1 /* 2 * Copyright (c) 1980, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #ifndef lint 35 /*static char sccsid[] = "from: @(#)mkfs.c 8.3 (Berkeley) 2/3/94";*/ 36 static char *rcsid = "$Id: mkfs.c,v 1.15 1994/12/18 16:00:21 cgd Exp $"; 37 #endif /* not lint */ 38 39 #include <sys/param.h> 40 #include <sys/time.h> 41 #include <sys/wait.h> 42 #include <sys/resource.h> 43 #include <ufs/ufs/dinode.h> 44 #include <ufs/ufs/dir.h> 45 #include <ufs/ffs/fs.h> 46 #include <sys/disklabel.h> 47 48 #include <string.h> 49 #include <unistd.h> 50 51 #ifndef STANDALONE 52 #include <a.out.h> 53 #include <stdio.h> 54 #endif 55 56 /* 57 * make file system for cylinder-group style file systems 58 */ 59 60 /* 61 * We limit the size of the inode map to be no more than a 62 * third of the cylinder group space, since we must leave at 63 * least an equal amount of space for the block map. 64 * 65 * N.B.: MAXIPG must be a multiple of INOPB(fs). 66 */ 67 #define MAXIPG(fs) roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs)) 68 69 #define UMASK 0755 70 #define MAXINOPB (MAXBSIZE / sizeof(struct dinode)) 71 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 72 73 /* 74 * variables set up by front end. 75 */ 76 extern int mfs; /* run as the memory based filesystem */ 77 extern int Nflag; /* run mkfs without writing file system */ 78 extern int Oflag; /* format as an 4.3BSD file system */ 79 extern int fssize; /* file system size */ 80 extern int ntracks; /* # tracks/cylinder */ 81 extern int nsectors; /* # sectors/track */ 82 extern int nphyssectors; /* # sectors/track including spares */ 83 extern int secpercyl; /* sectors per cylinder */ 84 extern int sectorsize; /* bytes/sector */ 85 extern int rpm; /* revolutions/minute of drive */ 86 extern int interleave; /* hardware sector interleave */ 87 extern int trackskew; /* sector 0 skew, per track */ 88 extern int headswitch; /* head switch time, usec */ 89 extern int trackseek; /* track-to-track seek, usec */ 90 extern int fsize; /* fragment size */ 91 extern int bsize; /* block size */ 92 extern int cpg; /* cylinders/cylinder group */ 93 extern int cpgflg; /* cylinders/cylinder group flag was given */ 94 extern int minfree; /* free space threshold */ 95 extern int opt; /* optimization preference (space or time) */ 96 extern int density; /* number of bytes per inode */ 97 extern int maxcontig; /* max contiguous blocks to allocate */ 98 extern int rotdelay; /* rotational delay between blocks */ 99 extern int maxbpg; /* maximum blocks per file in a cyl group */ 100 extern int nrpos; /* # of distinguished rotational positions */ 101 extern int bbsize; /* boot block size */ 102 extern int sbsize; /* superblock size */ 103 extern u_long memleft; /* virtual memory available */ 104 extern caddr_t membase; /* start address of memory based filesystem */ 105 extern caddr_t malloc(), calloc(); 106 107 union { 108 struct fs fs; 109 char pad[SBSIZE]; 110 } fsun; 111 #define sblock fsun.fs 112 struct csum *fscs; 113 114 union { 115 struct cg cg; 116 char pad[MAXBSIZE]; 117 } cgun; 118 #define acg cgun.cg 119 120 struct dinode zino[MAXBSIZE / sizeof(struct dinode)]; 121 122 int fsi, fso; 123 daddr_t alloc(); 124 125 mkfs(pp, fsys, fi, fo) 126 struct partition *pp; 127 char *fsys; 128 int fi, fo; 129 { 130 register long i, mincpc, mincpg, inospercg; 131 long cylno, rpos, blk, j, warn = 0; 132 long used, mincpgcnt, bpcg; 133 long mapcramped, inodecramped; 134 long postblsize, rotblsize, totalsbsize; 135 int ppid, status; 136 time_t utime; 137 quad_t sizepb; 138 void started(); 139 140 #ifndef STANDALONE 141 time(&utime); 142 #endif 143 if (mfs) { 144 ppid = getpid(); 145 (void) signal(SIGUSR1, started); 146 if (i = fork()) { 147 if (i == -1) { 148 perror("mfs"); 149 exit(10); 150 } 151 if (waitpid(i, &status, 0) != -1 && WIFEXITED(status)) 152 exit(WEXITSTATUS(status)); 153 exit(11); 154 /* NOTREACHED */ 155 } 156 (void)malloc(0); 157 if (fssize * sectorsize > memleft) 158 fssize = (memleft - 16384) / sectorsize; 159 if ((membase = malloc(fssize * sectorsize)) == 0) 160 exit(12); 161 } 162 fsi = fi; 163 fso = fo; 164 if (Oflag) { 165 sblock.fs_inodefmt = FS_42INODEFMT; 166 sblock.fs_maxsymlinklen = 0; 167 } else { 168 sblock.fs_inodefmt = FS_44INODEFMT; 169 sblock.fs_maxsymlinklen = MAXSYMLINKLEN; 170 } 171 /* 172 * Validate the given file system size. 173 * Verify that its last block can actually be accessed. 