xref: /netbsd-src/sbin/newfs/mkfs.c (revision 3b01aba77a7a698587faaae455bbfe740923c1f5)
1 /*	$NetBSD: mkfs.c,v 1.50 2001/07/31 01:31:26 lukem Exp $	*/
2 
3 /*
4  * Copyright (c) 1980, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 
36 #include <sys/cdefs.h>
37 #ifndef lint
38 #if 0
39 static char sccsid[] = "@(#)mkfs.c	8.11 (Berkeley) 5/3/95";
40 #else
41 __RCSID("$NetBSD: mkfs.c,v 1.50 2001/07/31 01:31:26 lukem Exp $");
42 #endif
43 #endif /* not lint */
44 
45 #include <sys/param.h>
46 #include <sys/time.h>
47 #include <sys/resource.h>
48 #include <ufs/ufs/dinode.h>
49 #include <ufs/ufs/dir.h>
50 #include <ufs/ufs/ufs_bswap.h>
51 #include <ufs/ffs/fs.h>
52 #include <ufs/ffs/ffs_extern.h>
53 #include <sys/disklabel.h>
54 
55 #include <string.h>
56 #include <unistd.h>
57 #include <stdlib.h>
58 
59 #ifndef STANDALONE
60 #include <stdio.h>
61 #endif
62 
63 #include "extern.h"
64 
65 
66 static void initcg(int, time_t);
67 static void fsinit(time_t);
68 static int makedir(struct direct *, int);
69 static daddr_t alloc(int, int);
70 static void iput(struct dinode *, ino_t);
71 static void rdfs(daddr_t, int, void *);
72 static void wtfs(daddr_t, int, void *);
73 static int isblock(struct fs *, unsigned char *, int);
74 static void clrblock(struct fs *, unsigned char *, int);
75 static void setblock(struct fs *, unsigned char *, int);
76 static int32_t calcipg(int32_t, int32_t, off_t *);
77 static void swap_cg(struct cg *, struct cg *);
78 
79 static int count_digits(int);
80 
81 /*
82  * make file system for cylinder-group style file systems
83  */
84 
85 /*
86  * We limit the size of the inode map to be no more than a
87  * third of the cylinder group space, since we must leave at
88  * least an equal amount of space for the block map.
89  *
90  * N.B.: MAXIPG must be a multiple of INOPB(fs).
91  */
92 #define MAXIPG(fs)	roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
93 
94 #define UMASK		0755
95 #define MAXINOPB	(MAXBSIZE / DINODE_SIZE)
96 #define POWEROF2(num)	(((num) & ((num) - 1)) == 0)
97 
98 union {
99 	struct fs fs;
100 	char pad[SBSIZE];
101 } fsun;
102 #define	sblock	fsun.fs
103 struct	csum *fscs;
104 
105 union {
106 	struct cg cg;
107 	char pad[MAXBSIZE];
108 } cgun;
109 #define	acg	cgun.cg
110 
111 struct dinode zino[MAXBSIZE / DINODE_SIZE];
112 
113 char writebuf[MAXBSIZE];
114 
115 int	fsi, fso;
116 
117 void
118 mkfs(struct partition *pp, const char *fsys, int fi, int fo)
119 {
120 	int32_t i, mincpc, mincpg, inospercg;
121 	int32_t cylno, rpos, blk, j, warn = 0;
122 	int32_t used, mincpgcnt, bpcg;
123 	off_t usedb;
124 	int32_t mapcramped, inodecramped;
125 	int32_t postblsize, rotblsize, totalsbsize;
126 	time_t utime;
127 	quad_t sizepb;
128 	char *writebuf2;		/* dynamic buffer */
129 	int nprintcols, printcolwidth;
130 
131 #ifndef STANDALONE
132 	time(&utime);
133 #endif
134 	if (mfs) {
135 		(void)malloc(0);
136 		if (fssize * sectorsize > memleft)
137 			fssize = (memleft - 16384) / sectorsize;
138 		if ((membase = malloc(fssize * sectorsize)) == 0)
139 			exit(12);
140 	}
141 	fsi = fi;
142 	fso = fo;
143 	if (Oflag) {
144 		sblock.fs_inodefmt = FS_42INODEFMT;
145 		sblock.fs_maxsymlinklen = 0;
146 	} else {
147 		sblock.fs_inodefmt = FS_44INODEFMT;
148 		sblock.fs_maxsymlinklen = MAXSYMLINKLEN;
149 	}
150 	/*
151 	 * Validate the given file system size.
152 	 * Verify that its last block can actually be accessed.
153 	 */
154 	if (fssize <= 0)
155 		printf("preposterous size %d\n", fssize), exit(13);
156 	wtfs(fssize - 1, sectorsize, (char *)&sblock);
157 
158 	/*
159 	 * collect and verify the sector and track info
160 	 */
161 	sblock.fs_nsect = nsectors;
162 	sblock.fs_ntrak = ntracks;
163 	if (sblock.fs_ntrak <= 0)
164 		printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
165 	if (sblock.fs_nsect <= 0)
166 		printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
167 	/*
168 	 * collect and verify the block and fragment sizes
169 	 */
170 	sblock.fs_bsize = bsize;
171 	sblock.fs_fsize = fsize;
172 	if (!POWEROF2(sblock.fs_bsize)) {
173 		printf("block size must be a power of 2, not %d\n",
174 		    sblock.fs_bsize);
175 		exit(16);
176 	}
177 	if (!POWEROF2(sblock.fs_fsize)) {
178 		printf("fragment size must be a power of 2, not %d\n",
179 		    sblock.fs_fsize);
180 		exit(17);
181 	}
182 	if (sblock.fs_fsize < sectorsize) {
183 		printf("fragment size %d is too small, minimum is %d\n",
184 		    sblock.fs_fsize, sectorsize);
185 		exit(18);
186 	}
187 	if (sblock.fs_bsize < MINBSIZE) {
188 		printf("block size %d is too small, minimum is %d\n",
189 		    sblock.fs_bsize, MINBSIZE);
190 		exit(19);
191 	}
192 	if (sblock.fs_bsize < sblock.fs_fsize) {
193 		printf("block size (%d) cannot be smaller than fragment size (%d)\n",
194 		    sblock.fs_bsize, sblock.fs_fsize);
195 		exit(20);
196 	}
197 	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
198 	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
199 	sblock.fs_qbmask = ~sblock.fs_bmask;
200 	sblock.fs_qfmask = ~sblock.fs_fmask;
201 	for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
202 		sblock.fs_bshift++;
203 	for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
204 		sblock.fs_fshift++;
205 	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
206 	for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
207 		sblock.fs_fragshift++;
208 	if (sblock.fs_frag > MAXFRAG) {
209 		printf("fragment size %d is too small, "
210 			"minimum with block size %d is %d\n",
211 		    sblock.fs_fsize, sblock.fs_bsize,
212 		    sblock.fs_bsize / MAXFRAG);
213 		exit(21);
214 	}
215 	sblock.fs_nrpos = nrpos;
216 	sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
217 	sblock.fs_inopb = sblock.fs_bsize / DINODE_SIZE;
218 	sblock.fs_nspf = sblock.fs_fsize / sectorsize;
219 	for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
220 		sblock.fs_fsbtodb++;
221 	sblock.fs_sblkno =
222 	    roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
223 	sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
224 	    roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
225 	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
226 	sblock.fs_cgoffset = roundup(
227 	    howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
228 	for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
229 		sblock.fs_cgmask <<= 1;
230 	if (!POWEROF2(sblock.fs_ntrak))
231 		sblock.fs_cgmask <<= 1;
232 	sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
233 	for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
234 		sizepb *= NINDIR(&sblock);
235 		sblock.fs_maxfilesize += sizepb;
236 	}
237 	/*
238 	 * Validate specified/determined secpercyl
239 	 * and calculate minimum cylinders per group.
