big\n");
703 		exit(37);
704 	}
705 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
706 	if (cylno == 0)
707 		for (i = 0; i < ROOTINO; i++) {
708 			setbit(cg_inosused(&acg, 0), i);
709 			acg.cg_cs.cs_nifree--;
710 		}
711 	for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag)
712 		wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
713 		    sblock.fs_bsize, (char *)zino);
714 	if (cylno > 0) {
715 		/*
716 		 * In cylno 0, beginning space is reserved
717 		 * for boot and super blocks.
718 		 */
719 		for (d = 0; d < dlower; d += sblock.fs_frag) {
720 			blkno = d / sblock.fs_frag;
721 			setblock(&sblock, cg_blksfree(&acg, 0), blkno);
722 			if (sblock.fs_contigsumsize > 0)
723 				setbit(cg_clustersfree(&acg, 0), blkno);
724 			acg.cg_cs.cs_nbfree++;
725 			cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]++;
726 			cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)
727 			    [cbtorpos(&sblock, d)]++;
728 		}
729 		sblock.fs_dsize += dlower;
730 	}
731 	sblock.fs_dsize += acg.cg_ndblk - dupper;
732 	if ((i = (dupper % sblock.fs_frag)) != 0) {
733 		acg.cg_frsum[sblock.fs_frag - i]++;
734 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
735 			setbit(cg_blksfree(&acg, 0), dupper);
736 			acg.cg_cs.cs_nffree++;
737 		}
738 	}
739 	for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
740 		blkno = d / sblock.fs_frag;
741 		setblock(&sblock, cg_blksfree(&acg, 0), blkno);
742 		if (sblock.fs_contigsumsize > 0)
743 			setbit(cg_clustersfree(&acg, 0), blkno);
744 		acg.cg_cs.cs_nbfree++;
745 		cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]++;
746 		cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)
747 		    [cbtorpos(&sblock, d)]++;
748 		d += sblock.fs_frag;
749 	}
750 	if (d < dmax - cbase) {
751 		acg.cg_frsum[dmax - cbase - d]++;
752 		for (; d < dmax - cbase; d++) {
753 			setbit(cg_blksfree(&acg, 0), d);
754 			acg.cg_cs.cs_nffree++;
755 		}
756 	}
757 	if (sblock.fs_contigsumsize > 0) {
758 		int32_t *sump = cg_clustersum(&acg, 0);
759 		u_char *mapp = cg_clustersfree(&acg, 0);
760 		int map = *mapp++;
761 		int bit = 1;
762 		int run = 0;
763 
764 		for (i = 0; i < acg.cg_nclusterblks; i++) {
765 			if ((map & bit) != 0) {
766 				run++;
767 			} else if (run != 0) {
768 				if (run > sblock.fs_contigsumsize)
769 					run = sblock.fs_contigsumsize;
770 				sump[run]++;
771 				run = 0;
772 			}
773 			if ((i & (NBBY - 1)) != (NBBY - 1)) {
774 				bit <<= 1;
775 			} else {
776 				map = *mapp++;
777 				bit = 1;
778 			}
779 		}
780 		if (run != 0) {
781 			if (run > sblock.fs_contigsumsize)
782 				run = sblock.fs_contigsumsize;
783 			sump[run]++;
784 		}
785 	}
786 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
787 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
788 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
789 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
790 	*cs = acg.cg_cs;
791 	memcpy(writebuf, &acg, sblock.fs_bsize);
792 	if (needswap)
793 		swap_cg(&acg, (struct cg*)writebuf);
794 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
795 		sblock.fs_bsize, writebuf);