174 */ 175 if (fssize <= 0) 176 printf("preposterous size %d\n", fssize), exit(13); 177 wtfs(fssize - 1, sectorsize, (char *)&sblock); 178 /* 179 * collect and verify the sector and track info 180 */ 181 sblock.fs_nsect = nsectors; 182 sblock.fs_ntrak = ntracks; 183 if (sblock.fs_ntrak <= 0) 184 printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14); 185 if (sblock.fs_nsect <= 0) 186 printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15); 187 /* 188 * collect and verify the block and fragment sizes 189 */ 190 sblock.fs_bsize = bsize; 191 sblock.fs_fsize = fsize; 192 if (!POWEROF2(sblock.fs_bsize)) { 193 printf("block size must be a power of 2, not %d\n", 194 sblock.fs_bsize); 195 exit(16); 196 } 197 if (!POWEROF2(sblock.fs_fsize)) { 198 printf("fragment size must be a power of 2, not %d\n", 199 sblock.fs_fsize); 200 exit(17); 201 } 202 if (sblock.fs_fsize < sectorsize) { 203 printf("fragment size %d is too small, minimum is %d\n", 204 sblock.fs_fsize, sectorsize); 205 exit(18); 206 } 207 if (sblock.fs_bsize < MINBSIZE) { 208 printf("block size %d is too small, minimum is %d\n", 209 sblock.fs_bsize, MINBSIZE); 210 exit(19); 211 } 212 if (sblock.fs_bsize < sblock.fs_fsize) { 213 printf("block size (%d) cannot be smaller than fragment size (%d)\n", 214 sblock.fs_bsize, sblock.fs_fsize); 215 exit(20); 216 } 217 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 218 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 219 sblock.fs_qbmask = ~sblock.fs_bmask; 220 sblock.fs_qfmask = ~sblock.fs_fmask; 221 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1) 222 sblock.fs_bshift++; 223 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1) 224 sblock.fs_fshift++; 225 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 226 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1) 227 sblock.fs_fragshift++; 228 if (sblock.fs_frag > MAXFRAG) { 229 printf("fragment size %d is too small, minimum with block size %d is %d\n", 230 sblock.fs_fsize, sblock.fs_bsize, 231 sblock.fs_bsize / MAXFRAG); 232 exit(21); 233 } 234 sblock.fs_nrpos = nrpos; 235 sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t); 236 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct dinode); 237 sblock.fs_nspf = sblock.fs_fsize / sectorsize; 238 for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1) 239 sblock.fs_fsbtodb++; 240 sblock.fs_sblkno = 241 roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag); 242 sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno + 243 roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag)); 244 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 245 sblock.fs_cgoffset = roundup( 246 howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag); 247 for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1) 248 sblock.fs_cgmask <<= 1; 249 if (!POWEROF2(sblock.fs_ntrak)) 250 sblock.fs_cgmask <<= 1; 251 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1; 252 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) { 253 sizepb *= NINDIR(&sblock); 254 sblock.fs_maxfilesize += sizepb; 255 } 256 /* 257 * Validate specified/determined secpercyl 258 * and calculate minimum cylinders per group. 259 */ 260 sblock.fs_spc = secpercyl; 261 for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc; 262 sblock.fs_cpc > 1 && (i & 1) == 0; 263 sblock.fs_cpc >>= 1, i >>= 1) 264 /* void */; 265 mincpc = sblock.fs_cpc; 266 bpcg = sblock.fs_spc * sectorsize; 267 inospercg = roundup(bpcg / sizeof(struct dinode), INOPB(&sblock)); 268 if (inospercg > MAXIPG(&sblock)) 269 inospercg = MAXIPG(&sblock); 270 used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock); 271 mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used, 272 sblock.fs_spc); 273 mincpg = roundup(mincpgcnt, mincpc); 274 /* 275 * Ensure that cylinder group with mincpg has enough space 276 * for block maps. 277 */ 278 sblock.fs_cpg = mincpg; 279 sblock.fs_ipg = inospercg; 280 if (maxcontig > 1) 281 sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG); 282 mapcramped = 0; 283 while (CGSIZE(&sblock) > sblock.fs_bsize) { 284 mapcramped = 1; 285 if (sblock.fs_bsize < MAXBSIZE) { 286 sblock.fs_bsize <<= 1; 287 if ((i & 1) == 0) { 288 i >>= 1; 289 } else { 290 sblock.fs_cpc <<= 1; 291 mincpc <<= 1; 292 mincpg = roundup(mincpgcnt, mincpc); 293 sblock.fs_cpg = mincpg; 294 } 295 sblock.fs_frag <<= 1; 296 sblock.fs_fragshift += 1; 297 if (sblock.fs_frag <= MAXFRAG) 298 continue; 299 } 300 if (sblock.fs_fsize == sblock.fs_bsize) { 301 printf("There is no block size that"); 302 printf(" can support this disk\n"); 303 exit(22); 304 } 305 sblock.fs_frag >>= 1; 306 sblock.fs_fragshift -= 1; 307 sblock.fs_fsize <<= 1; 308 sblock.fs_nspf <<= 1; 309 } 310 /* 311 * Ensure that cylinder group with mincpg has enough space for inodes. 