240 	 */
241 	sblock.fs_spc = secpercyl;
242 	for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
243 	     sblock.fs_cpc > 1 && (i & 1) == 0;
244 	     sblock.fs_cpc >>= 1, i >>= 1)
245 		/* void */;
246 	mincpc = sblock.fs_cpc;
247 	bpcg = sblock.fs_spc * sectorsize;
248 	inospercg = roundup(bpcg / DINODE_SIZE, INOPB(&sblock));
249 	if (inospercg > MAXIPG(&sblock))
250 		inospercg = MAXIPG(&sblock);
251 	used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
252 	mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
253 	    sblock.fs_spc);
254 	mincpg = roundup(mincpgcnt, mincpc);
255 	/*
256 	 * Ensure that cylinder group with mincpg has enough space
257 	 * for block maps.
258 	 */
259 	sblock.fs_cpg = mincpg;
260 	sblock.fs_ipg = inospercg;
261 	if (maxcontig > 1)
262 		sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG);
263 	mapcramped = 0;
264 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
265 		mapcramped = 1;
266 		if (sblock.fs_bsize < MAXBSIZE) {
267 			sblock.fs_bsize <<= 1;
268 			if ((i & 1) == 0) {
269 				i >>= 1;
270 			} else {
271 				sblock.fs_cpc <<= 1;
272 				mincpc <<= 1;
273 				mincpg = roundup(mincpgcnt, mincpc);
274 				sblock.fs_cpg = mincpg;
275 			}
276 			sblock.fs_frag <<= 1;
277 			sblock.fs_fragshift += 1;
278 			if (sblock.fs_frag <= MAXFRAG)
279 				continue;
280 		}
281 		if (sblock.fs_fsize == sblock.fs_bsize) {
282 			printf("There is no block size that");
283 			printf(" can support this disk\n");
284 			exit(22);
285 		}
286 		sblock.fs_frag >>= 1;
287 		sblock.fs_fragshift -= 1;
288 		sblock.fs_fsize <<= 1;
289 		sblock.fs_nspf <<= 1;
290 	}
291 	/*
292 	 * Ensure that cylinder group with mincpg has enough space for inodes.
293 	 */
294 	inodecramped = 0;
295 	inospercg = calcipg(mincpg, bpcg, &usedb);
296 	sblock.fs_ipg = inospercg;
297 	while (inospercg > MAXIPG(&sblock)) {
298 		inodecramped = 1;
299 		if (mincpc == 1 || sblock.fs_frag == 1 ||
300 		    sblock.fs_bsize == MINBSIZE)
301 			break;
302 		printf("With a block size of %d %s %d\n", sblock.fs_bsize,
303 		       "minimum bytes per inode is",
304 		       (int)((mincpg * (off_t)bpcg - usedb)
305 			     / MAXIPG(&sblock) + 1));
306 		sblock.fs_bsize >>= 1;
307 		sblock.fs_frag >>= 1;
308 		sblock.fs_fragshift -= 1;
309 		mincpc >>= 1;
310 		sblock.fs_cpg = roundup(mincpgcnt, mincpc);
311 		if (CGSIZE(&sblock) > sblock.fs_bsize) {
312 			sblock.fs_bsize <<= 1;
313 			break;
314 		}
315 		mincpg = sblock.fs_cpg;
316 		inospercg = calcipg(mincpg, bpcg, &usedb);
317 		sblock.fs_ipg = inospercg;
318 	}
319 	if (inodecramped) {
320 		if (inospercg > MAXIPG(&sblock)) {
321 			printf("Minimum bytes per inode is %d\n",
322 			       (int)((mincpg * (off_t)bpcg - usedb)
323 				     / MAXIPG(&sblock) + 1));
324 		} else if (!mapcramped) {
325 			printf("With %d bytes per inode, ", density);
326 			printf("minimum cylinders per group is %d\n", mincpg);
327 		}
328 	}
329 	if (mapcramped) {
330 		printf("With %d sectors per cylinder, ", sblock.fs_spc);
331 		printf("minimum cylinders per group is %d\n", mincpg);
332 	}
333 	if (inodecramped || mapcramped) {
334 		if (sblock.fs_bsize != bsize)
335 			printf("%s to be changed from %d to %d\n",
336 			    "This requires the block size",
337 			    bsize, sblock.fs_bsize);
338 		if (sblock.fs_fsize != fsize)
339 			printf("\t%s to be changed from %d to %d\n",
340 			    "and the fragment size",
341 			    fsize, sblock.fs_fsize);
342 		exit(23);
343 	}
344 	/*
345 	 * Calculate the number of cylinders per group
346 	 */
347 	sblock.fs_cpg = cpg;
348 	if (sblock.fs_cpg % mincpc != 0) {
349 		printf("%s groups must have a multiple of %d cylinders\n",
350 			cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
351 		sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
352 		if (!cpgflg)
353 			cpg = sblock.fs_cpg;
354 	}
355 	/*
356 	 * Must ensure there is enough space for inodes.