796 }
797 
798 /*
799  * initialize the file system
800  */
801 struct dinode node;
802 
803 #ifdef LOSTDIR
804 #define PREDEFDIR 3
805 #else
806 #define PREDEFDIR 2
807 #endif
808 
809 struct direct root_dir[] = {
810 	{ ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
811 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
812 #ifdef LOSTDIR
813 	{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" },
814 #endif
815 };
816 struct odirect {
817 	u_int32_t d_ino;
818 	u_int16_t d_reclen;
819 	u_int16_t d_namlen;
820 	u_char	d_name[MAXNAMLEN + 1];
821 } oroot_dir[] = {
822 	{ ROOTINO, sizeof(struct direct), 1, "." },
823 	{ ROOTINO, sizeof(struct direct), 2, ".." },
824 #ifdef LOSTDIR
825 	{ LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
826 #endif
827 };
828 #ifdef LOSTDIR
829 struct direct lost_found_dir[] = {
830 	{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." },
831 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
832 	{ 0, DIRBLKSIZ, 0, 0, 0 },
833 };
834 struct odirect olost_found_dir[] = {
835 	{ LOSTFOUNDINO, sizeof(struct direct), 1, "." },
836 	{ ROOTINO, sizeof(struct direct), 2, ".." },
837 	{ 0, DIRBLKSIZ, 0, 0 },
838 };
839 #endif
840 char buf[MAXBSIZE];
841 static void copy_dir(struct direct *, struct direct *);
842 
843 void
844 fsinit(time_t utime)
845 {
846 #ifdef LOSTDIR
847 	int i;
848 #endif
849 
850 	/*
851 	 * initialize the node
852 	 */
853 	memset(&node, 0, sizeof(node));
854 	node.di_atime = utime;
855 	node.di_mtime = utime;
856 	node.di_ctime = utime;
857 
858 #ifdef LOSTDIR
859 	/*
860 	 * create the lost+found directory
861 	 */
862 	if (Oflag) {
863 		(void)makedir((struct direct *)olost_found_dir, 2);
864 		for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
865 			copy_dir((struct direct*)&olost_found_dir[2],
866 				(struct direct*)&buf[i]);
867 	} else {
868 		(void)makedir(lost_found_dir, 2);
869 		for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
870 			copy_dir(&lost_found_dir[2], (struct direct*)&buf[i]);
871 	}
872 	node.di_mode = IFDIR | UMASK;
873 	node.di_nlink = 2;
874 	node.di_size = sblock.fs_bsize;
875 	node.di_db[0] = alloc(node.di_size, node.di_mode);
876 	node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
877 	node.di_uid = geteuid();
878 	node.di_gid = getegid();
879 	wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf);
880 	iput(&node, LOSTFOUNDINO);
881 #endif
882 	/*
883 	 * create the root directory
884 	 */
885 	if (mfs)
886 		node.di_mode = IFDIR | 01777;
887 	else
888 		node.di_mode = IFDIR | UMASK;
889 	node.di_nlink = PREDEFDIR;
890 	if (Oflag)
891 		node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR);
892 	else
893 		node.di_size = makedir(root_dir, PREDEFDIR);
894 	node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode);
895 	node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
896 	node.di_uid = geteuid();
897 	node.di_gid = getegid();
898 	wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf);
899 	iput(&node, ROOTINO);
900 }
901 
902 /*
903  * construct a set of directory entries in "buf".
904  * return size of directory.