312 */ 313 inodecramped = 0; 314 used *= sectorsize; 315 inospercg = roundup((mincpg * bpcg - used) / density, INOPB(&sblock)); 316 sblock.fs_ipg = inospercg; 317 while (inospercg > MAXIPG(&sblock)) { 318 inodecramped = 1; 319 if (mincpc == 1 || sblock.fs_frag == 1 || 320 sblock.fs_bsize == MINBSIZE) 321 break; 322 printf("With a block size of %d %s %d\n", sblock.fs_bsize, 323 "minimum bytes per inode is", 324 (mincpg * bpcg - used) / MAXIPG(&sblock) + 1); 325 sblock.fs_bsize >>= 1; 326 sblock.fs_frag >>= 1; 327 sblock.fs_fragshift -= 1; 328 mincpc >>= 1; 329 sblock.fs_cpg = roundup(mincpgcnt, mincpc); 330 if (CGSIZE(&sblock) > sblock.fs_bsize) { 331 sblock.fs_bsize <<= 1; 332 break; 333 } 334 mincpg = sblock.fs_cpg; 335 inospercg = 336 roundup((mincpg * bpcg - used) / density, INOPB(&sblock)); 337 sblock.fs_ipg = inospercg; 338 } 339 if (inodecramped) { 340 if (inospercg > MAXIPG(&sblock)) { 341 printf("Minimum bytes per inode is %d\n", 342 (mincpg * bpcg - used) / MAXIPG(&sblock) + 1); 343 } else if (!mapcramped) { 344 printf("With %d bytes per inode, ", density); 345 printf("minimum cylinders per group is %d\n", mincpg); 346 } 347 } 348 if (mapcramped) { 349 printf("With %d sectors per cylinder, ", sblock.fs_spc); 350 printf("minimum cylinders per group is %d\n", mincpg); 351 } 352 if (inodecramped || mapcramped) { 353 if (sblock.fs_bsize != bsize) 354 printf("%s to be changed from %d to %d\n", 355 "This requires the block size", 356 bsize, sblock.fs_bsize); 357 if (sblock.fs_fsize != fsize) 358 printf("\t%s to be changed from %d to %d\n", 359 "and the fragment size", 360 fsize, sblock.fs_fsize); 361 exit(23); 362 } 363 /* 364 * Calculate the number of cylinders per group 365 */ 366 sblock.fs_cpg = cpg; 367 if (sblock.fs_cpg % mincpc != 0) { 368 printf("%s groups must have a multiple of %d cylinders\n", 369 cpgflg ? "Cylinder" : "Warning: cylinder", mincpc); 370 sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc); 371 if (!cpgflg) 372 cpg = sblock.fs_cpg; 373 } 374 /* 375 * Must ensure there is enough space for inodes. 376 */ 377 sblock.fs_ipg = roundup((sblock.fs_cpg * bpcg - used) / density, 378 INOPB(&sblock)); 379 while (sblock.fs_ipg > MAXIPG(&sblock)) { 380 inodecramped = 1; 381 sblock.fs_cpg -= mincpc; 382 sblock.fs_ipg = roundup((sblock.fs_cpg * bpcg - used) / density, 383 INOPB(&sblock)); 384 } 385 /* 386 * Must ensure there is enough space to hold block map. 387 */ 388 while (CGSIZE(&sblock) > sblock.fs_bsize) { 389 mapcramped = 1; 390 sblock.fs_cpg -= mincpc; 391 sblock.fs_ipg = roundup((sblock.fs_cpg * bpcg - used) / density, 392 INOPB(&sblock)); 393 } 394 sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock); 395 if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) { 396 printf("panic (fs_cpg * fs_spc) % NSPF != 0"); 397 exit(24); 398 } 399 if (sblock.fs_cpg < mincpg) { 400 printf("cylinder groups must have at least %d cylinders\n", 401 mincpg); 402 exit(25); 403 } else if (sblock.fs_cpg != cpg) { 404 if (!cpgflg) 405 printf("Warning: "); 406 else if (!mapcramped && !inodecramped) 407 exit(26); 408 if (mapcramped && inodecramped) 409 printf("Block size and bytes per inode restrict"); 410 else if (mapcramped) 411 printf("Block size restricts"); 412 else 413 printf("Bytes per inode restrict"); 414 printf(" cylinders per group to %d.\n", sblock.fs_cpg); 415 if (cpgflg) 416 exit(27); 417 } 418 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 419 /* 420 * Now have size for file system and nsect and ntrak. 421 * Determine number of cylinders and blocks in the file system. 422 */ 423 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 424 sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc; 425 if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) { 426 sblock.fs_ncyl++; 427 warn = 1; 428 } 429 if (sblock.fs_ncyl < 1) { 430 printf("file systems must have at least one cylinder\n"); 431 exit(28); 432 } 433 /* 434 * Determine feasability/values of rotational layout tables. 435 * 436 * The size of the rotational layout tables is limited by the 437 * size of the superblock, SBSIZE. The amount of space available 438 * for tables is calculated as (SBSIZE - sizeof (struct fs)). 