357 	 */
358 	sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
359 	while (sblock.fs_ipg > MAXIPG(&sblock)) {
360 		inodecramped = 1;
361 		sblock.fs_cpg -= mincpc;
362 		sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
363 	}
364 	/*
365 	 * Must ensure there is enough space to hold block map.
366 	 */
367 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
368 		mapcramped = 1;
369 		sblock.fs_cpg -= mincpc;
370 		sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
371 	}
372 	sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
373 	if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
374 		printf("panic (fs_cpg * fs_spc) %% NSPF != 0");
375 		exit(24);
376 	}
377 	if (sblock.fs_cpg < mincpg) {
378 		printf("cylinder groups must have at least %d cylinders\n",
379 			mincpg);
380 		exit(25);
381 	} else if (sblock.fs_cpg != cpg) {
382 		if (!cpgflg)
383 			printf("Warning: ");
384 		else if (!mapcramped && !inodecramped)
385 			exit(26);
386 		if (mapcramped && inodecramped)
387 			printf("Block size and bytes per inode restrict");
388 		else if (mapcramped)
389 			printf("Block size restricts");
390 		else
391 			printf("Bytes per inode restrict");
392 		printf(" cylinders per group to %d.\n", sblock.fs_cpg);
393 		if (cpgflg)
394 			exit(27);
395 	}
396 	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
397 	/*
398 	 * Now have size for file system and nsect and ntrak.
399 	 * Determine number of cylinders and blocks in the file system.
400 	 */
401 	sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
402 	sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
403 	if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
404 		sblock.fs_ncyl++;
405 		warn = 1;
406 	}
407 	if (sblock.fs_ncyl < 1) {
408 		printf("file systems must have at least one cylinder\n");
409 		exit(28);
410 	}
411 	/*
412 	 * Determine feasability/values of rotational layout tables.
413 	 *
414 	 * The size of the rotational layout tables is limited by the
415 	 * size of the superblock, SBSIZE. The amount of space available
416 	 * for tables is calculated as (SBSIZE - sizeof (struct fs)).
417 	 * The size of these tables is inversely proportional to the block
418 	 * size of the file system. The size increases if sectors per track
419 	 * are not powers of two, because more cylinders must be described
420 	 * by the tables before the rotational pattern repeats (fs_cpc).
421 	 */
422 	sblock.fs_interleave = interleave;
423 	sblock.fs_trackskew = trackskew;
424 	sblock.fs_npsect = nphyssectors;
425 	sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
426 	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
427 	if (sblock.fs_ntrak == 1) {
428 		sblock.fs_cpc = 0;
429 		goto next;
430 	}
431 	postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t);
432 	rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
433 	totalsbsize = sizeof(struct fs) + rotblsize;
434 	if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
435 		/* use old static table space */
436 		sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
437 		    (char *)(&sblock.fs_firstfield);
438 		sblock.fs_rotbloff = &sblock.fs_space[0] -
439 		    (u_char *)(&sblock.fs_firstfield);
440 	} else {
441 		/* use dynamic table space */
442 		sblock.fs_postbloff = &sblock.fs_space[0] -
443 		    (u_char *)(&sblock.fs_firstfield);
444 		sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
445 		totalsbsize += postblsize;
446 	}
447 	if (totalsbsize > SBSIZE ||
448 	    sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
449 		printf("%s %s %d %s %d.%s",
450 		    "Warning: insufficient space in super block for\n",
451 		    "rotational layout tables with nsect", sblock.fs_nsect,
452 		    "and ntrak", sblock.fs_ntrak,
453 		    "\nFile system performance may be impaired.\n");
454 		sblock.fs_cpc = 0;
455 		goto next;
456 	}
457 	sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
458 	/*
459 	 * calculate the available blocks for each rotational position
460 	 */
461 	for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
462 		for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
463 			fs_postbl(&sblock, cylno)[rpos] = -1;
464 	for (i = (rotblsize - 1) * sblock.fs_frag;
465 	     i >= 0; i -= sblock.fs_frag) {
466 		cylno = cbtocylno(&sblock, i);
467 		rpos = cbtorpos(&sblock, i);
468 		blk = fragstoblks(&sblock, i);
469 		if (fs_postbl(&sblock, cylno)[rpos] == -1)
470 			fs_rotbl(&sblock)[blk] = 0;
471 		else
472 			fs_rotbl(&sblock)[blk] = fs_postbl(&sblock, cylno)[rpos] - blk;
473 		fs_postbl(&sblock, cylno)[rpos] = blk;
474 	}
475 next:
476 	/*
477 	 * Compute/validate number of cylinder groups.
