xref: /netbsd-src/sbin/newfs/mkfs.c (revision 9fbd88883c38d0c0fbfcbe66d76fe6b0fab3f9de)
1 /*	$NetBSD: mkfs.c,v 1.61 2002/01/18 08:59:18 lukem Exp $	*/
2 
3 /*
4  * Copyright (c) 1980, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 
36 #include <sys/cdefs.h>
37 #ifndef lint
38 #if 0
39 static char sccsid[] = "@(#)mkfs.c	8.11 (Berkeley) 5/3/95";
40 #else
41 __RCSID("$NetBSD: mkfs.c,v 1.61 2002/01/18 08:59:18 lukem Exp $");
42 #endif
43 #endif /* not lint */
44 
45 #include <sys/param.h>
46 #include <sys/mman.h>
47 #include <sys/time.h>
48 #include <sys/resource.h>
49 #include <ufs/ufs/dinode.h>
50 #include <ufs/ufs/dir.h>
51 #include <ufs/ufs/ufs_bswap.h>
52 #include <ufs/ffs/fs.h>
53 #include <ufs/ffs/ffs_extern.h>
54 #include <sys/disklabel.h>
55 
56 #include <err.h>
57 #include <errno.h>
58 #include <string.h>
59 #include <unistd.h>
60 #include <stdlib.h>
61 
62 #ifndef STANDALONE
63 #include <stdio.h>
64 #endif
65 
66 #include "extern.h"
67 
68 static void initcg(int, time_t);
69 static int fsinit(time_t, mode_t, uid_t, gid_t);
70 static int makedir(struct direct *, int);
71 static daddr_t alloc(int, int);
72 static void iput(struct dinode *, ino_t);
73 static void rdfs(daddr_t, int, void *);
74 static void wtfs(daddr_t, int, void *);
75 static int isblock(struct fs *, unsigned char *, int);
76 static void clrblock(struct fs *, unsigned char *, int);
77 static void setblock(struct fs *, unsigned char *, int);
78 static int32_t calcipg(int32_t, int32_t, off_t *);
79 static void swap_cg(struct cg *, struct cg *);
80 #ifdef MFS
81 static void calc_memfree(void);
82 static void *mkfs_malloc(size_t size);
83 #endif
84 
85 static int count_digits(int);
86 
87 /*
88  * make file system for cylinder-group style file systems
89  */
90 
91 /*
92  * We limit the size of the inode map to be no more than a
93  * third of the cylinder group space, since we must leave at
94  * least an equal amount of space for the block map.
95  *
96  * N.B.: MAXIPG must be a multiple of INOPB(fs).
97  */
98 #define	MAXIPG(fs)	roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
99 
100 #define	UMASK		0755
101 #define	MAXINOPB	(MAXBSIZE / DINODE_SIZE)
102 #define	POWEROF2(num)	(((num) & ((num) - 1)) == 0)
103 
104 union {
105 	struct fs fs;
106 	char pad[SBSIZE];
107 } fsun;
108 #define	sblock	fsun.fs
109 struct	csum *fscs;
110 
111 union {
112 	struct cg cg;
113 	char pad[MAXBSIZE];
114 } cgun;
115 #define	acg	cgun.cg
116 
117 struct dinode zino[MAXBSIZE / DINODE_SIZE];
118 
119 char writebuf[MAXBSIZE];
120 
121 int	fsi, fso;
122 
123 void
124 mkfs(struct partition *pp, const char *fsys, int fi, int fo,
125     mode_t mfsmode, uid_t mfsuid, gid_t mfsgid)
126 {
127 	int32_t i, mincpc, mincpg, inospercg;
128 	int32_t cylno, rpos, blk, j, warning = 0;
129 	int32_t used, mincpgcnt, bpcg;
130 	off_t usedb;
131 	int32_t mapcramped, inodecramped;
132 	int32_t postblsize, rotblsize, totalsbsize;
133 	time_t utime;
134 	long long sizepb;
135 	char *writebuf2;		/* dynamic buffer */
136 	int nprintcols, printcolwidth;
137 
138 #ifndef STANDALONE
139 	time(&utime);
140 #endif
141 #ifdef MFS
142 	if (mfs) {
143 		calc_memfree();
144 		if (fssize * sectorsize > memleft)
145 			fssize = memleft / sectorsize;
146 		if ((membase = mkfs_malloc(fssize * sectorsize)) == 0)
147 			exit(12);
148 	}
149 #endif
150 	fsi = fi;
151 	fso = fo;
152 	if (Oflag) {
153 		sblock.fs_inodefmt = FS_42INODEFMT;
154 		sblock.fs_maxsymlinklen = 0;
155 	} else {
156 		sblock.fs_inodefmt = FS_44INODEFMT;
157 		sblock.fs_maxsymlinklen = MAXSYMLINKLEN;
158 	}
159 	/*
160 	 * Validate the given file system size.
161 	 * Verify that its last block can actually be accessed.