439 * The size of these tables is inversely proportional to the block 440 * size of the file system. The size increases if sectors per track 441 * are not powers of two, because more cylinders must be described 442 * by the tables before the rotational pattern repeats (fs_cpc). 443 */ 444 sblock.fs_interleave = interleave; 445 sblock.fs_trackskew = trackskew; 446 sblock.fs_npsect = nphyssectors; 447 sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT; 448 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 449 if (sblock.fs_ntrak == 1) { 450 sblock.fs_cpc = 0; 451 goto next; 452 } 453 postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(short); 454 rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock); 455 totalsbsize = sizeof(struct fs) + rotblsize; 456 if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) { 457 /* use old static table space */ 458 sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) - 459 (char *)(&sblock.fs_firstfield); 460 sblock.fs_rotbloff = &sblock.fs_space[0] - 461 (u_char *)(&sblock.fs_firstfield); 462 } else { 463 /* use dynamic table space */ 464 sblock.fs_postbloff = &sblock.fs_space[0] - 465 (u_char *)(&sblock.fs_firstfield); 466 sblock.fs_rotbloff = sblock.fs_postbloff + postblsize; 467 totalsbsize += postblsize; 468 } 469 if (totalsbsize > SBSIZE || 470 sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) { 471 printf("%s %s %d %s %d.%s", 472 "Warning: insufficient space in super block for\n", 473 "rotational layout tables with nsect", sblock.fs_nsect, 474 "and ntrak", sblock.fs_ntrak, 475 "\nFile system performance may be impaired.\n"); 476 sblock.fs_cpc = 0; 477 goto next; 478 } 479 sblock.fs_sbsize = fragroundup(&sblock, totalsbsize); 480 /* 481 * calculate the available blocks for each rotational position 482 */ 483 for (cylno = 0; cylno < sblock.fs_cpc; cylno++) 484 for (rpos = 0; rpos < sblock.fs_nrpos; rpos++) 485 fs_postbl(&sblock, cylno)[rpos] = -1; 486 for (i = (rotblsize - 1) * sblock.fs_frag; 487 i >= 0; i -= sblock.fs_frag) { 488 cylno = cbtocylno(&sblock, i); 489 rpos = cbtorpos(&sblock, i); 490 blk = fragstoblks(&sblock, i); 491 if (fs_postbl(&sblock, cylno)[rpos] == -1) 492 fs_rotbl(&sblock)[blk] = 0; 493 else 494 fs_rotbl(&sblock)[blk] = 495 fs_postbl(&sblock, cylno)[rpos] - blk; 496 fs_postbl(&sblock, cylno)[rpos] = blk; 497 } 498 next: 499 /* 500 * Compute/validate number of cylinder groups. 501 */ 502 sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg; 503 if (sblock.fs_ncyl % sblock.fs_cpg) 504 sblock.fs_ncg++; 505 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 506 i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1); 507 if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) { 508 printf("inode blocks/cyl group (%d) >= data blocks (%d)\n", 509 cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag, 510 sblock.fs_fpg / sblock.fs_frag); 511 printf("number of cylinders per cylinder group (%d) %s.\n", 512 sblock.fs_cpg, "must be increased"); 513 exit(29); 514 } 515 j = sblock.fs_ncg - 1; 516 if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg && 517 cgdmin(&sblock, j) - cgbase(&sblock, j) > i) { 518 if (j == 0) { 519 printf("Filesystem must have at least %d sectors\n", 520 NSPF(&sblock) * 521 (cgdmin(&sblock, 0) + 3 * sblock.fs_frag)); 522 exit(30); 523 } 524 printf("Warning: inode blocks/cyl group (%d) >= data blocks (%d) in last\n", 525 (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag, 526 i / sblock.fs_frag); 527 printf(" cylinder group. This implies %d sector(s) cannot be allocated.\n", 528 i * NSPF(&sblock)); 529 sblock.fs_ncg--; 530 sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg; 531 sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc / 532 NSPF(&sblock); 533 warn = 0; 534 } 535 if (warn && !mfs) { 536 printf("Warning: %d sector(s) in last cylinder unallocated\n", 537 sblock.fs_spc - 538 (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1) 539 * sblock.fs_spc)); 540 } 541 /* 542 * fill in remaining fields of the super block 543 */ 544 sblock.fs_csaddr = cgdmin(&sblock, 0); 545 sblock.fs_cssize = 546 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 547 i = sblock.fs_bsize / sizeof(struct csum); 548 sblock.fs_csmask = ~(i - 1); 549 for (sblock.fs_csshift = 0; i > 1; i >>= 1) 550 sblock.fs_csshift++; 551 fscs = (struct csum *)calloc(1, sblock.fs_cssize); 552 sblock.fs_magic = FS_MAGIC; 553 sblock.fs_rotdelay = rotdelay; 554 sblock.fs_minfree = minfree; 555 sblock.fs_maxcontig = maxcontig; 556 sblock.fs_headswitch = headswitch; 557 sblock.fs_trkseek = trackseek; 558 sblock.fs_maxbpg = maxbpg; 559 sblock.fs_rps = rpm / 60; 560 sblock.fs_optim = opt; 561 sblock.fs_cgrotor = 0; 562 sblock.fs_cstotal.cs_ndir = 0; 563 sblock.fs_cstotal.cs_nbfree = 0; 564 sblock.fs_cstotal.cs_nifree = 0; 565 sblock.fs_cstotal.cs_nffree = 0; 566 sblock.fs_fmod = 0; 567 sblock.fs_ronly = 0; 568 /* 569 * Dump out summary information about file system. 