478 	 */
479 	sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
480 	if (sblock.fs_ncyl % sblock.fs_cpg)
481 		sblock.fs_ncg++;
482 	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
483 	i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
484 	if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
485 		printf("inode blocks/cyl group (%d) >= data blocks (%d)\n",
486 		    cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
487 		    sblock.fs_fpg / sblock.fs_frag);
488 		printf("number of cylinders per cylinder group (%d) %s.\n",
489 		    sblock.fs_cpg, "must be increased");
490 		exit(29);
491 	}
492 	j = sblock.fs_ncg - 1;
493 	if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
494 	    cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
495 		if (j == 0) {
496 			printf("File system must have at least %d sectors\n",
497 			    NSPF(&sblock) *
498 			    (cgdmin(&sblock, 0) + 3 * sblock.fs_frag));
499 			exit(30);
500 		}
501 		printf("Warning: inode blocks/cyl group (%d) >= "
502 			"data blocks (%d) in last\n",
503 		    (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
504 		    i / sblock.fs_frag);
505 		printf("    cylinder group. This implies %d sector(s) "
506 			"cannot be allocated.\n",
507 		    i * NSPF(&sblock));
508 		sblock.fs_ncg--;
509 		sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
510 		sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
511 		    NSPF(&sblock);
512 		warn = 0;
513 	}
514 	if (warn && !mfs) {
515 		printf("Warning: %d sector(s) in last cylinder unallocated\n",
516 		    sblock.fs_spc -
517 		    (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
518 		    * sblock.fs_spc));
519 	}
520 	/*
521 	 * fill in remaining fields of the super block
522 	 */
523 	sblock.fs_csaddr = cgdmin(&sblock, 0);
524 	sblock.fs_cssize =
525 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
526 	if (sblock.fs_cssize / sblock.fs_bsize > MAXCSBUFS) {
527 		printf("With %d cylinder groups, "
528 		    "%d cylinder group summary areas are needed.\n",
529 		    sblock.fs_ncg, sblock.fs_cssize / sblock.fs_bsize);
530 		printf("Only %ld are available. Reduce the number of cylinder "
531 		    "groups.\n", (long)MAXCSBUFS);
532 		exit(38);
533 	}
534 	i = sblock.fs_bsize / sizeof(struct csum);
535 	sblock.fs_csmask = ~(i - 1);
536 	for (sblock.fs_csshift = 0; i > 1; i >>= 1)
537 		sblock.fs_csshift++;
538 	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
539 	if (fscs == NULL)
540 		exit(39);
541 	sblock.fs_magic = FS_MAGIC;
542 	sblock.fs_rotdelay = rotdelay;
543 	sblock.fs_minfree = minfree;
544 	sblock.fs_maxcontig = maxcontig;
545 	sblock.fs_headswitch = headswitch;
546 	sblock.fs_trkseek = trackseek;
547 	sblock.fs_maxbpg = maxbpg;
548 	sblock.fs_rps = rpm / 60;
549 	sblock.fs_optim = opt;
550 	sblock.fs_cgrotor = 0;
551 	sblock.fs_cstotal.cs_ndir = 0;
552 	sblock.fs_cstotal.cs_nbfree = 0;
553 	sblock.fs_cstotal.cs_nifree = 0;
554 	sblock.fs_cstotal.cs_nffree = 0;
555 	sblock.fs_fmod = 0;
556 	sblock.fs_clean = FS_ISCLEAN;
557 	sblock.fs_ronly = 0;
558 	/*
559 	 * Dump out summary information about file system.
560 	 */
561 	if (!mfs) {
562 		printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n",
563 		    fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
564 		    "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
565 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
566 		printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
567 		    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
568 		    sblock.fs_ncg, sblock.fs_cpg,
569 		    (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
570 		    sblock.fs_ipg);
571 #undef B2MBFACTOR
572 	}
573 	/*
574 	 * Now determine how wide each column will be, and calculate how
575 	 * many columns will fit in a 76 char line. 76 is the width of the
576 	 * subwindows in sysinst.
577 	 */
578 	printcolwidth = count_digits(
579 			fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg -1)));
580 	nprintcols = 76 / (printcolwidth + 2);
581 	/*
582 	 * Now build the cylinders group blocks and
583 	 * then print out indices of cylinder groups.
584 	 */
585 	if (!mfs)
586 		printf("super-block backups (for fsck -b #) at:");
587 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
588 		initcg(cylno, utime);
589 		if (mfs)
590 			continue;
591 		if (cylno % nprintcols == 0)
592 			printf("\n");
593 		printf(" %*d,", printcolwidth,
594 				fsbtodb(&sblock, cgsblock(&sblock, cylno)));
595 		fflush(stdout);
596 	}
597 	if (!mfs)
598 		printf("\n");
599 	if (Nflag && !mfs)
600 		exit(0);
601 	/*
602 	 * Now construct the initial file system,
603 	 * then write out the super-block.
604 	 */
605 	fsinit(utime);
606 	sblock.fs_time = utime;
607 	memcpy(writebuf, &sblock, sbsize);
608 	if (needswap)
609 		ffs_sb_swap(&sblock, (struct fs*)writebuf, 1);
610 	wtfs((int)SBOFF / sectorsize, sbsize, writebuf);
611 	/*
612 	 * Write out the duplicate super blocks
613 	 */
614 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
615 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
616 		    sbsize, writebuf);
617 
618 	/*
619 	 * if we need to swap, create a buffer for the cylinder summaries
620 	 * to get swapped to.
621 	 */
622 	if (needswap) {
623 		if ((writebuf2=malloc(sblock.fs_cssize)) == NULL)
624 			exit(12);
625 		ffs_csum_swap(fscs, (struct csum*)writebuf2, sblock.fs_cssize);
626 	} else
627 		writebuf2 = (char *)fscs;
628 
629 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
630 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
631 			sblock.fs_cssize - i < sblock.fs_bsize ?
632 			    sblock.fs_cssize - i : sblock.fs_bsize,
633 			((char *)writebuf2) + i);
634 	if (writebuf2 != (char *)fscs)
635 		free(writebuf2);
636 
637 	/*
638 	 * Update information about this partion in pack
639 	 * label, to that it may be updated on disk.
640 	 */
641 	pp->p_fstype = FS_BSDFFS;
642 	pp->p_fsize = sblock.fs_fsize;
643 	pp->p_frag = sblock.fs_frag;
644 	pp->p_cpg = sblock.fs_cpg;
645 }
646 
647 /*
648  * Initialize a cylinder group.
649  */
650 void
651 initcg(int cylno, time_t utime)
652 {
653 	daddr_t cbase, d, dlower, dupper, dmax, blkno;
654 	int32_t i;
655 	struct csum *cs;
656 
657 	/*
658 	 * Determine block bounds for cylinder group.
659 	 * Allow space for super block summary information in first
660 	 * cylinder group.