162 	 */
163 	if (fssize <= 0)
164 		printf("preposterous size %d\n", fssize), exit(13);
165 	wtfs(fssize - 1, sectorsize, (char *)&sblock);
166 
167 	/*
168 	 * collect and verify the sector and track info
169 	 */
170 	sblock.fs_nsect = nsectors;
171 	sblock.fs_ntrak = ntracks;
172 	if (sblock.fs_ntrak <= 0)
173 		printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
174 	if (sblock.fs_nsect <= 0)
175 		printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
176 	/*
177 	 * collect and verify the filesystem density info
178 	 */
179 	sblock.fs_avgfilesize = avgfilesize;
180 	sblock.fs_avgfpdir = avgfpdir;
181 	if (sblock.fs_avgfilesize <= 0)
182 		printf("illegal expected average file size %d\n",
183 		    sblock.fs_avgfilesize), exit(14);
184 	if (sblock.fs_avgfpdir <= 0)
185 		printf("illegal expected number of files per directory %d\n",
186 		    sblock.fs_avgfpdir), exit(15);
187 	/*
188 	 * collect and verify the block and fragment sizes
189 	 */
190 	sblock.fs_bsize = bsize;
191 	sblock.fs_fsize = fsize;
192 	if (!POWEROF2(sblock.fs_bsize)) {
193 		printf("block size must be a power of 2, not %d\n",
194 		    sblock.fs_bsize);
195 		exit(16);
196 	}
197 	if (!POWEROF2(sblock.fs_fsize)) {
198 		printf("fragment size must be a power of 2, not %d\n",
199 		    sblock.fs_fsize);
200 		exit(17);
201 	}
202 	if (sblock.fs_fsize < sectorsize) {
203 		printf("fragment size %d is too small, minimum is %d\n",
204 		    sblock.fs_fsize, sectorsize);
205 		exit(18);
206 	}
207 	if (sblock.fs_bsize < MINBSIZE) {
208 		printf("block size %d is too small, minimum is %d\n",
209 		    sblock.fs_bsize, MINBSIZE);
210 		exit(19);
211 	}
212 	if (sblock.fs_bsize > MAXBSIZE) {
213 		printf("block size %d is too large, maximum is %d\n",
214 		    sblock.fs_bsize, MAXBSIZE);
215 		exit(19);
216 	}
217 	if (sblock.fs_bsize < sblock.fs_fsize) {
218 		printf("block size (%d) cannot be smaller than fragment size (%d)\n",
219 		    sblock.fs_bsize, sblock.fs_fsize);
220 		exit(20);
221 	}
222 	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
223 	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
224 	sblock.fs_qbmask = ~sblock.fs_bmask;
225 	sblock.fs_qfmask = ~sblock.fs_fmask;
226 	for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
227 		sblock.fs_bshift++;
228 	for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
229 		sblock.fs_fshift++;
230 	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
231 	for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
232 		sblock.fs_fragshift++;
233 	if (sblock.fs_frag > MAXFRAG) {
234 		printf("fragment size %d is too small, "
235 			"minimum with block size %d is %d\n",
236 		    sblock.fs_fsize, sblock.fs_bsize,
237 		    sblock.fs_bsize / MAXFRAG);
238 		exit(21);
239 	}
240 	sblock.fs_nrpos = nrpos;
241 	sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
242 	sblock.fs_inopb = sblock.fs_bsize / DINODE_SIZE;
243 	sblock.fs_nspf = sblock.fs_fsize / sectorsize;
244 	for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
245 		sblock.fs_fsbtodb++;
246 	sblock.fs_sblkno =
247 	    roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
248 	sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
249 	    roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
250 	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
251 	sblock.fs_cgoffset = roundup(
252 	    howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
253 	for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
254 		sblock.fs_cgmask <<= 1;
255 	if (!POWEROF2(sblock.fs_ntrak))
256 		sblock.fs_cgmask <<= 1;
257 	sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
258 	for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
259 		sizepb *= NINDIR(&sblock);
260 		sblock.fs_maxfilesize += sizepb;
261 	}
262 	/*
263 	 * Validate specified/determined secpercyl
264 	 * and calculate minimum cylinders per group.
265 	 */
266 	sblock.fs_spc = secpercyl;
267 	for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
268 	     sblock.fs_cpc > 1 && (i & 1) == 0;
269 	     sblock.fs_cpc >>= 1, i >>= 1)
270 		/* void */;
271 	mincpc = sblock.fs_cpc;
272 	bpcg = sblock.fs_spc * sectorsize;
273 	inospercg = roundup(bpcg / DINODE_SIZE, INOPB(&sblock));
274 	if (inospercg > MAXIPG(&sblock))
275 		inospercg = MAXIPG(&sblock);
276 	used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
277 	mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
278 	    sblock.fs_spc);
279 	mincpg = roundup(mincpgcnt, mincpc);
280 	/*
281 	 * Ensure that cylinder group with mincpg has enough space
282 	 * for block maps.
283 	 */
284 	sblock.fs_cpg = mincpg;
285 	sblock.fs_ipg = inospercg;
286 	if (maxcontig > 1)
287 		sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG);
288 	mapcramped = 0;
289 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
290 		mapcramped = 1;
291 		if (sblock.fs_bsize < MAXBSIZE) {
292 			sblock.fs_bsize <<= 1;
293 			if ((i & 1) == 0) {
294 				i >>= 1;
295 			} else {
296 				sblock.fs_cpc <<= 1;
297 				mincpc <<= 1;
298 				mincpg = roundup(mincpgcnt, mincpc);
299 				sblock.fs_cpg = mincpg;
300 			}
301 			sblock.fs_frag <<= 1;
302 			sblock.fs_fragshift += 1;
303 			if (sblock.fs_frag <= MAXFRAG)
304 				continue;
305 		}
306 		if (sblock.fs_fsize == sblock.fs_bsize) {
307 			printf("There is no block size that");
308 			printf(" can support this disk\n");
309 			exit(22);
310 		}
311 		sblock.fs_frag >>= 1;
312 		sblock.fs_fragshift -= 1;
313 		sblock.fs_fsize <<= 1;
314 		sblock.fs_nspf <<= 1;
315 	}
316 	/*
317 	 * Ensure that cylinder group with mincpg has enough space for inodes.
318 	 */
319 	inodecramped = 0;
320 	inospercg = calcipg(mincpg, bpcg, &usedb);
321 	sblock.fs_ipg = inospercg;
322 	while (inospercg > MAXIPG(&sblock)) {
323 		inodecramped = 1;
324 		if (mincpc == 1 || sblock.fs_frag == 1 ||
325 		    sblock.fs_bsize == MINBSIZE)
326 			break;
327 		printf("With a block size of %d %s %d\n", sblock.fs_bsize,
328 		       "minimum bytes per inode is",
329 		       (int)((mincpg * (off_t)bpcg - usedb)
330 			     / MAXIPG(&sblock) + 1));
331 		sblock.fs_bsize >>= 1;
332 		sblock.fs_frag >>= 1;
333 		sblock.fs_fragshift -= 1;
334 		mincpc >>= 1;
335 		sblock.fs_cpg = roundup(mincpgcnt, mincpc);
336 		if (CGSIZE(&sblock) > sblock.fs_bsize) {
337 			sblock.fs_bsize <<= 1;
338 			break;
339 		}
340 		mincpg = sblock.fs_cpg;
341 		inospercg = calcipg(mincpg, bpcg, &usedb);
342 		sblock.fs_ipg = inospercg;
343 	}
344 	if (inodecramped) {
345 		if (inospercg > MAXIPG(&sblock)) {
346 			printf("Minimum bytes per inode is %d\n",
347 			       (int)((mincpg * (off_t)bpcg - usedb)
348 				     / MAXIPG(&sblock) + 1));
349 		} else if (!mapcramped) {
350 			printf("With %d bytes per inode, ", density);
351 			printf("minimum cylinders per group is %d\n", mincpg);
352 		}
353 	}
354 	if (mapcramped) {
355 		printf("With %d sectors per cylinder, ", sblock.fs_spc);
356 		printf("minimum cylinders per group is %d\n", mincpg);
357 	}
358 	if (inodecramped || mapcramped) {
359 		if (sblock.fs_bsize != bsize)
360 			printf("%s to be changed from %d to %d\n",
361 			    "This requires the block size",
362 			    bsize, sblock.fs_bsize);
363 		if (sblock.fs_fsize != fsize)
364 			printf("\t%s to be changed from %d to %d\n",
365 			    "and the fragment size",
366 			    fsize, sblock.fs_fsize);
367 		exit(23);
368 	}
369 	/*
370 	 * Calculate the number of cylinders per group
371 	 */
372 	sblock.fs_cpg = cpg;
373 	if (sblock.fs_cpg % mincpc != 0) {
374 		printf("%s groups must have a multiple of %d cylinders\n",
375 			cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
376 		sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
377 		if (!cpgflg)
378 			cpg = sblock.fs_cpg;
379 	}
380 	/*
381 	 * Must ensure there is enough space for inodes.