570 */ 571 if (!mfs) { 572 printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n", 573 fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl, 574 "cylinders", sblock.fs_ntrak, sblock.fs_nsect); 575 #define B2MBFACTOR (1 / (1024.0 * 1024.0)) 576 printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n", 577 (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 578 sblock.fs_ncg, sblock.fs_cpg, 579 (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 580 sblock.fs_ipg); 581 #undef B2MBFACTOR 582 } 583 /* 584 * Now build the cylinders group blocks and 585 * then print out indices of cylinder groups. 586 */ 587 if (!mfs) 588 printf("super-block backups (for fsck -b #) at:"); 589 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) { 590 initcg(cylno, utime); 591 if (mfs) 592 continue; 593 if (cylno % 8 == 0) 594 printf("\n"); 595 printf(" %d,", fsbtodb(&sblock, cgsblock(&sblock, cylno))); 596 } 597 if (!mfs) 598 printf("\n"); 599 if (Nflag && !mfs) 600 exit(0); 601 /* 602 * Now construct the initial file system, 603 * then write out the super-block. 604 */ 605 fsinit(utime); 606 sblock.fs_time = utime; 607 wtfs((int)SBOFF / sectorsize, sbsize, (char *)&sblock); 608 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) 609 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)), 610 sblock.fs_cssize - i < sblock.fs_bsize ? 611 sblock.fs_cssize - i : sblock.fs_bsize, 612 ((char *)fscs) + i); 613 /* 614 * Write out the duplicate super blocks 615 */ 616 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) 617 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), 618 sbsize, (char *)&sblock); 619 /* 620 * Update information about this partion in pack 621 * label, to that it may be updated on disk. 622 */ 623 pp->p_fstype = FS_BSDFFS; 624 pp->p_fsize = sblock.fs_fsize; 625 pp->p_frag = sblock.fs_frag; 626 pp->p_cpg = sblock.fs_cpg; 627 /* 628 * Notify parent process of success. 629 * Dissociate from session and tty. 630 */ 631 if (mfs) { 632 kill(ppid, SIGUSR1); 633 (void) setsid(); 634 (void) close(0); 635 (void) close(1); 636 (void) close(2); 637 (void) chdir("/"); 638 } 639 } 640 641 /* 642 * Initialize a cylinder group. 643 */ 644 initcg(cylno, utime) 645 int cylno; 646 time_t utime; 647 { 648 daddr_t cbase, d, dlower, dupper, dmax, blkno; 649 long i, j, s; 650 register struct csum *cs; 651 652 /* 653 * Determine block bounds for cylinder group. 654 * Allow space for super block summary information in first 655 * cylinder group. 656 */ 657 cbase = cgbase(&sblock, cylno); 658 dmax = cbase + sblock.fs_fpg; 659 if (dmax > sblock.fs_size) 660 dmax = sblock.fs_size; 661 dlower = cgsblock(&sblock, cylno) - cbase; 662 dupper = cgdmin(&sblock, cylno) - cbase; 663 if (cylno == 0) 664 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 665 cs = fscs + cylno; 666 memset(&acg, 0, sblock.fs_cgsize); 667 acg.cg_time = utime; 668 acg.cg_magic = CG_MAGIC; 669 acg.cg_cgx = cylno; 670 if (cylno == sblock.fs_ncg - 1) 671 acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg; 672 else 673 acg.cg_ncyl = sblock.fs_cpg; 674 acg.cg_niblk = sblock.fs_ipg; 675 acg.cg_ndblk = dmax - cbase; 676 if (sblock.fs_contigsumsize > 0) 677 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 678 acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); 679 acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t); 680 acg.cg_iusedoff = acg.cg_boff + 681 sblock.fs_cpg * sblock.fs_nrpos * sizeof(short); 682 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY); 683 if (sblock.fs_contigsumsize <= 0) { 684 acg.cg_nextfreeoff = acg.cg_freeoff + 685 howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY); 686 } else { 687 acg.cg_clustersumoff = acg.cg_freeoff + howmany 688 (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) - 689 sizeof(int32_t); 690 acg.cg_clustersumoff = 691 roundup(acg.cg_clustersumoff, sizeof(int32_t)); 692 acg.cg_clusteroff = acg.cg_clustersumoff + 693 (sblock.fs_contigsumsize + 1) * sizeof(int32_t); 694 acg.cg_nextfreeoff = acg.cg_clusteroff + howmany 695 (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY); 696 } 697 if (acg.cg_nextfreeoff - (long)(&acg.cg_firstfield) > sblock.fs_cgsize) { 698 printf("Panic: cylinder group too big\n"); 699 exit(37); 700 } 701 acg.cg_cs.cs_nifree += sblock.fs_ipg; 702 if (cylno == 0) 703 for (i = 0; i < ROOTINO; i++) { 704 setbit(cg_inosused(&acg), i); 705 acg.cg_cs.cs_nifree--; 706 } 707 for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) 708 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 709 sblock.fs_bsize, (char *)zino); 710 if (cylno > 0) { 711 /* 712 * In cylno 0, beginning space is reserved 713 * for boot and super blocks. 