661 	 */
662 	cbase = cgbase(&sblock, cylno);
663 	dmax = cbase + sblock.fs_fpg;
664 	if (dmax > sblock.fs_size)
665 		dmax = sblock.fs_size;
666 	dlower = cgsblock(&sblock, cylno) - cbase;
667 	dupper = cgdmin(&sblock, cylno) - cbase;
668 	if (cylno == 0)
669 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
670 	cs = fscs + cylno;
671 	memset(&acg, 0, sblock.fs_cgsize);
672 	acg.cg_time = utime;
673 	acg.cg_magic = CG_MAGIC;
674 	acg.cg_cgx = cylno;
675 	if (cylno == sblock.fs_ncg - 1)
676 		acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
677 	else
678 		acg.cg_ncyl = sblock.fs_cpg;
679 	acg.cg_niblk = sblock.fs_ipg;
680 	acg.cg_ndblk = dmax - cbase;
681 	if (sblock.fs_contigsumsize > 0)
682 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
683 	acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
684 	acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
685 	acg.cg_iusedoff = acg.cg_boff +
686 		sblock.fs_cpg * sblock.fs_nrpos * sizeof(int16_t);
687 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
688 	if (sblock.fs_contigsumsize <= 0) {
689 		acg.cg_nextfreeoff = acg.cg_freeoff +
690 		   howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
691 	} else {
692 		acg.cg_clustersumoff = acg.cg_freeoff + howmany
693 		    (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
694 		    sizeof(int32_t);
695 		acg.cg_clustersumoff =
696 		    roundup(acg.cg_clustersumoff, sizeof(int32_t));
697 		acg.cg_clusteroff = acg.cg_clustersumoff +
698 		    (sblock.fs_contigsumsize + 1) * sizeof(int32_t);
699 		acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
700 		    (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
701 	}
702 	if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
703 		printf("Panic: cylinder group too big\n");
704 		exit(37);
705 	}
706 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
707 	if (cylno == 0)
708 		for (i = 0; i < ROOTINO; i++) {
709 			setbit(cg_inosused(&acg, 0), i);
710 			acg.cg_cs.cs_nifree--;
711 		}
712 	for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag)
713 		wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
714 		    sblock.fs_bsize, (char *)zino);
715 	if (cylno > 0) {
716 		/*
717 		 * In cylno 0, beginning space is reserved
718 		 * for boot and super blocks.
719 		 */
720 		for (d = 0; d < dlower; d += sblock.fs_frag) {
721 			blkno = d / sblock.fs_frag;
722 			setblock(&sblock, cg_blksfree(&acg, 0), blkno);
723 			if (sblock.fs_contigsumsize > 0)
724 				setbit(cg_clustersfree(&acg, 0), blkno);
725 			acg.cg_cs.cs_nbfree++;
726 			cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]++;
727 			cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)
728 			    [cbtorpos(&sblock, d)]++;
729 		}
730 		sblock.fs_dsize += dlower;
731 	}
732 	sblock.fs_dsize += acg.cg_ndblk - dupper;
733 	if ((i = (dupper % sblock.fs_frag)) != 0) {
734 		acg.cg_frsum[sblock.fs_frag - i]++;
735 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
736 			setbit(cg_blksfree(&acg, 0), dupper);
737 			acg.cg_cs.cs_nffree++;
738 		}
739 	}
740 	for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
741 		blkno = d / sblock.fs_frag;
742 		setblock(&sblock, cg_blksfree(&acg, 0), blkno);
743 		if (sblock.fs_contigsumsize > 0)
744 			setbit(cg_clustersfree(&acg, 0), blkno);
745 		acg.cg_cs.cs_nbfree++;
746 		cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]++;
747 		cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)
748 		    [cbtorpos(&sblock, d)]++;
749 		d += sblock.fs_frag;
750 	}
751 	if (d < dmax - cbase) {
752 		acg.cg_frsum[dmax - cbase - d]++;
753 		for (; d < dmax - cbase; d++) {
754 			setbit(cg_blksfree(&acg, 0), d);
755 			acg.cg_cs.cs_nffree++;
756 		}
757 	}
758 	if (sblock.fs_contigsumsize > 0) {
759 		int32_t *sump = cg_clustersum(&acg, 0);
760 		u_char *mapp = cg_clustersfree(&acg, 0);
761 		int map = *mapp++;
762 		int bit = 1;
763 		int run = 0;
764 
765 		for (i = 0; i < acg.cg_nclusterblks; i++) {
766 			if ((map & bit) != 0) {
767 				run++;
768 			} else if (run != 0) {
769 				if (run > sblock.fs_contigsumsize)
770 					run = sblock.fs_contigsumsize;
771 				sump[run]++;
772 				run = 0;
773 			}
774 			if ((i & (NBBY - 1)) != (NBBY - 1)) {
775 				bit <<= 1;
776 			} else {
777 				map = *mapp++;
778 				bit = 1;
779 			}
780 		}
781 		if (run != 0) {
782 			if (run > sblock.fs_contigsumsize)
783 				run = sblock.fs_contigsumsize;
784 			sump[run]++;
785 		}
786 	}
787 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
788 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
789 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
790 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
791 	*cs = acg.cg_cs;
792 	memcpy(writebuf, &acg, sblock.fs_bsize);
793 	if (needswap)
794 		swap_cg(&acg, (struct cg*)writebuf);
795 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
796 		sblock.fs_bsize, writebuf);
797 }
798 
799 /*
800  * initialize the file system
801  */
802 struct dinode node;
803 
804 #ifdef LOSTDIR
805 #define PREDEFDIR 3
806 #else
807 #define PREDEFDIR 2
808 #endif
809 
810 struct direct root_dir[] = {
811 	{ ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
812 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
813 #ifdef LOSTDIR
814 	{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" },
815 #endif
816 };
817 struct odirect {
818 	u_int32_t d_ino;
819 	u_int16_t d_reclen;
820 	u_int16_t d_namlen;
821 	u_char	d_name[MAXNAMLEN + 1];
822 } oroot_dir[] = {
823 	{ ROOTINO, sizeof(struct direct), 1, "." },
824 	{ ROOTINO, sizeof(struct direct), 2, ".." },
825 #ifdef LOSTDIR
826 	{ LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
827 #endif
828 };
829 #ifdef LOSTDIR
830 struct direct lost_found_dir[] = {
831 	{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." },
832 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
833 	{ 0, DIRBLKSIZ, 0, 0, 0 },
834 };
835 struct odirect olost_found_dir[] = {
836 	{ LOSTFOUNDINO, sizeof(struct direct), 1, "." },
837 	{ ROOTINO, sizeof(struct direct), 2, ".." },
838 	{ 0, DIRBLKSIZ, 0, 0 },
839 };
840 #endif
841 char buf[MAXBSIZE];
842 static void copy_dir(struct direct *, struct direct *);
843 
844 void
845 fsinit(time_t utime)
846 {
847 #ifdef LOSTDIR
848 	int i;
849 #endif
850 
851 	/*
852 	 * initialize the node
853 	 */
854 	memset(&node, 0, sizeof(node));
855 	node.di_atime = utime;
856 	node.di_mtime = utime;
857 	node.di_ctime = utime;
858 
859 #ifdef LOSTDIR
860 	/*
861 	 * create the lost+found directory
862 	 */
863 	if (Oflag) {
864 		(void)makedir((struct direct *)olost_found_dir, 2);
865 		for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
866 			copy_dir((struct direct*)&olost_found_dir[2],
867 				(struct direct*)&buf[i]);
868 	} else {
869 		(void)makedir(lost_found_dir, 2);
870 		for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
871 			copy_dir(&lost_found_dir[2], (struct direct*)&buf[i]);
872 	}
873 	node.di_mode = IFDIR | UMASK;
874 	node.di_nlink = 2;
875 	node.di_size = sblock.fs_bsize;
876 	node.di_db[0] = alloc(node.di_size, node.di_mode);
877 	node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
878 	node.di_uid = geteuid();
879 	node.di_gid = getegid();
880 	wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf);
881 	iput(&node, LOSTFOUNDINO);
882 #endif
883 	/*
884 	 * create the root directory
885 	 */
886 	if (mfs)
887 		node.di_mode = IFDIR | 01777;
888 	else
889 		node.di_mode = IFDIR | UMASK;
890 	node.di_nlink = PREDEFDIR;
891 	if (Oflag)
892 		node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR);
893 	else
894 		node.di_size = makedir(root_dir, PREDEFDIR);
895 	node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode);
896 	node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
897 	node.di_uid = geteuid();
898 	node.di_gid = getegid();
899 	wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf);
900 	iput(&node, ROOTINO);
901 }
902 
903 /*
904  * construct a set of directory entries in "buf".