382 	 */
383 	sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
384 	while (sblock.fs_ipg > MAXIPG(&sblock)) {
385 		inodecramped = 1;
386 		sblock.fs_cpg -= mincpc;
387 		sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
388 	}
389 	/*
390 	 * Must ensure there is enough space to hold block map.
391 	 */
392 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
393 		mapcramped = 1;
394 		sblock.fs_cpg -= mincpc;
395 		sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
396 	}
397 	sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
398 	if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
399 		printf("panic (fs_cpg * fs_spc) %% NSPF != 0");
400 		exit(24);
401 	}
402 	if (sblock.fs_cpg < mincpg) {
403 		printf("cylinder groups must have at least %d cylinders\n",
404 			mincpg);
405 		exit(25);
406 	} else if (sblock.fs_cpg != cpg && cpgflg) {
407 		if (!mapcramped && !inodecramped)
408 			exit(26);
409 		if (mapcramped && inodecramped)
410 			printf("Block size and bytes per inode restrict");
411 		else if (mapcramped)
412 			printf("Block size restricts");
413 		else
414 			printf("Bytes per inode restrict");
415 		printf(" cylinders per group to %d.\n", sblock.fs_cpg);
416 		exit(27);
417 	}
418 	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
419 	/*
420 	 * Now have size for file system and nsect and ntrak.
421 	 * Determine number of cylinders and blocks in the file system.
422 	 */
423 	sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
424 	sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
425 	if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
426 		sblock.fs_ncyl++;
427 		warning = 1;
428 	}
429 	if (sblock.fs_ncyl < 1) {
430 		printf("file systems must have at least one cylinder\n");
431 		exit(28);
432 	}
433 	/*
434 	 * Determine feasability/values of rotational layout tables.
435 	 *
436 	 * The size of the rotational layout tables is limited by the
437 	 * size of the superblock, SBSIZE. The amount of space available
438 	 * for tables is calculated as (SBSIZE - sizeof (struct fs)).
439 	 * The size of these tables is inversely proportional to the block
440 	 * size of the file system. The size increases if sectors per track
441 	 * are not powers of two, because more cylinders must be described
442 	 * by the tables before the rotational pattern repeats (fs_cpc).
443 	 */
444 	sblock.fs_interleave = interleave;
445 	sblock.fs_trackskew = trackskew;
446 	sblock.fs_npsect = nphyssectors;
447 	sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
448 	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
449 	if (sblock.fs_ntrak == 1) {
450 		sblock.fs_cpc = 0;
451 		goto next;
452 	}
453 	postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t);
454 	rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
455 	totalsbsize = sizeof(struct fs) + rotblsize;
456 	if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
457 		/* use old static table space */
458 		sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
459 		    (char *)(&sblock.fs_firstfield);
460 		sblock.fs_rotbloff = &sblock.fs_space[0] -
461 		    (u_char *)(&sblock.fs_firstfield);
462 	} else {
463 		/* use dynamic table space */
464 		sblock.fs_postbloff = &sblock.fs_space[0] -
465 		    (u_char *)(&sblock.fs_firstfield);
466 		sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
467 		totalsbsize += postblsize;
468 	}
469 	if (totalsbsize > SBSIZE ||
470 	    sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
471 		printf("%s %s %d %s %d.%s",
472 		    "Warning: insufficient space in super block for\n",
473 		    "rotational layout tables with nsect", sblock.fs_nsect,
474 		    "and ntrak", sblock.fs_ntrak,
475 		    "\nFile system performance may be impaired.\n");
476 		sblock.fs_cpc = 0;
477 		goto next;
478 	}
479 	sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
480 	/*
481 	 * calculate the available blocks for each rotational position
482 	 */
483 	for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
484 		for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
485 			fs_postbl(&sblock, cylno)[rpos] = -1;
486 	for (i = (rotblsize - 1) * sblock.fs_frag;
487 	     i >= 0; i -= sblock.fs_frag) {
488 		cylno = cbtocylno(&sblock, i);
489 		rpos = cbtorpos(&sblock, i);
490 		blk = fragstoblks(&sblock, i);
491 		if (fs_postbl(&sblock, cylno)[rpos] == -1)
492 			fs_rotbl(&sblock)[blk] = 0;
493 		else
494 			fs_rotbl(&sblock)[blk] = fs_postbl(&sblock, cylno)[rpos] - blk;
495 		fs_postbl(&sblock, cylno)[rpos] = blk;
496 	}
497 next:
498 	/*
499 	 * Compute/validate number of cylinder groups.