905  */
906 int
907 makedir(struct direct *protodir, int entries)
908 {
909 	char *cp;
910 	int i, spcleft;
911 
912 	spcleft = DIRBLKSIZ;
913 	for (cp = buf, i = 0; i < entries - 1; i++) {
914 		protodir[i].d_reclen = DIRSIZ(Oflag, &protodir[i], 0);
915 		copy_dir(&protodir[i], (struct direct*)cp);
916 		cp += protodir[i].d_reclen;
917 		spcleft -= protodir[i].d_reclen;
918 	}
919 	protodir[i].d_reclen = spcleft;
920 	copy_dir(&protodir[i], (struct direct*)cp);
921 	return (DIRBLKSIZ);
922 }
923 
924 /*
925  * allocate a block or frag
926  */
927 daddr_t
928 alloc(int size, int mode)
929 {
930 	int i, frag;
931 	daddr_t d, blkno;
932 
933 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
934 	/* fs -> host byte order */
935 	if (needswap)
936 		swap_cg(&acg, &acg);
937 	if (acg.cg_magic != CG_MAGIC) {
938 		printf("cg 0: bad magic number\n");
939 		return (0);
940 	}
941 	if (acg.cg_cs.cs_nbfree == 0) {
942 		printf("first cylinder group ran out of space\n");
943 		return (0);
944 	}
945 	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
946 		if (isblock(&sblock, cg_blksfree(&acg, 0), d / sblock.fs_frag))
947 			goto goth;
948 	printf("internal error: can't find block in cyl 0\n");
949 	return (0);
950 goth:
951 	blkno = fragstoblks(&sblock, d);
952 	clrblock(&sblock, cg_blksfree(&acg, 0), blkno);
953 	if (sblock.fs_contigsumsize > 0)
954 		clrbit(cg_clustersfree(&acg, 0), blkno);
955 	acg.cg_cs.cs_nbfree--;
956 	sblock.fs_cstotal.cs_nbfree--;
957 	fscs[0].cs_nbfree--;
958 	if (mode & IFDIR) {
959 		acg.cg_cs.cs_ndir++;
960 		sblock.fs_cstotal.cs_ndir++;
961 		fscs[0].cs_ndir++;
962 	}
963 	cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]--;
964 	cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)[cbtorpos(&sblock, d)]--;
965 	if (size != sblock.fs_bsize) {
966 		frag = howmany(size, sblock.fs_fsize);
967 		fscs[0].cs_nffree += sblock.fs_frag - frag;
968 		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
969 		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
970 		acg.cg_frsum[sblock.fs_frag - frag]++;
971 		for (i = frag; i < sblock.fs_frag; i++)
972 			setbit(cg_blksfree(&acg, 0), d + i);
973 	}
974 	/* host -> fs byte order */
975 	if (needswap)
976 		swap_cg(&acg, &acg);
977 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
978 	    (char *)&acg);
979 	return (d);
980 }
981 
982 /*
983  * Calculate number of inodes per group.
984  */
985 int32_t
986 calcipg(int32_t cpg, int32_t bpcg, off_t *usedbp)
987 {
988 	int i;
989 	int32_t ipg, new_ipg, ncg, ncyl;
990 	off_t usedb;
991 #if __GNUC__ /* XXX work around gcc 2.7.2 initialization bug */
992 	(void)&usedb;
993 #endif
994 
995 	/*
996 	 * Prepare to scale by fssize / (number of sectors in cylinder groups).
997 	 * Note that fssize is still in sectors, not filesystem blocks.
998 	 */
999 	ncyl = howmany(fssize, secpercyl);
1000 	ncg = howmany(ncyl, cpg);
1001 	/*
1002 	 * Iterate a few times to allow for ipg depending on itself.
1003 	 */
1004 	ipg = 0;
1005 	for (i = 0; i < 10; i++) {
1006 		usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock))
1007 			* NSPF(&sblock) * (off_t)sectorsize;