905  * return size of directory.
906  */
907 int
908 makedir(struct direct *protodir, int entries)
909 {
910 	char *cp;
911 	int i, spcleft;
912 
913 	spcleft = DIRBLKSIZ;
914 	for (cp = buf, i = 0; i < entries - 1; i++) {
915 		protodir[i].d_reclen = DIRSIZ(Oflag, &protodir[i], 0);
916 		copy_dir(&protodir[i], (struct direct*)cp);
917 		cp += protodir[i].d_reclen;
918 		spcleft -= protodir[i].d_reclen;
919 	}
920 	protodir[i].d_reclen = spcleft;
921 	copy_dir(&protodir[i], (struct direct*)cp);
922 	return (DIRBLKSIZ);
923 }
924 
925 /*
926  * allocate a block or frag
927  */
928 daddr_t
929 alloc(int size, int mode)
930 {
931 	int i, frag;
932 	daddr_t d, blkno;
933 
934 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
935 	/* fs -> host byte order */
936 	if (needswap)
937 		swap_cg(&acg, &acg);
938 	if (acg.cg_magic != CG_MAGIC) {
939 		printf("cg 0: bad magic number\n");
940 		return (0);
941 	}
942 	if (acg.cg_cs.cs_nbfree == 0) {
943 		printf("first cylinder group ran out of space\n");
944 		return (0);
945 	}
946 	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
947 		if (isblock(&sblock, cg_blksfree(&acg, 0), d / sblock.fs_frag))
948 			goto goth;
949 	printf("internal error: can't find block in cyl 0\n");
950 	return (0);
951 goth:
952 	blkno = fragstoblks(&sblock, d);
953 	clrblock(&sblock, cg_blksfree(&acg, 0), blkno);
954 	if (sblock.fs_contigsumsize > 0)
955 		clrbit(cg_clustersfree(&acg, 0), blkno);
956 	acg.cg_cs.cs_nbfree--;
957 	sblock.fs_cstotal.cs_nbfree--;
958 	fscs[0].cs_nbfree--;
959 	if (mode & IFDIR) {
960 		acg.cg_cs.cs_ndir++;
961 		sblock.fs_cstotal.cs_ndir++;
962 		fscs[0].cs_ndir++;
963 	}
964 	cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]--;
965 	cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)[cbtorpos(&sblock, d)]--;
966 	if (size != sblock.fs_bsize) {
967 		frag = howmany(size, sblock.fs_fsize);
968 		fscs[0].cs_nffree += sblock.fs_frag - frag;
969 		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
970 		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
971 		acg.cg_frsum[sblock.fs_frag - frag]++;
972 		for (i = frag; i < sblock.fs_frag; i++)
973 			setbit(cg_blksfree(&acg, 0), d + i);
974 	}
975 	/* host -> fs byte order */
976 	if (needswap)
977 		swap_cg(&acg, &acg);
978 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
979 	    (char *)&acg);
980 	return (d);
981 }
982 
983 /*
984  * Calculate number of inodes per group.
985  */
986 int32_t
987 calcipg(int32_t cylpg, int32_t bpcg, off_t *usedbp)
988 {
989 	int i;
990 	int32_t ipg, new_ipg, ncg, ncyl;
991 	off_t usedb;
992 #if __GNUC__ /* XXX work around gcc 2.7.2 initialization bug */
993 	(void)&usedb;
994 #endif
995 
996 	/*
997 	 * Prepare to scale by fssize / (number of sectors in cylinder groups).
998 	 * Note that fssize is still in sectors, not file system blocks.
999 	 */
1000 	ncyl = howmany(fssize, secpercyl);
1001 	ncg = howmany(ncyl, cylpg);
1002 	/*
1003 	 * Iterate a few times to allow for ipg depending on itself.