500 	 */
501 	sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
502 	if (sblock.fs_ncyl % sblock.fs_cpg)
503 		sblock.fs_ncg++;
504 	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
505 	i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
506 	if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
507 		printf("inode blocks/cyl group (%d) >= data blocks (%d)\n",
508 		    cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
509 		    sblock.fs_fpg / sblock.fs_frag);
510 		printf("number of cylinders per cylinder group (%d) %s.\n",
511 		    sblock.fs_cpg, "must be increased");
512 		exit(29);
513 	}
514 	j = sblock.fs_ncg - 1;
515 	if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
516 	    cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
517 		if (j == 0) {
518 			printf("File system must have at least %d sectors\n",
519 			    NSPF(&sblock) *
520 			    (cgdmin(&sblock, 0) + 3 * sblock.fs_frag));
521 			exit(30);
522 		}
523 		printf("Warning: inode blocks/cyl group (%d) >= "
524 			"data blocks (%d) in last\n",
525 		    (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
526 		    i / sblock.fs_frag);
527 		printf("    cylinder group. This implies %d sector(s) "
528 			"cannot be allocated.\n",
529 		    i * NSPF(&sblock));
530 		sblock.fs_ncg--;
531 		sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
532 		sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
533 		    NSPF(&sblock);
534 		warning = 0;
535 	}
536 	if (warning && !mfs) {
537 		printf("Warning: %d sector(s) in last cylinder unallocated\n",
538 		    sblock.fs_spc -
539 		    (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
540 		    * sblock.fs_spc));
541 	}
542 	/*
543 	 * fill in remaining fields of the super block
544 	 */
545 	sblock.fs_csaddr = cgdmin(&sblock, 0);
546 	sblock.fs_cssize =
547 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
548 	/*
549 	 * The superblock fields 'fs_csmask' and 'fs_csshift' are no
550 	 * longer used. However, we still initialise them so that the
551 	 * filesystem remains compatible with old kernels.
552 	 */
553 	i = sblock.fs_bsize / sizeof(struct csum);
554 	sblock.fs_csmask = ~(i - 1);
555 	for (sblock.fs_csshift = 0; i > 1; i >>= 1)
556 		sblock.fs_csshift++;
557 	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
558 	if (fscs == NULL)
559 		exit(39);
560 	sblock.fs_magic = FS_MAGIC;
561 	sblock.fs_rotdelay = rotdelay;
562 	sblock.fs_minfree = minfree;
563 	sblock.fs_maxcontig = maxcontig;
564 	sblock.fs_maxbpg = maxbpg;
565 	sblock.fs_rps = rpm / 60;
566 	sblock.fs_optim = opt;
567 	sblock.fs_cgrotor = 0;
568 	sblock.fs_cstotal.cs_ndir = 0;
569 	sblock.fs_cstotal.cs_nbfree = 0;
570 	sblock.fs_cstotal.cs_nifree = 0;
571 	sblock.fs_cstotal.cs_nffree = 0;
572 	sblock.fs_fmod = 0;
573 	sblock.fs_clean = FS_ISCLEAN;
574 	sblock.fs_ronly = 0;
575 	/*
576 	 * Dump out summary information about file system.
577 	 */
578 	if (!mfs) {
579 		printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n",
580 		    fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
581 		    "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
582 #define	B2MBFACTOR (1 / (1024.0 * 1024.0))
583 		printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
584 		    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
585 		    sblock.fs_ncg, sblock.fs_cpg,
586 		    (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
587 		    sblock.fs_ipg);
588 #undef B2MBFACTOR
589 	}
590 	/*
591 	 * Now determine how wide each column will be, and calculate how
592 	 * many columns will fit in a 76 char line. 76 is the width of the
593 	 * subwindows in sysinst.
594 	 */
595 	printcolwidth = count_digits(
596 			fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg -1)));
597 	nprintcols = 76 / (printcolwidth + 2);
598 	/*
599 	 * Now build the cylinders group blocks and
600 	 * then print out indices of cylinder groups.
601 	 */
602 	if (!mfs)
603 		printf("super-block backups (for fsck -b #) at:");
604 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
605 		initcg(cylno, utime);
606 		if (mfs)
607 			continue;
608 		if (cylno % nprintcols == 0)
609 			printf("\n");
610 		printf(" %*d,", printcolwidth,
611 				fsbtodb(&sblock, cgsblock(&sblock, cylno)));
612 		fflush(stdout);
613 	}
614 	if (!mfs)
615 		printf("\n");
616 	if (Nflag && !mfs)
617 		exit(0);
618 	/*
619 	 * Now construct the initial file system,
620 	 * then write out the super-block.
621 	 */
622 	if (fsinit(utime, mfsmode, mfsuid, mfsgid) == 0 && mfs)
623 		errx(1, "Error making filesystem");
624 	sblock.fs_time = utime;
625 	memcpy(writebuf, &sblock, sbsize);
626 	if (needswap)
627 		ffs_sb_swap(&sblock, (struct fs*)writebuf);
628 	wtfs((int)SBOFF / sectorsize, sbsize, writebuf);
629 	/*
630 	 * Write out the duplicate super blocks
631 	 */
632 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
633 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
634 		    sbsize, writebuf);
635 
636 	/*
637 	 * if we need to swap, create a buffer for the cylinder summaries
638 	 * to get swapped to.
639 	 */
640 	if (needswap) {
641 		if ((writebuf2 = malloc(sblock.fs_cssize)) == NULL)
642 			exit(12);
643 		ffs_csum_swap(fscs, (struct csum*)writebuf2, sblock.fs_cssize);
644 	} else
645 		writebuf2 = (char *)fscs;
646 
647 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
648 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
649 			sblock.fs_cssize - i < sblock.fs_bsize ?
650 			    sblock.fs_cssize - i : sblock.fs_bsize,
651 			((char *)writebuf2) + i);
652 	if (writebuf2 != (char *)fscs)
653 		free(writebuf2);
654 
655 	/*
656 	 * Update information about this partion in pack
657 	 * label, to that it may be updated on disk.
658 	 */
659 	pp->p_fstype = FS_BSDFFS;
660 	pp->p_fsize = sblock.fs_fsize;
661 	pp->p_frag = sblock.fs_frag;
662 	pp->p_cpg = sblock.fs_cpg;
663 }
664 
665 /*
666  * Initialize a cylinder group.
667  */
668 void
669 initcg(int cylno, time_t utime)
670 {
671 	daddr_t cbase, d, dlower, dupper, dmax, blkno;
672 	int32_t i;
673 	struct csum *cs;
674 
675 	/*
676 	 * Determine block bounds for cylinder group.
677 	 * Allow space for super block summary information in first
678 	 * cylinder group.