1008 		new_ipg = (cpg * (quad_t)bpcg - usedb) / density * fssize
1009 			  / ncg / secpercyl / cpg;
1010 		new_ipg = roundup(new_ipg, INOPB(&sblock));
1011 		if (new_ipg == ipg)
1012 			break;
1013 		ipg = new_ipg;
1014 	}
1015 	*usedbp = usedb;
1016 	return (ipg);
1017 }
1018 
1019 /*
1020  * Allocate an inode on the disk
1021  */
1022 static void
1023 iput(struct dinode *ip, ino_t ino)
1024 {
1025 	struct dinode buf[MAXINOPB];
1026 	daddr_t d;
1027 	int c, i;
1028 
1029 	c = ino_to_cg(&sblock, ino);
1030 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
1031 	/* fs -> host byte order */
1032 	if (needswap)
1033 		swap_cg(&acg, &acg);
1034 	if (acg.cg_magic != CG_MAGIC) {
1035 		printf("cg 0: bad magic number\n");
1036 		exit(31);
1037 	}
1038 	acg.cg_cs.cs_nifree--;
1039 	setbit(cg_inosused(&acg, 0), ino);
1040 	/* host -> fs byte order */
1041 	if (needswap)
1042 		swap_cg(&acg, &acg);
1043 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1044 	    (char *)&acg);
1045 	sblock.fs_cstotal.cs_nifree--;
1046 	fscs[0].cs_nifree--;
1047 	if (ino >= sblock.fs_ipg * sblock.fs_ncg) {
1048 		printf("fsinit: inode value out of range (%d).\n", ino);
1049 		exit(32);
1050 	}
1051 	d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1052 	rdfs(d, sblock.fs_bsize, buf);
1053 	if (needswap) {
1054 		ffs_dinode_swap(ip, &buf[ino_to_fsbo(&sblock, ino)]);
1055 		/* ffs_dinode_swap() doesn't swap blocks addrs */
1056 		for (i=0; i<NDADDR + NIADDR; i++)
1057 			(&buf[ino_to_fsbo(&sblock, ino)])->di_db[i] =
1058 				bswap32(ip->di_db[i]);
1059 	} else
1060 		buf[ino_to_fsbo(&sblock, ino)] = *ip;
1061 	wtfs(d, sblock.fs_bsize, buf);
1062 }
1063 
1064 /*
1065  * Replace libc function with one suited to our needs.
1066  */
1067 void *
1068 malloc(size_t size)
1069 {
1070 	char *base, *i;
1071 	static u_long pgsz;
1072 	struct rlimit rlp;
1073 
1074 	if (pgsz == 0) {
1075 		base = sbrk(0);
1076 		pgsz = getpagesize() - 1;
1077 		i = (char *)((u_long)(base + pgsz) &~ pgsz);
1078 		base = sbrk(i - base);
1079 		if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1080 			perror("getrlimit");
1081 		rlp.rlim_cur = rlp.rlim_max;
1082 		if (setrlimit(RLIMIT_DATA, &rlp) < 0)
1083 			perror("setrlimit");
1084 		memleft = rlp.rlim_max - (u_long)base;
1085 	}
1086 	size = (size + pgsz) &~ pgsz;
1087 	if (size > memleft)
1088 		size = memleft;
1089 	memleft -= size;
1090 	if (size == 0)
1091 		return (0);
1092 	return ((caddr_t)sbrk(size));
1093 }
1094 
1095 /*
1096  * Replace libc function with one suited to our needs.
1097  */
1098 void *
1099 realloc(void *ptr, size_t size)
1100 {
1101 	void *p;
1102 
1103 	if ((p = malloc(size)) == NULL)
1104 		return (NULL);
1105 	memmove(p, ptr, size);
1106 	free(ptr);
1107 	return (p);
1108 }
1109 
1110 /*
1111  * Replace libc function with one suited to our needs.
1112  */
1113 void *
1114 calloc(size_t size, size_t numelm)
1115 {
1116 	void *base;
1117 
1118 	size *= numelm;
1119 	base = malloc(size);
1120 	memset(base, 0, size);
1121 	return (base);
1122 }
1123 
1124 /*
1125  * Replace libc function with one suited to our needs.