714 */ 715 for (d = 0; d < dlower; d += sblock.fs_frag) { 716 blkno = d / sblock.fs_frag; 717 setblock(&sblock, cg_blksfree(&acg), blkno); 718 if (sblock.fs_contigsumsize > 0) 719 setbit(cg_clustersfree(&acg), blkno); 720 acg.cg_cs.cs_nbfree++; 721 cg_blktot(&acg)[cbtocylno(&sblock, d)]++; 722 cg_blks(&sblock, &acg, cbtocylno(&sblock, d)) 723 [cbtorpos(&sblock, d)]++; 724 } 725 sblock.fs_dsize += dlower; 726 } 727 sblock.fs_dsize += acg.cg_ndblk - dupper; 728 if (i = dupper % sblock.fs_frag) { 729 acg.cg_frsum[sblock.fs_frag - i]++; 730 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 731 setbit(cg_blksfree(&acg), dupper); 732 acg.cg_cs.cs_nffree++; 733 } 734 } 735 for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) { 736 blkno = d / sblock.fs_frag; 737 setblock(&sblock, cg_blksfree(&acg), blkno); 738 if (sblock.fs_contigsumsize > 0) 739 setbit(cg_clustersfree(&acg), blkno); 740 acg.cg_cs.cs_nbfree++; 741 cg_blktot(&acg)[cbtocylno(&sblock, d)]++; 742 cg_blks(&sblock, &acg, cbtocylno(&sblock, d)) 743 [cbtorpos(&sblock, d)]++; 744 d += sblock.fs_frag; 745 } 746 if (d < dmax - cbase) { 747 acg.cg_frsum[dmax - cbase - d]++; 748 for (; d < dmax - cbase; d++) { 749 setbit(cg_blksfree(&acg), d); 750 acg.cg_cs.cs_nffree++; 751 } 752 } 753 if (sblock.fs_contigsumsize > 0) { 754 int32_t *sump = cg_clustersum(&acg); 755 u_char *mapp = cg_clustersfree(&acg); 756 int map = *mapp++; 757 int bit = 1; 758 int run = 0; 759 760 for (i = 0; i < acg.cg_nclusterblks; i++) { 761 if ((map & bit) != 0) { 762 run++; 763 } else if (run != 0) { 764 if (run > sblock.fs_contigsumsize) 765 run = sblock.fs_contigsumsize; 766 sump[run]++; 767 run = 0; 768 } 769 if ((i & (NBBY - 1)) != (NBBY - 1)) { 770 bit <<= 1; 771 } else { 772 map = *mapp++; 773 bit = 1; 774 } 775 } 776 if (run != 0) { 777 if (run > sblock.fs_contigsumsize) 778 run = sblock.fs_contigsumsize; 779 sump[run]++; 780 } 781 } 782 sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir; 783 sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree; 784 sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree; 785 sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree; 786 *cs = acg.cg_cs; 787 wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), 788 sblock.fs_bsize, (char *)&acg); 789 } 790 791 /* 792 * initialize the file system 793 */ 794 struct dinode node; 795 796 #ifdef LOSTDIR 797 #define PREDEFDIR 3 798 #else 799 #define PREDEFDIR 2 800 #endif 801 802 struct direct root_dir[] = { 803 { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, 804 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 805 #ifdef LOSTDIR 806 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" }, 807 #endif 808 }; 809 struct odirect { 810 u_int32_t d_ino; 811 u_int16_t d_reclen; 812 u_int16_t d_namlen; 813 u_char d_name[MAXNAMLEN + 1]; 814 } oroot_dir[] = { 815 { ROOTINO, sizeof(struct direct), 1, "." }, 816 { ROOTINO, sizeof(struct direct), 2, ".." }, 817 #ifdef LOSTDIR 818 { LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" }, 819 #endif 820 }; 821 #ifdef LOSTDIR 822 struct direct lost_found_dir[] = { 823 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." }, 824 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 825 { 0, DIRBLKSIZ, 0, 0, 0 }, 826 }; 827 struct odirect olost_found_dir[] = { 828 { LOSTFOUNDINO, sizeof(struct direct), 1, "." }, 829 { ROOTINO, sizeof(struct direct), 2, ".." }, 830 { 0, DIRBLKSIZ, 0, 0 }, 831 }; 832 #endif 833 char buf[MAXBSIZE]; 834 835 fsinit(utime) 836 time_t utime; 837 { 838 int i; 839 840 /* 841 * initialize the node 842 */ 843 node.di_atime.ts_sec = utime; 844 node.di_mtime.ts_sec = utime; 845 node.di_ctime.ts_sec = utime; 846 #ifdef LOSTDIR 847 /* 848 * create the lost+found directory 849 */ 850 if (Oflag) { 851 (void)makedir((struct direct *)olost_found_dir, 2); 852 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ) 853 memcpy(&buf[i], &olost_found_dir[2], 854 DIRSIZ(0, &olost_found_dir[2])); 855 } else { 856 (void)makedir(lost_found_dir, 2); 857 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ) 858 memcpy(&buf[i], &lost_found_dir[2], 859 DIRSIZ(0, &lost_found_dir[2])); 860 } 861 node.di_mode = IFDIR | UMASK; 862 node.di_nlink = 2; 863 node.di_size = sblock.fs_bsize; 864 node.di_db[0] = alloc(node.di_size, node.di_mode); 865 node.di_blocks = btodb(fragroundup(&sblock, node.di_size)); 866 wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf); 867 iput(&node, LOSTFOUNDINO); 868 #endif 869 /* 870 * create the root directory 871 */ 872 if (mfs) 873 node.di_mode = IFDIR | 01777; 874 else 875 node.di_mode = IFDIR | UMASK; 876 node.di_nlink = PREDEFDIR; 877 if (Oflag) 878 node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR); 879 else 880 node.di_size = makedir(root_dir, PREDEFDIR); 881 node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode); 882 node.di_blocks = btodb(fragroundup(&sblock, node.di_size)); 883 wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf); 884 iput(&node, ROOTINO); 885 } 886 887 /* 888 * construct a set of directory entries in "buf". 889 * return size of directory. 890 */ 891 makedir(protodir, entries) 892 register struct direct *protodir; 893 int entries; 894 { 895 char *cp; 896 int i, spcleft; 897 898 spcleft = DIRBLKSIZ; 899 for (cp = buf, i = 0; i < entries - 1; i++) { 900 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]); 901 memcpy(cp, &protodir[i], protodir[i].d_reclen); 902 cp += protodir[i].d_reclen; 903 spcleft -= protodir[i].d_reclen; 904 } 905 protodir[i].d_reclen = spcleft; 906 memcpy(cp, &protodir[i], DIRSIZ(0, &protodir[i])); 907 return (DIRBLKSIZ); 908 } 909 910 /* 911 * allocate a block or frag 912 */ 913 daddr_t 914 alloc(size, mode) 915 int size; 916 int mode; 917 { 918 int i, frag; 919 daddr_t d, blkno; 920 921 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 922 (char *)&acg); 923 if (acg.cg_magic != CG_MAGIC) { 924 printf("cg 0: bad magic number\n"); 925 return (0); 926 } 927 if (acg.cg_cs.cs_nbfree == 0) { 928 printf("first cylinder group ran out of space\n"); 929 return (0); 930 } 931 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) 932 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) 933 goto goth; 934 printf("internal error: can't find block in cyl 0\n"); 935 return (0); 936 goth: 937 blkno = fragstoblks(&sblock, d); 938 clrblock(&sblock, cg_blksfree(&acg), blkno); 939 if (sblock.fs_contigsumsize > 0) 940 clrbit(cg_clustersfree(&acg), blkno); 941 acg.cg_cs.cs_nbfree--; 942 sblock.fs_cstotal.cs_nbfree--; 943 fscs[0].cs_nbfree--; 944 if (mode & IFDIR) { 945 acg.cg_cs.cs_ndir++; 946 sblock.fs_cstotal.cs_ndir++; 947 fscs[0].cs_ndir++; 948 } 949 cg_blktot(&acg)[cbtocylno(&sblock, d)]--; 950 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--; 951 if (size != sblock.fs_bsize) { 952 frag = howmany(size, sblock.fs_fsize); 953 fscs[0].cs_nffree += sblock.fs_frag - frag; 954 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; 955 acg.cg_cs.cs_nffree += sblock.fs_frag - frag; 956 acg.cg_frsum[sblock.fs_frag - frag]++; 957 for (i = frag; i < sblock.fs_frag; i++) 958 setbit(cg_blksfree(&acg), d + i); 959 } 960 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 961 (char *)&acg); 962 return (d); 963 } 964 965 /* 966 * Allocate an inode on the disk 967 */ 968 iput(ip, ino) 969 register struct dinode *ip; 970 register ino_t ino; 971 { 972 struct dinode buf[MAXINOPB]; 973 daddr_t d; 974 int c; 975 976 c = ino_to_cg(&sblock, ino); 977 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 978 (char *)&acg); 979 if (acg.cg_magic != CG_MAGIC) { 980 printf("cg 0: bad magic number\n"); 981 exit(31); 982 } 983 acg.cg_cs.cs_nifree--; 984 setbit(cg_inosused(&acg), ino); 985 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 986 (char *)&acg); 987 sblock.fs_cstotal.cs_nifree--; 988 fscs[0].cs_nifree--; 989 if (ino >= sblock.fs_ipg * sblock.fs_ncg) { 990 printf("fsinit: inode value out of range (%d).\n", ino); 991 exit(32); 992 } 993 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino)); 994 rdfs(d, sblock.fs_bsize, buf); 995 buf[ino_to_fsbo(&sblock, ino)] = *ip; 996 wtfs(d, sblock.fs_bsize, buf); 997 } 998 999 /* 1000 * Notify parent process that the filesystem has created itself successfully. 1001 */ 1002 void 1003 started() 1004 { 1005 1006 exit(0); 1007 } 1008 1009 /* 1010 * Replace libc function with one suited to our needs. 