679 	 */
680 	cbase = cgbase(&sblock, cylno);
681 	dmax = cbase + sblock.fs_fpg;
682 	if (dmax > sblock.fs_size)
683 		dmax = sblock.fs_size;
684 	dlower = cgsblock(&sblock, cylno) - cbase;
685 	dupper = cgdmin(&sblock, cylno) - cbase;
686 	if (cylno == 0)
687 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
688 	cs = fscs + cylno;
689 	memset(&acg, 0, sblock.fs_cgsize);
690 	acg.cg_time = utime;
691 	acg.cg_magic = CG_MAGIC;
692 	acg.cg_cgx = cylno;
693 	if (cylno == sblock.fs_ncg - 1)
694 		acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
695 	else
696 		acg.cg_ncyl = sblock.fs_cpg;
697 	acg.cg_niblk = sblock.fs_ipg;
698 	acg.cg_ndblk = dmax - cbase;
699 	if (sblock.fs_contigsumsize > 0)
700 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
701 	acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
702 	acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
703 	acg.cg_iusedoff = acg.cg_boff +
704 		sblock.fs_cpg * sblock.fs_nrpos * sizeof(int16_t);
705 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
706 	if (sblock.fs_contigsumsize <= 0) {
707 		acg.cg_nextfreeoff = acg.cg_freeoff +
708 		   howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
709 	} else {
710 		acg.cg_clustersumoff = acg.cg_freeoff + howmany
711 		    (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
712 		    sizeof(int32_t);
713 		acg.cg_clustersumoff =
714 		    roundup(acg.cg_clustersumoff, sizeof(int32_t));
715 		acg.cg_clusteroff = acg.cg_clustersumoff +
716 		    (sblock.fs_contigsumsize + 1) * sizeof(int32_t);
717 		acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
718 		    (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
719 	}
720 	if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
721 		printf("Panic: cylinder group too big\n");
722 		exit(37);
723 	}
724 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
725 	if (cylno == 0)
726 		for (i = 0; i < ROOTINO; i++) {
727 			setbit(cg_inosused(&acg, 0), i);
728 			acg.cg_cs.cs_nifree--;
729 		}
730 	for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag)
731 		wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
732 		    sblock.fs_bsize, (char *)zino);
733 	if (cylno > 0) {
734 		/*
735 		 * In cylno 0, beginning space is reserved
736 		 * for boot and super blocks.
737 		 */
738 		for (d = 0; d < dlower; d += sblock.fs_frag) {
739 			blkno = d / sblock.fs_frag;
740 			setblock(&sblock, cg_blksfree(&acg, 0), blkno);
741 			if (sblock.fs_contigsumsize > 0)
742 				setbit(cg_clustersfree(&acg, 0), blkno);
743 			acg.cg_cs.cs_nbfree++;
744 			cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]++;
745 			cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)
746 			    [cbtorpos(&sblock, d)]++;
747 		}
748 		sblock.fs_dsize += dlower;
749 	}
750 	sblock.fs_dsize += acg.cg_ndblk - dupper;
751 	if ((i = (dupper % sblock.fs_frag)) != 0) {
752 		acg.cg_frsum[sblock.fs_frag - i]++;
753 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
754 			setbit(cg_blksfree(&acg, 0), dupper);
755 			acg.cg_cs.cs_nffree++;
756 		}
757 	}
758 	for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
759 		blkno = d / sblock.fs_frag;
760 		setblock(&sblock, cg_blksfree(&acg, 0), blkno);
761 		if (sblock.fs_contigsumsize > 0)
762 			setbit(cg_clustersfree(&acg, 0), blkno);
763 		acg.cg_cs.cs_nbfree++;
764 		cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]++;
765 		cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)
766 		    [cbtorpos(&sblock, d)]++;
767 		d += sblock.fs_frag;
768 	}
769 	if (d < dmax - cbase) {
770 		acg.cg_frsum[dmax - cbase - d]++;
771 		for (; d < dmax - cbase; d++) {
772 			setbit(cg_blksfree(&acg, 0), d);
773 			acg.cg_cs.cs_nffree++;
774 		}
775 	}
776 	if (sblock.fs_contigsumsize > 0) {
777 		int32_t *sump = cg_clustersum(&acg, 0);
778 		u_char *mapp = cg_clustersfree(&acg, 0);
779 		int map = *mapp++;
780 		int bit = 1;
781 		int run = 0;
782 
783 		for (i = 0; i < acg.cg_nclusterblks; i++) {
784 			if ((map & bit) != 0) {
785 				run++;
786 			} else if (run != 0) {
787 				if (run > sblock.fs_contigsumsize)
788 					run = sblock.fs_contigsumsize;
789 				sump[run]++;
790 				run = 0;
791 			}
792 			if ((i & (NBBY - 1)) != (NBBY - 1)) {
793 				bit <<= 1;
794 			} else {
795 				map = *mapp++;
796 				bit = 1;
797 			}
798 		}
799 		if (run != 0) {
800 			if (run > sblock.fs_contigsumsize)
801 				run = sblock.fs_contigsumsize;
802 			sump[run]++;
803 		}
804 	}
805 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
806 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
807 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
808 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
809 	*cs = acg.cg_cs;
810 	memcpy(writebuf, &acg, sblock.fs_bsize);
811 	if (needswap)
812 		swap_cg(&acg, (struct cg*)writebuf);
813 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
814 		sblock.fs_bsize, writebuf);
815 }
816 
817 /*
818  * initialize the file system
819  */
820 struct dinode node;
821 
822 #ifdef LOSTDIR
823 #define	PREDEFDIR 3
824 #else
825 #define	PREDEFDIR 2
826 #endif
827 
828 struct direct root_dir[] = {
829 	{ ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
830 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
831 #ifdef LOSTDIR
832 	{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" },
833 #endif
834 };
835 struct odirect {
836 	u_int32_t d_ino;
837 	u_int16_t d_reclen;
838 	u_int16_t d_namlen;
839 	u_char	d_name[MAXNAMLEN + 1];
840 } oroot_dir[] = {
841 	{ ROOTINO, sizeof(struct direct), 1, "." },