1126  */
1127 void
1128 free(void *ptr)
1129 {
1130 
1131 	/* do not worry about it for now */
1132 }
1133 
1134 /*
1135  * read a block from the file system
1136  */
1137 void
1138 rdfs(daddr_t bno, int size, void *bf)
1139 {
1140 	int n;
1141 	off_t offset;
1142 
1143 	if (mfs) {
1144 		memmove(bf, membase + bno * sectorsize, size);
1145 		return;
1146 	}
1147 	offset = bno;
1148 	offset *= sectorsize;
1149 	if (lseek(fsi, offset, SEEK_SET) < 0) {
1150 		printf("seek error: %d\n", bno);
1151 		perror("rdfs");
1152 		exit(33);
1153 	}
1154 	n = read(fsi, bf, size);
1155 	if (n != size) {
1156 		printf("read error: %d\n", bno);
1157 		perror("rdfs");
1158 		exit(34);
1159 	}
1160 }
1161 
1162 /*
1163  * write a block to the file system
1164  */
1165 void
1166 wtfs(daddr_t bno, int size, void *bf)
1167 {
1168 	int n;
1169 	off_t offset;
1170 
1171 	if (mfs) {
1172 		memmove(membase + bno * sectorsize, bf, size);
1173 		return;
1174 	}
1175 	if (Nflag)
1176 		return;
1177 	offset = bno;
1178 	offset *= sectorsize;
1179 	if (lseek(fso, offset, SEEK_SET) < 0) {
1180 		printf("seek error: %d\n", bno);
1181 		perror("wtfs");
1182 		exit(35);
1183 	}
1184 	n = write(fso, bf, size);
1185 	if (n != size) {
1186 		printf("write error: %d\n", bno);
1187 		perror("wtfs");
1188 		exit(36);
1189 	}
1190 }
1191 
1192 /*
1193  * check if a block is available
1194  */
1195 int
1196 isblock(struct fs *fs, unsigned char *cp, int h)
1197 {
1198 	unsigned char mask;
1199 
1200 	switch (fs->fs_frag) {
1201 	case 8:
1202 		return (cp[h] == 0xff);
1203 	case 4:
1204 		mask = 0x0f << ((h & 0x1) << 2);
1205 		return ((cp[h >> 1] & mask) == mask);
1206 	case 2:
1207 		mask = 0x03 << ((h & 0x3) << 1);
1208 		return ((cp[h >> 2] & mask) == mask);
1209 	case 1:
1210 		mask = 0x01 << (h & 0x7);
1211 		return ((cp[h >> 3] & mask) == mask);
1212 	default:
1213 #ifdef STANDALONE
1214 		printf("isblock bad fs_frag %d\n", fs->fs_frag);
1215 #else
1216 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1217 #endif
1218 		return (0);
1219 	}
1220 }
1221 
1222 /*
1223  * take a block out of the map
1224  */
1225 void
1226 clrblock(struct fs *fs, unsigned char *cp, int h)
1227 {
1228 	switch ((fs)->fs_frag) {
1229 	case 8:
1230 		cp[h] = 0;
1231 		return;
1232 	case 4:
1233 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1234 		return;
1235 	case 2:
1236 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1237 		return;
1238 	case 1:
1239 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1240 		return;
1241 	default:
1242 #ifdef STANDALONE
1243 		printf("clrblock bad fs_frag %d\n", fs->fs_frag);
1244 #else
1245 		fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1246 #endif
1247 		return;
1248 	}
1249 }
1250 
1251 /*
1252  * put a block into the map
1253  */
1254 void
1255 setblock(struct fs *fs, unsigned char *cp, int h)
1256 {
1257 	switch (fs->fs_frag) {
1258 	case 8:
1259 		cp[h] = 0xff;
1260 		return;
1261 	case 4:
1262 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1263 		return;
1264 	case 2:
1265 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1266 		return;
1267 	case 1:
1268 		cp[h >> 3] |= (0x01 << (h & 0x7));
1269 		return;
1270 	default:
1271 #ifdef STANDALONE
1272 		printf("setblock bad fs_frag %d\n", fs->fs_frag);
1273 #else
1274 		fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1275 #endif
1276 		return;
1277 	}
1278 }
1279 
1280 /* swap byte order of cylinder group */