1004 	 */
1005 	ipg = 0;
1006 	for (i = 0; i < 10; i++) {
1007 		usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock))
1008 			* NSPF(&sblock) * (off_t)sectorsize;
1009 		new_ipg = (cylpg * (quad_t)bpcg - usedb) / density * fssize
1010 			  / ncg / secpercyl / cylpg;
1011 		new_ipg = roundup(new_ipg, INOPB(&sblock));
1012 		if (new_ipg == ipg)
1013 			break;
1014 		ipg = new_ipg;
1015 	}
1016 	*usedbp = usedb;
1017 	return (ipg);
1018 }
1019 
1020 /*
1021  * Allocate an inode on the disk
1022  */
1023 static void
1024 iput(struct dinode *ip, ino_t ino)
1025 {
1026 	struct dinode ibuf[MAXINOPB];
1027 	daddr_t d;
1028 	int c, i;
1029 
1030 	c = ino_to_cg(&sblock, ino);
1031 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
1032 	/* fs -> host byte order */
1033 	if (needswap)
1034 		swap_cg(&acg, &acg);
1035 	if (acg.cg_magic != CG_MAGIC) {
1036 		printf("cg 0: bad magic number\n");
1037 		exit(31);
1038 	}
1039 	acg.cg_cs.cs_nifree--;
1040 	setbit(cg_inosused(&acg, 0), ino);
1041 	/* host -> fs byte order */
1042 	if (needswap)
1043 		swap_cg(&acg, &acg);
1044 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1045 	    (char *)&acg);
1046 	sblock.fs_cstotal.cs_nifree--;
1047 	fscs[0].cs_nifree--;
1048 	if (ino >= sblock.fs_ipg * sblock.fs_ncg) {
1049 		printf("fsinit: inode value out of range (%d).\n", ino);
1050 		exit(32);
1051 	}
1052 	d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1053 	rdfs(d, sblock.fs_bsize, ibuf);
1054 	if (needswap) {
1055 		ffs_dinode_swap(ip, &ibuf[ino_to_fsbo(&sblock, ino)]);
1056 		/* ffs_dinode_swap() doesn't swap blocks addrs */
1057 		for (i=0; i<NDADDR + NIADDR; i++)
1058 			(&ibuf[ino_to_fsbo(&sblock, ino)])->di_db[i] =
1059 				bswap32(ip->di_db[i]);
1060 	} else
1061 		ibuf[ino_to_fsbo(&sblock, ino)] = *ip;
1062 	wtfs(d, sblock.fs_bsize, ibuf);
1063 }
1064 
1065 /*
1066  * Replace libc function with one suited to our needs.
1067  */
1068 void *
1069 malloc(size_t size)
1070 {
1071 	void *p;
1072 	char *base, *i;
1073 	static u_long pgsz;
1074 	struct rlimit rlp;
1075 
1076 	if (pgsz == 0) {
1077 		base = sbrk(0);
1078 		pgsz = getpagesize() - 1;
1079 		i = (char *)((u_long)(base + pgsz) &~ pgsz);
1080 		base = sbrk(i - base);
1081 		if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1082 			perror("getrlimit");
1083 		rlp.rlim_cur = rlp.rlim_max;
1084 		if (setrlimit(RLIMIT_DATA, &rlp) < 0)
1085 			perror("setrlimit");
1086 		memleft = rlp.rlim_max - (u_long)base;
1087 	}
1088 	size = (size + pgsz) &~ pgsz;
1089 	if (size > memleft)
1090 		size = memleft;
1091 	memleft -= size;
1092 	if (size == 0)
1093 		return (NULL);
1094 	p = sbrk(size);
1095 	if (p == (void *)-1)
1096 		p = NULL;
1097 	return (p);
1098 }
1099 
1100 /*
1101  * Replace libc function with one suited to our needs.
1102  */
1103 void *
1104 realloc(void *ptr, size_t size)
1105 {
1106 	void *p;
1107 
1108 	if ((p = malloc(size)) == NULL)
1109 		return (NULL);
1110 	memmove(p, ptr, size);
1111 	free(ptr);
1112 	return (p);
1113 }
1114 
1115 /*
1116  * Replace libc function with one suited to our needs.
1117  */
1118 void *
1119 calloc(size_t size, size_t numelm)
1120 {
1121 	void *base;
1122 
1123 	size *= numelm;
1124 	base = malloc(size);
1125 	if (base == NULL)
1126 		return (NULL);
1127 	memset(base, 0, size);
1128 	return (base);
1129 }
1130 
1131 /*
1132  * Replace libc function with one suited to our needs.
1133  */
1134 void
1135 free(void *ptr)
1136 {
1137 
1138 	/* do not worry about it for now */
1139 }
1140 
1141 /*
1142  * read a block from the file system
1143  */
1144 void
1145 rdfs(daddr_t bno, int size, void *bf)
1146 {
1147 	int n;
1148 	off_t offset;
1149 
1150 	if (mfs) {
1151 		memmove(bf, membase + bno * sectorsize, size);
1152 		return;
1153 	}
1154 	offset = bno;
1155 	offset *= sectorsize;
1156 	if (lseek(fsi, offset, SEEK_SET) < 0) {
1157 		printf("seek error: %d\n", bno);
1158 		perror("rdfs");
1159 		exit(33);
1160 	}
1161 	n = read(fsi, bf, size);
1162 	if (n != size) {
1163 		printf("read error: %d\n", bno);
1164 		perror("rdfs");
1165 		exit(34);
1166 	}
1167 }
1168 
1169 /*
1170  * write a block to the file system
1171  */
1172 void
1173 wtfs(daddr_t bno, int size, void *bf)
1174 {
1175 	int n;
1176 	off_t offset;
1177 
1178 	if (mfs) {
1179 		memmove(membase + bno * sectorsize, bf, size);
1180 		return;
1181 	}
1182 	if (Nflag)
1183 		return;
1184 	offset = bno;
1185 	offset *= sectorsize;
1186 	if (lseek(fso, offset, SEEK_SET) < 0) {
1187 		printf("seek error: %d\n", bno);
1188 		perror("wtfs");
1189 		exit(35);
1190 	}
1191 	n = write(fso, bf, size);
1192 	if (n != size) {
1193 		printf("write error: %d\n", bno);
1194 		perror("wtfs");
1195 		exit(36);
1196 	}
1197 }
1198 
1199 /*
1200  * check if a block is available
1201  */
1202 int
1203 isblock(struct fs *fs, unsigned char *cp, int h)
1204 {
1205 	unsigned char mask;
1206 
1207 	switch (fs->fs_frag) {
1208 	case 8:
1209 		return (cp[h] == 0xff);
1210 	case 4:
1211 		mask = 0x0f << ((h & 0x1) << 2);
1212 		return ((cp[h >> 1] & mask) == mask);
1213 	case 2:
1214 		mask = 0x03 << ((h & 0x3) << 1);
1215 		return ((cp[h >> 2] & mask) == mask);