842 	{ ROOTINO, sizeof(struct direct), 2, ".." },
843 #ifdef LOSTDIR
844 	{ LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
845 #endif
846 };
847 #ifdef LOSTDIR
848 struct direct lost_found_dir[] = {
849 	{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." },
850 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
851 	{ 0, DIRBLKSIZ, 0, 0, 0 },
852 };
853 struct odirect olost_found_dir[] = {
854 	{ LOSTFOUNDINO, sizeof(struct direct), 1, "." },
855 	{ ROOTINO, sizeof(struct direct), 2, ".." },
856 	{ 0, DIRBLKSIZ, 0, 0 },
857 };
858 #endif
859 char buf[MAXBSIZE];
860 static void copy_dir(struct direct *, struct direct *);
861 
862 int
863 fsinit(time_t utime, mode_t mfsmode, uid_t mfsuid, gid_t mfsgid)
864 {
865 #ifdef LOSTDIR
866 	int i;
867 #endif
868 
869 	/*
870 	 * initialize the node
871 	 */
872 	memset(&node, 0, sizeof(node));
873 	node.di_atime = utime;
874 	node.di_mtime = utime;
875 	node.di_ctime = utime;
876 
877 #ifdef LOSTDIR
878 	/*
879 	 * create the lost+found directory
880 	 */
881 	if (Oflag) {
882 		(void)makedir((struct direct *)olost_found_dir, 2);
883 		for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
884 			copy_dir((struct direct*)&olost_found_dir[2],
885 				(struct direct*)&buf[i]);
886 	} else {
887 		(void)makedir(lost_found_dir, 2);
888 		for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
889 			copy_dir(&lost_found_dir[2], (struct direct*)&buf[i]);
890 	}
891 	node.di_mode = IFDIR | UMASK;
892 	node.di_nlink = 2;
893 	node.di_size = sblock.fs_bsize;
894 	node.di_db[0] = alloc(node.di_size, node.di_mode);
895 	node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
896 	node.di_uid = geteuid();
897 	node.di_gid = getegid();
898 	wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf);
899 	iput(&node, LOSTFOUNDINO);
900 #endif
901 	/*
902 	 * create the root directory
903 	 */
904 	if (mfs) {
905 		node.di_mode = IFDIR | mfsmode;
906 		node.di_uid = mfsuid;
907 		node.di_gid = mfsgid;
908 	} else {
909 		node.di_mode = IFDIR | UMASK;
910 		node.di_uid = geteuid();
911 		node.di_gid = getegid();
912 	}
913 	node.di_nlink = PREDEFDIR;
914 	if (Oflag)
915 		node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR);
916 	else
917 		node.di_size = makedir(root_dir, PREDEFDIR);
918 	node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode);
919 	if (node.di_db[0] == 0)
920 		return (0);
921 	node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
922 	wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf);
923 	iput(&node, ROOTINO);
924 	return (1);
925 }
926 
927 /*
928  * construct a set of directory entries in "buf".
929  * return size of directory.
930  */
931 int
932 makedir(struct direct *protodir, int entries)
933 {
934 	char *cp;
935 	int i, spcleft;
936 
937 	spcleft = DIRBLKSIZ;
938 	for (cp = buf, i = 0; i < entries - 1; i++) {
939 		protodir[i].d_reclen = DIRSIZ(Oflag, &protodir[i], 0);
940 		copy_dir(&protodir[i], (struct direct*)cp);
941 		cp += protodir[i].d_reclen;
942 		spcleft -= protodir[i].d_reclen;
943 	}
944 	protodir[i].d_reclen = spcleft;
945 	copy_dir(&protodir[i], (struct direct*)cp);
946 	return (DIRBLKSIZ);
947 }
948 
949 /*
950  * allocate a block or frag
951  */
952 daddr_t
953 alloc(int size, int mode)
954 {
955 	int i, frag;
956 	daddr_t d, blkno;
957 
958 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
959 	/* fs -> host byte order */
960 	if (needswap)
961 		swap_cg(&acg, &acg);
962 	if (acg.cg_magic != CG_MAGIC) {
963 		printf("cg 0: bad magic number\n");
964 		return (0);
965 	}
966 	if (acg.cg_cs.cs_nbfree == 0) {
967 		printf("first cylinder group ran out of space\n");
968 		return (0);
969 	}
970 	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
971 		if (isblock(&sblock, cg_blksfree(&acg, 0), d / sblock.fs_frag))
972 			goto goth;
973 	printf("internal error: can't find block in cyl 0\n");
974 	return (0);
975 goth:
976 	blkno = fragstoblks(&sblock, d);
977 	clrblock(&sblock, cg_blksfree(&acg, 0), blkno);
978 	if (sblock.fs_contigsumsize > 0)
979 		clrbit(cg_clustersfree(&acg, 0), blkno);
980 	acg.cg_cs.cs_nbfree--;
981 	sblock.fs_cstotal.cs_nbfree--;
982 	fscs[0].cs_nbfree--;
983 	if (mode & IFDIR) {
984 		acg.cg_cs.cs_ndir++;
985 		sblock.fs_cstotal.cs_ndir++;
986 		fscs[0].cs_ndir++;
987 	}
988 	cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]--;
989 	cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)[cbtorpos(&sblock, d)]--;
990 	if (size != sblock.fs_bsize) {
991 		frag = howmany(size, sblock.fs_fsize);
992 		fscs[0].cs_nffree += sblock.fs_frag - frag;
993 		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
994 		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
995 		acg.cg_frsum[sblock.fs_frag - frag]++;
996 		for (i = frag; i < sblock.fs_frag; i++)
997 			setbit(cg_blksfree(&acg, 0), d + i);
998 	}
999 	/* host -> fs byte order */
1000 	if (needswap)
1001 		swap_cg(&acg, &acg);
1002 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1003 	    (char *)&acg);
1004 	return (d);
1005 }
1006 
1007 /*
1008  * Calculate number of inodes per group.
1009  */
1010 int32_t
1011 calcipg(int32_t cylpg, int32_t bpcg, off_t *usedbp)
1012 {
1013 	int i;
1014 	int32_t ipg, new_ipg, ncg, ncyl;
1015 	off_t usedb;
1016 
1017 	/*
1018 	 * Prepare to scale by fssize / (number of sectors in cylinder groups).
1019 	 * Note that fssize is still in sectors, not file system blocks.
1020 	 */
1021 	ncyl = howmany(fssize, secpercyl);
1022 	ncg = howmany(ncyl, cylpg);
1023 	/*
1024 	 * Iterate a few times to allow for ipg depending on itself.