1281 static void
1282 swap_cg(struct cg *o, struct cg *n)
1283 {
1284 	int i, btotsize, fbsize;
1285 	u_int32_t *n32, *o32;
1286 	u_int16_t *n16, *o16;
1287 
1288 	n->cg_firstfield = bswap32(o->cg_firstfield);
1289 	n->cg_magic = bswap32(o->cg_magic);
1290 	n->cg_time = bswap32(o->cg_time);
1291 	n->cg_cgx = bswap32(o->cg_cgx);
1292 	n->cg_ncyl = bswap16(o->cg_ncyl);
1293 	n->cg_niblk = bswap16(o->cg_niblk);
1294 	n->cg_ndblk = bswap32(o->cg_ndblk);
1295 	n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir);
1296 	n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree);
1297 	n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree);
1298 	n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree);
1299 	n->cg_rotor = bswap32(o->cg_rotor);
1300 	n->cg_frotor = bswap32(o->cg_frotor);
1301 	n->cg_irotor = bswap32(o->cg_irotor);
1302 	n->cg_btotoff = bswap32(o->cg_btotoff);
1303 	n->cg_boff = bswap32(o->cg_boff);
1304 	n->cg_iusedoff = bswap32(o->cg_iusedoff);
1305 	n->cg_freeoff = bswap32(o->cg_freeoff);
1306 	n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff);
1307 	n->cg_clustersumoff = bswap32(o->cg_clustersumoff);
1308 	n->cg_clusteroff = bswap32(o->cg_clusteroff);
1309 	n->cg_nclusterblks = bswap32(o->cg_nclusterblks);
1310 	for (i=0; i < MAXFRAG; i++)
1311 		n->cg_frsum[i] = bswap32(o->cg_frsum[i]);
1312 
1313 	/* alays new format */
1314 	if (n->cg_magic == CG_MAGIC) {
1315 		btotsize = n->cg_boff - n->cg_btotoff;
1316 		fbsize = n->cg_iusedoff - n->cg_boff;
1317 		n32 = (u_int32_t*)((u_int8_t*)n + n->cg_btotoff);
1318 		o32 = (u_int32_t*)((u_int8_t*)o + n->cg_btotoff);
1319 		n16 = (u_int16_t*)((u_int8_t*)n + n->cg_boff);
1320 		o16 = (u_int16_t*)((u_int8_t*)o + n->cg_boff);
1321 	} else {
1322 		btotsize = bswap32(n->cg_boff) - bswap32(n->cg_btotoff);
1323 		fbsize = bswap32(n->cg_iusedoff) - bswap32(n->cg_boff);
1324 		n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_btotoff));
1325 		o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_btotoff));
1326 		n16 = (u_int16_t*)((u_int8_t*)n + bswap32(n->cg_boff));
1327 		o16 = (u_int16_t*)((u_int8_t*)o + bswap32(n->cg_boff));
1328 	}
1329 	for (i=0; i < btotsize / sizeof(u_int32_t); i++)
1330 		n32[i] = bswap32(o32[i]);
1331 
1332 	for (i=0; i < fbsize/sizeof(u_int16_t); i++)
1333 		n16[i] = bswap16(o16[i]);
1334 
1335 	if (n->cg_magic == CG_MAGIC) {
1336 		n32 = (u_int32_t*)((u_int8_t*)n + n->cg_clustersumoff);
1337 		o32 = (u_int32_t*)((u_int8_t*)o + n->cg_clustersumoff);
1338 	} else {
1339 		n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_clustersumoff));
1340 		o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_clustersumoff));
1341 	}
1342 	for (i = 1; i < sblock.fs_contigsumsize + 1; i++)
1343 		n32[i] = bswap32(o32[i]);
1344 }
1345 
1346 /* copy a direntry to a buffer, in fs byte order */
1347 static void
1348 copy_dir(struct direct *dir, struct direct *dbuf)
1349 {
1350 	memcpy(dbuf, dir, DIRSIZ(Oflag, dir, 0));
1351 	if (needswap) {
1352 		dbuf->d_ino = bswap32(dir->d_ino);
1353 		dbuf->d_reclen = bswap16(dir->d_reclen);
1354 		if (Oflag)
1355 			((struct odirect*)dbuf)->d_namlen =
1356 				bswap16(((struct odirect*)dir)->d_namlen);
1357 	}
1358 }
1359 
1360 /* Determine how many digits are needed to print a given integer */
1361 static int
1362 count_digits(int num)
1363 {
1364 	int ndig;
1365 
1366 	for(ndig = 1; num > 9; num /=10, ndig++);
1367 
1368 	return (ndig);
1369 }
1370