1216 	case 1:
1217 		mask = 0x01 << (h & 0x7);
1218 		return ((cp[h >> 3] & mask) == mask);
1219 	default:
1220 #ifdef STANDALONE
1221 		printf("isblock bad fs_frag %d\n", fs->fs_frag);
1222 #else
1223 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1224 #endif
1225 		return (0);
1226 	}
1227 }
1228 
1229 /*
1230  * take a block out of the map
1231  */
1232 void
1233 clrblock(struct fs *fs, unsigned char *cp, int h)
1234 {
1235 	switch ((fs)->fs_frag) {
1236 	case 8:
1237 		cp[h] = 0;
1238 		return;
1239 	case 4:
1240 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1241 		return;
1242 	case 2:
1243 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1244 		return;
1245 	case 1:
1246 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1247 		return;
1248 	default:
1249 #ifdef STANDALONE
1250 		printf("clrblock bad fs_frag %d\n", fs->fs_frag);
1251 #else
1252 		fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1253 #endif
1254 		return;
1255 	}
1256 }
1257 
1258 /*
1259  * put a block into the map
1260  */
1261 void
1262 setblock(struct fs *fs, unsigned char *cp, int h)
1263 {
1264 	switch (fs->fs_frag) {
1265 	case 8:
1266 		cp[h] = 0xff;
1267 		return;
1268 	case 4:
1269 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1270 		return;
1271 	case 2:
1272 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1273 		return;
1274 	case 1:
1275 		cp[h >> 3] |= (0x01 << (h & 0x7));
1276 		return;
1277 	default:
1278 #ifdef STANDALONE
1279 		printf("setblock bad fs_frag %d\n", fs->fs_frag);
1280 #else
1281 		fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1282 #endif
1283 		return;
1284 	}
1285 }
1286 
1287 /* swap byte order of cylinder group */
1288 static void
1289 swap_cg(struct cg *o, struct cg *n)
1290 {
1291 	int i, btotsize, fbsize;
1292 	u_int32_t *n32, *o32;
1293 	u_int16_t *n16, *o16;
1294 
1295 	n->cg_firstfield = bswap32(o->cg_firstfield);
1296 	n->cg_magic = bswap32(o->cg_magic);
1297 	n->cg_time = bswap32(o->cg_time);
1298 	n->cg_cgx = bswap32(o->cg_cgx);
1299 	n->cg_ncyl = bswap16(o->cg_ncyl);
1300 	n->cg_niblk = bswap16(o->cg_niblk);
1301 	n->cg_ndblk = bswap32(o->cg_ndblk);
1302 	n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir);
1303 	n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree);
1304 	n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree);
1305 	n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree);
1306 	n->cg_rotor = bswap32(o->cg_rotor);
1307 	n->cg_frotor = bswap32(o->cg_frotor);
1308 	n->cg_irotor = bswap32(o->cg_irotor);
1309 	n->cg_btotoff = bswap32(o->cg_btotoff);
1310 	n->cg_boff = bswap32(o->cg_boff);
1311 	n->cg_iusedoff = bswap32(o->cg_iusedoff);
1312 	n->cg_freeoff = bswap32(o->cg_freeoff);
1313 	n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff);
1314 	n->cg_clustersumoff = bswap32(o->cg_clustersumoff);
1315 	n->cg_clusteroff = bswap32(o->cg_clusteroff);
1316 	n->cg_nclusterblks = bswap32(o->cg_nclusterblks);
1317 	for (i=0; i < MAXFRAG; i++)
1318 		n->cg_frsum[i] = bswap32(o->cg_frsum[i]);
1319 
1320 	/* alays new format */
1321 	if (n->cg_magic == CG_MAGIC) {
1322 		btotsize = n->cg_boff - n->cg_btotoff;
1323 		fbsize = n->cg_iusedoff - n->cg_boff;
1324 		n32 = (u_int32_t*)((u_int8_t*)n + n->cg_btotoff);
1325 		o32 = (u_int32_t*)((u_int8_t*)o + n->cg_btotoff);
1326 		n16 = (u_int16_t*)((u_int8_t*)n + n->cg_boff);
1327 		o16 = (u_int16_t*)((u_int8_t*)o + n->cg_boff);
1328 	} else {
1329 		btotsize = bswap32(n->cg_boff) - bswap32(n->cg_btotoff);
1330 		fbsize = bswap32(n->cg_iusedoff) - bswap32(n->cg_boff);
1331 		n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_btotoff));
1332 		o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_btotoff));
1333 		n16 = (u_int16_t*)((u_int8_t*)n + bswap32(n->cg_boff));
1334 		o16 = (u_int16_t*)((u_int8_t*)o + bswap32(n->cg_boff));
1335 	}
1336 	for (i=0; i < btotsize / sizeof(u_int32_t); i++)
1337 		n32[i] = bswap32(o32[i]);
1338 
1339 	for (i=0; i < fbsize/sizeof(u_int16_t); i++)
1340 		n16[i] = bswap16(o16[i]);
1341 
1342 	if (n->cg_magic == CG_MAGIC) {
1343 		n32 = (u_int32_t*)((u_int8_t*)n + n->cg_clustersumoff);
1344 		o32 = (u_int32_t*)((u_int8_t*)o + n->cg_clustersumoff);
1345 	} else {
1346 		n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_clustersumoff));
1347 		o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_clustersumoff));
1348 	}
1349 	for (i = 1; i < sblock.fs_contigsumsize + 1; i++)
1350 		n32[i] = bswap32(o32[i]);
1351 }
1352 
1353 /* copy a direntry to a buffer, in fs byte order */
1354 static void
1355 copy_dir(struct direct *dir, struct direct *dbuf)
1356 {
1357 	memcpy(dbuf, dir, DIRSIZ(Oflag, dir, 0));
1358 	if (needswap) {
1359 		dbuf->d_ino = bswap32(dir->d_ino);
1360 		dbuf->d_reclen = bswap16(dir->d_reclen);
1361 		if (Oflag)
1362 			((struct odirect*)dbuf)->d_namlen =
1363 				bswap16(((struct odirect*)dir)->d_namlen);
1364 	}
1365 }
1366 
1367 /* Determine how many digits are needed to print a given integer */
1368 static int
1369 count_digits(int num)
1370 {
1371 	int ndig;
1372 
1373 	for(ndig = 1; num > 9; num /=10, ndig++);
1374 
1375 	return (ndig);
1376 }
1377