1025 	 */
1026 	ipg = 0;
1027 	for (i = 0; i < 10; i++) {
1028 		usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock))
1029 			* NSPF(&sblock) * (off_t)sectorsize;
1030 		new_ipg = (cylpg * (long long)bpcg - usedb) /
1031 		    (long long)density * fssize / (ncg * secpercyl * cylpg);
1032 		if (new_ipg <= 0)
1033 			new_ipg = 1;		/* ensure ipg > 0 */
1034 		new_ipg = roundup(new_ipg, INOPB(&sblock));
1035 		if (new_ipg == ipg)
1036 			break;
1037 		ipg = new_ipg;
1038 	}
1039 	*usedbp = usedb;
1040 	return (ipg);
1041 }
1042 
1043 /*
1044  * Allocate an inode on the disk
1045  */
1046 static void
1047 iput(struct dinode *ip, ino_t ino)
1048 {
1049 	struct dinode ibuf[MAXINOPB];
1050 	daddr_t d;
1051 	int c, i;
1052 
1053 	c = ino_to_cg(&sblock, ino);
1054 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
1055 	/* fs -> host byte order */
1056 	if (needswap)
1057 		swap_cg(&acg, &acg);
1058 	if (acg.cg_magic != CG_MAGIC) {
1059 		printf("cg 0: bad magic number\n");
1060 		exit(31);
1061 	}
1062 	acg.cg_cs.cs_nifree--;
1063 	setbit(cg_inosused(&acg, 0), ino);
1064 	/* host -> fs byte order */
1065 	if (needswap)
1066 		swap_cg(&acg, &acg);
1067 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1068 	    (char *)&acg);
1069 	sblock.fs_cstotal.cs_nifree--;
1070 	fscs[0].cs_nifree--;
1071 	if (ino >= sblock.fs_ipg * sblock.fs_ncg) {
1072 		printf("fsinit: inode value out of range (%d).\n", ino);
1073 		exit(32);
1074 	}
1075 	d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1076 	rdfs(d, sblock.fs_bsize, ibuf);
1077 	if (needswap) {
1078 		ffs_dinode_swap(ip, &ibuf[ino_to_fsbo(&sblock, ino)]);
1079 		/* ffs_dinode_swap() doesn't swap blocks addrs */
1080 		for (i=0; i<NDADDR + NIADDR; i++)
1081 			(&ibuf[ino_to_fsbo(&sblock, ino)])->di_db[i] =
1082 				bswap32(ip->di_db[i]);
1083 	} else
1084 		ibuf[ino_to_fsbo(&sblock, ino)] = *ip;
1085 	wtfs(d, sblock.fs_bsize, ibuf);
1086 }
1087 
1088 /*
1089  * read a block from the file system
1090  */
1091 void
1092 rdfs(daddr_t bno, int size, void *bf)
1093 {
1094 	int n;
1095 	off_t offset;
1096 
1097 #ifdef MFS
1098 	if (mfs) {
1099 		memmove(bf, membase + bno * sectorsize, size);
1100 		return;
1101 	}
1102 #endif
1103 	offset = bno;
1104 	offset *= sectorsize;
1105 	if (lseek(fsi, offset, SEEK_SET) < 0) {
1106 		printf("rdfs: seek error for sector %d: %s\n",
1107 		    bno, strerror(errno));
1108 		exit(33);
1109 	}
1110 	n = read(fsi, bf, size);
1111 	if (n != size) {
1112 		printf("rdfs: read error for sector %d: %s\n",
1113 		    bno, strerror(errno));
1114 		exit(34);
1115 	}
1116 }
1117 
1118 /*
1119  * write a block to the file system
1120  */
1121 void
1122 wtfs(daddr_t bno, int size, void *bf)
1123 {
1124 	int n;
1125 	off_t offset;
1126 
1127 #ifdef MFS
1128 	if (mfs) {
1129 		memmove(membase + bno * sectorsize, bf, size);
1130 		return;
1131 	}
1132 #endif
1133 	if (Nflag)
1134 		return;
1135 	offset = bno;
1136 	offset *= sectorsize;
1137 	if (lseek(fso, offset, SEEK_SET) < 0) {
1138 		printf("wtfs: seek error for sector %d: %s\n",
1139 		    bno, strerror(errno));
1140 		exit(35);
1141 	}
1142 	n = write(fso, bf, size);
1143 	if (n != size) {
1144 		printf("wtfs: write error for sector %d: %s\n",
1145 		    bno, strerror(errno));
1146 		exit(36);
1147 	}
1148 }
1149 
1150 /*
1151  * check if a block is available
1152  */
1153 int
1154 isblock(struct fs *fs, unsigned char *cp, int h)
1155 {
1156 	unsigned char mask;
1157 
1158 	switch (fs->fs_frag) {
1159 	case 8:
1160 		return (cp[h] == 0xff);
1161 	case 4:
1162 		mask = 0x0f << ((h & 0x1) << 2);
1163 		return ((cp[h >> 1] & mask) == mask);
1164 	case 2:
1165 		mask = 0x03 << ((h & 0x3) << 1);
1166 		return ((cp[h >> 2] & mask) == mask);
1167 	case 1:
1168 		mask = 0x01 << (h & 0x7);
1169 		return ((cp[h >> 3] & mask) == mask);
1170 	default:
1171 #ifdef STANDALONE
1172 		printf("isblock bad fs_frag %d\n", fs->fs_frag);
1173 #else
1174 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1175 #endif
1176 		return (0);
1177 	}
1178 }
1179 
1180 /*
1181  * take a block out of the map
1182  */
1183 void
1184 clrblock(struct fs *fs, unsigned char *cp, int h)
1185 {
1186 	switch ((fs)->fs_frag) {
1187 	case 8:
1188 		cp[h] = 0;
1189 		return;
1190 	case 4:
1191 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1192 		return;
1193 	case 2:
1194 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1195 		return;
1196 	case 1:
1197 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1198 		return;
1199 	default:
1200 #ifdef STANDALONE
1201 		printf("clrblock bad fs_frag %d\n", fs->fs_frag);
1202 #else
1203 		fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1204 #endif
1205 		return;
1206 	}
1207 }
1208 
1209 /*
1210  * put a block into the map
1211  */
1212 void
1213 setblock(struct fs *fs, unsigned char *cp, int h)
1214 {
1215 	switch (fs->fs_frag) {
1216 	case 8:
1217 		cp[h] = 0xff;
1218 		return;
1219 	case 4:
1220 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1221 		return;
1222 	case 2:
1223 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1224 		return;
1225 	case 1:
1226 		cp[h >> 3] |= (0x01 << (h & 0x7));