1011 */ 1012 caddr_t 1013 malloc(size) 1014 register u_long size; 1015 { 1016 char *base, *i; 1017 static u_long pgsz; 1018 struct rlimit rlp; 1019 1020 if (pgsz == 0) { 1021 base = sbrk(0); 1022 pgsz = getpagesize() - 1; 1023 i = (char *)((u_long)(base + pgsz) &~ pgsz); 1024 base = sbrk(i - base); 1025 if (getrlimit(RLIMIT_DATA, &rlp) < 0) 1026 perror("getrlimit"); 1027 rlp.rlim_cur = rlp.rlim_max; 1028 if (setrlimit(RLIMIT_DATA, &rlp) < 0) 1029 perror("setrlimit"); 1030 memleft = rlp.rlim_max - (u_long)base; 1031 } 1032 size = (size + pgsz) &~ pgsz; 1033 if (size > memleft) 1034 size = memleft; 1035 memleft -= size; 1036 if (size == 0) 1037 return (0); 1038 return ((caddr_t)sbrk(size)); 1039 } 1040 1041 /* 1042 * Replace libc function with one suited to our needs. 1043 */ 1044 caddr_t 1045 realloc(ptr, size) 1046 char *ptr; 1047 u_long size; 1048 { 1049 void *p; 1050 1051 if ((p = malloc(size)) == NULL) 1052 return (NULL); 1053 memcpy(p, ptr, size); 1054 free(ptr); 1055 return (p); 1056 } 1057 1058 /* 1059 * Replace libc function with one suited to our needs. 1060 */ 1061 char * 1062 calloc(size, numelm) 1063 u_long size, numelm; 1064 { 1065 caddr_t base; 1066 1067 size *= numelm; 1068 base = malloc(size); 1069 memset(base, 0, size); 1070 return (base); 1071 } 1072 1073 /* 1074 * Replace libc function with one suited to our needs. 1075 */ 1076 free(ptr) 1077 char *ptr; 1078 { 1079 1080 /* do not worry about it for now */ 1081 } 1082 1083 /* 1084 * read a block from the file system 1085 */ 1086 rdfs(bno, size, bf) 1087 daddr_t bno; 1088 int size; 1089 char *bf; 1090 { 1091 int n; 1092 1093 if (mfs) { 1094 memcpy(bf, membase + bno * sectorsize, size); 1095 return; 1096 } 1097 if (lseek(fsi, (off_t)bno * sectorsize, 0) < 0) { 1098 printf("seek error: %ld\n", bno); 1099 perror("rdfs"); 1100 exit(33); 1101 } 1102 n = read(fsi, bf, size); 1103 if (n != size) { 1104 printf("read error: %ld\n", bno); 1105 perror("rdfs"); 1106 exit(34); 1107 } 1108 } 1109 1110 /* 1111 * write a block to the file system 1112 */ 1113 wtfs(bno, size, bf) 1114 daddr_t bno; 1115 int size; 1116 char *bf; 1117 { 1118 int n; 1119 1120 if (mfs) { 1121 memcpy(membase + bno * sectorsize, bf, size); 1122 return; 1123 } 1124 if (Nflag) 1125 return; 1126 if (lseek(fso, (off_t)bno * sectorsize, SEEK_SET) < 0) { 1127 printf("seek error: %ld\n", bno); 1128 perror("wtfs"); 1129 exit(35); 1130 } 1131 n = write(fso, bf, size); 1132 if (n != size) { 1133 printf("write error: %ld\n", bno); 1134 perror("wtfs"); 1135 exit(36); 1136 } 1137 } 1138 1139 /* 1140 * check if a block is available 1141 */ 1142 isblock(fs, cp, h) 1143 struct fs *fs; 1144 unsigned char *cp; 1145 int h; 1146 { 1147 unsigned char mask; 1148 1149 switch (fs->fs_frag) { 1150 case 8: 1151 return (cp[h] == 0xff); 1152 case 4: 1153 mask = 0x0f << ((h & 0x1) << 2); 1154 return ((cp[h >> 1] & mask) == mask); 1155 case 2: 1156 mask = 0x03 << ((h & 0x3) << 1); 1157 return ((cp[h >> 2] & mask) == mask); 1158 case 1: 1159 mask = 0x01 << (h & 0x7); 1160 return ((cp[h >> 3] & mask) == mask); 1161 default: 1162 #ifdef STANDALONE 1163 printf("isblock bad fs_frag %d\n", fs->fs_frag); 1164 #else 1165 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 1166 #endif 1167 return (0); 1168 } 1169 } 1170 1171 /* 1172 * take a block out of the map 1173 */ 1174 clrblock(fs, cp, h) 1175 struct fs *fs; 1176 unsigned char *cp; 1177 int h; 1178 { 1179 switch ((fs)->fs_frag) { 1180 case 8: 1181 cp[h] = 0; 1182 return; 1183 case 4: 1184 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 1185 return; 1186 case 2: 1187 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 1188 return; 1189 case 1: 1190 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 1191 return; 1192 default: 1193 #ifdef STANDALONE 1194 printf("clrblock bad fs_frag %d\n", fs->fs_frag); 1195 #else 1196 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag); 1197 #endif 1198 return; 1199 } 1200 } 1201 1202 /* 1203 * put a block into the map 1204 */ 1205 setblock(fs, cp, h) 1206 struct fs *fs; 1207 unsigned char *cp; 1208 int h; 1209 { 1210 switch (fs->fs_frag) { 1211 case 8: 1212 cp[h] = 0xff; 1213 return; 1214 case 4: 1215 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 1216 return; 1217 case 2: 1218 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 1219 return; 1220 case 1: 1221 cp[h >> 3] |= (0x01 << (h & 0x7)); 1222 return; 1223 default: 1224 #ifdef STANDALONE 1225 printf("setblock bad fs_frag %d\n", fs->fs_frag); 1226 #else 1227 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag); 1228 #endif 1229 return; 1230 } 1231 } 1232