1227 		return;
1228 	default:
1229 #ifdef STANDALONE
1230 		printf("setblock bad fs_frag %d\n", fs->fs_frag);
1231 #else
1232 		fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1233 #endif
1234 		return;
1235 	}
1236 }
1237 
1238 /* swap byte order of cylinder group */
1239 static void
1240 swap_cg(struct cg *o, struct cg *n)
1241 {
1242 	int i, btotsize, fbsize;
1243 	u_int32_t *n32, *o32;
1244 	u_int16_t *n16, *o16;
1245 
1246 	n->cg_firstfield = bswap32(o->cg_firstfield);
1247 	n->cg_magic = bswap32(o->cg_magic);
1248 	n->cg_time = bswap32(o->cg_time);
1249 	n->cg_cgx = bswap32(o->cg_cgx);
1250 	n->cg_ncyl = bswap16(o->cg_ncyl);
1251 	n->cg_niblk = bswap16(o->cg_niblk);
1252 	n->cg_ndblk = bswap32(o->cg_ndblk);
1253 	n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir);
1254 	n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree);
1255 	n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree);
1256 	n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree);
1257 	n->cg_rotor = bswap32(o->cg_rotor);
1258 	n->cg_frotor = bswap32(o->cg_frotor);
1259 	n->cg_irotor = bswap32(o->cg_irotor);
1260 	n->cg_btotoff = bswap32(o->cg_btotoff);
1261 	n->cg_boff = bswap32(o->cg_boff);
1262 	n->cg_iusedoff = bswap32(o->cg_iusedoff);
1263 	n->cg_freeoff = bswap32(o->cg_freeoff);
1264 	n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff);
1265 	n->cg_clustersumoff = bswap32(o->cg_clustersumoff);
1266 	n->cg_clusteroff = bswap32(o->cg_clusteroff);
1267 	n->cg_nclusterblks = bswap32(o->cg_nclusterblks);
1268 	for (i=0; i < MAXFRAG; i++)
1269 		n->cg_frsum[i] = bswap32(o->cg_frsum[i]);
1270 
1271 	/* alays new format */
1272 	if (n->cg_magic == CG_MAGIC) {
1273 		btotsize = n->cg_boff - n->cg_btotoff;
1274 		fbsize = n->cg_iusedoff - n->cg_boff;
1275 		n32 = (u_int32_t*)((u_int8_t*)n + n->cg_btotoff);
1276 		o32 = (u_int32_t*)((u_int8_t*)o + n->cg_btotoff);
1277 		n16 = (u_int16_t*)((u_int8_t*)n + n->cg_boff);
1278 		o16 = (u_int16_t*)((u_int8_t*)o + n->cg_boff);
1279 	} else {
1280 		btotsize = bswap32(n->cg_boff) - bswap32(n->cg_btotoff);
1281 		fbsize = bswap32(n->cg_iusedoff) - bswap32(n->cg_boff);
1282 		n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_btotoff));
1283 		o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_btotoff));
1284 		n16 = (u_int16_t*)((u_int8_t*)n + bswap32(n->cg_boff));
1285 		o16 = (u_int16_t*)((u_int8_t*)o + bswap32(n->cg_boff));
1286 	}
1287 	for (i=0; i < btotsize / sizeof(u_int32_t); i++)
1288 		n32[i] = bswap32(o32[i]);
1289 
1290 	for (i=0; i < fbsize/sizeof(u_int16_t); i++)
1291 		n16[i] = bswap16(o16[i]);
1292 
1293 	if (n->cg_magic == CG_MAGIC) {
1294 		n32 = (u_int32_t*)((u_int8_t*)n + n->cg_clustersumoff);
1295 		o32 = (u_int32_t*)((u_int8_t*)o + n->cg_clustersumoff);
1296 	} else {
1297 		n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_clustersumoff));
1298 		o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_clustersumoff));
1299 	}
1300 	for (i = 1; i < sblock.fs_contigsumsize + 1; i++)
1301 		n32[i] = bswap32(o32[i]);
1302 }
1303 
1304 /* copy a direntry to a buffer, in fs byte order */
1305 static void
1306 copy_dir(struct direct *dir, struct direct *dbuf)
1307 {
1308 	memcpy(dbuf, dir, DIRSIZ(Oflag, dir, 0));
1309 	if (needswap) {
1310 		dbuf->d_ino = bswap32(dir->d_ino);
1311 		dbuf->d_reclen = bswap16(dir->d_reclen);
1312 		if (Oflag)
1313 			((struct odirect*)dbuf)->d_namlen =
1314 				bswap16(((struct odirect*)dir)->d_namlen);
1315 	}
1316 }
1317 
1318 /* Determine how many digits are needed to print a given integer */
1319 static int
1320 count_digits(int num)
1321 {
1322 	int ndig;
1323 
1324 	for(ndig = 1; num > 9; num /=10, ndig++);
1325 
1326 	return (ndig);
1327 }
1328 
1329 #ifdef MFS
1330 /*
1331  * XXX!
1332  * Attempt to guess how much more space is available for process data.  The
1333  * heuristic we use is
1334  *
1335  *	max_data_limit - (sbrk(0) - etext) - 128kB
1336  *
1337  * etext approximates that start address of the data segment, and the 128kB
1338  * allows some slop for both segment gap between text and data, and for other
1339  * (libc) malloc usage.
1340  */
1341 static void
1342 calc_memfree(void)
1343 {
1344 	extern char etext;
1345 	struct rlimit rlp;
1346 	u_long base;
1347 
1348 	base = (u_long)sbrk(0) - (u_long)&etext;
1349 	if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1350 		perror("getrlimit");
1351 	rlp.rlim_cur = rlp.rlim_max;
1352 	if (setrlimit(RLIMIT_DATA, &rlp) < 0)
1353 		perror("setrlimit");
1354 	memleft = rlp.rlim_max - base - (128 * 1024);
1355 }
1356 
1357 /*
1358  * Internal version of malloc that trims the requested size if not enough
1359  * memory is available.
1360  */
1361 static void *
1362 mkfs_malloc(size_t size)
1363 {
1364 	u_long pgsz;
1365 
1366 	if (size == 0)
1367 		return (NULL);
1368 	if (memleft == 0)
1369 		calc_memfree();
1370 
1371 	pgsz = getpagesize() - 1;
1372 	size = (size + pgsz) &~ pgsz;
1373 	if (size > memleft)
1374 		size = memleft;
1375 	memleft -= size;
1376 	return (mmap(0, size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE,
1377 	    -1, 0));
1378 }
1379 #endif	/* MFS */
1380