1 /* $NetBSD: mkfs.c,v 1.106 2009/05/07 06:56:56 lukem Exp $ */ 2 3 /* 4 * Copyright (c) 1980, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 2002 Networks Associates Technology, Inc. 34 * All rights reserved. 35 * 36 * This software was developed for the FreeBSD Project by Marshall 37 * Kirk McKusick and Network Associates Laboratories, the Security 38 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 39 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 40 * research program 41 * 42 * Redistribution and use in source and binary forms, with or without 43 * modification, are permitted provided that the following conditions 44 * are met: 45 * 1. Redistributions of source code must retain the above copyright 46 * notice, this list of conditions and the following disclaimer. 47 * 2. Redistributions in binary form must reproduce the above copyright 48 * notice, this list of conditions and the following disclaimer in the 49 * documentation and/or other materials provided with the distribution. 50 * 3. All advertising materials mentioning features or use of this software 51 * must display the following acknowledgement: 52 * This product includes software developed by the University of 53 * California, Berkeley and its contributors. 54 * 4. Neither the name of the University nor the names of its contributors 55 * may be used to endorse or promote products derived from this software 56 * without specific prior written permission. 57 * 58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 68 * SUCH DAMAGE. 69 */ 70 71 #include <sys/cdefs.h> 72 #ifndef lint 73 #if 0 74 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95"; 75 #else 76 __RCSID("$NetBSD: mkfs.c,v 1.106 2009/05/07 06:56:56 lukem Exp $"); 77 #endif 78 #endif /* not lint */ 79 80 #include <sys/param.h> 81 #include <sys/mman.h> 82 #include <sys/time.h> 83 #include <sys/resource.h> 84 #include <ufs/ufs/dinode.h> 85 #include <ufs/ufs/dir.h> 86 #include <ufs/ufs/ufs_bswap.h> 87 #include <ufs/ffs/fs.h> 88 #include <ufs/ffs/ffs_extern.h> 89 #include <sys/ioctl.h> 90 #include <sys/disklabel.h> 91 92 #include <err.h> 93 #include <errno.h> 94 #include <string.h> 95 #include <unistd.h> 96 #include <stdlib.h> 97 #include <stddef.h> 98 99 #ifndef STANDALONE 100 #include <stdio.h> 101 #endif 102 103 #include "extern.h" 104 105 union dinode { 106 struct ufs1_dinode dp1; 107 struct ufs2_dinode dp2; 108 }; 109 110 static void initcg(int, const struct timeval *); 111 static int fsinit(const struct timeval *, mode_t, uid_t, gid_t); 112 static int makedir(struct direct *, int); 113 static daddr_t alloc(int, int); 114 static void iput(union dinode *, ino_t); 115 static void rdfs(daddr_t, int, void *); 116 static void wtfs(daddr_t, int, void *); 117 static int isblock(struct fs *, unsigned char *, int); 118 static void clrblock(struct fs *, unsigned char *, int); 119 static void setblock(struct fs *, unsigned char *, int); 120 static int ilog2(int); 121 static void zap_old_sblock(int); 122 #ifdef MFS 123 static void calc_memfree(void); 124 static void *mkfs_malloc(size_t size); 125 #endif 126 127 /* 128 * make file system for cylinder-group style file systems 129 */ 130 #define UMASK 0755 131 132 union { 133 struct fs fs; 134 char pad[SBLOCKSIZE]; 135 } fsun; 136 #define sblock fsun.fs 137 138 struct csum *fscs_0; /* first block of cylinder summaries */ 139 struct csum *fscs_next; /* place for next summary */ 140 struct csum *fscs_end; /* end of summary buffer */ 141 struct csum *fscs_reset; /* place for next summary after write */ 142 uint fs_csaddr; /* fragment number to write to */ 143 144 union { 145 struct cg cg; 146 char pad[MAXBSIZE]; 147 } cgun; 148 #define acg cgun.cg 149 150 #define DIP(dp, field) \ 151 ((sblock.fs_magic == FS_UFS1_MAGIC) ? \ 152 (dp)->dp1.di_##field : (dp)->dp2.di_##field) 153 154 char *iobuf; 155 int iobufsize; /* size to end of 2nd inode block */ 156 int iobuf_memsize; /* Actual buffer size */ 157 158 int fsi, fso; 159 160 void 161 mkfs(const char *fsys, int fi, int fo, 162 mode_t mfsmode, uid_t mfsuid, gid_t mfsgid) 163 { 164 uint fragsperinodeblk, ncg, u; 165 uint cgzero; 166 uint64_t inodeblks, cgall; 167 int32_t cylno, i, csfrags; 168 int inodes_per_cg; 169 struct timeval tv; 170 long long sizepb; 171 int len, col, delta, fld_width, max_cols; 172 struct winsize winsize; 173 174 #ifndef STANDALONE 175 gettimeofday(&tv, NULL); 176 #endif 177 #ifdef MFS 178 if (mfs && !Nflag) { 179 calc_memfree(); 180 if ((uint64_t)fssize * sectorsize > memleft) 181 fssize = memleft / sectorsize; 182 if ((membase = mkfs_malloc(fssize * sectorsize)) == NULL) 183 exit(12); 184 } 185 #endif 186 fsi = fi; 187 fso = fo; 188 if (Oflag == 0) { 189 sblock.fs_old_inodefmt = FS_42INODEFMT; 190 sblock.fs_maxsymlinklen = 0; 191 sblock.fs_old_flags = 0; 192 } else { 193 sblock.fs_old_inodefmt = FS_44INODEFMT; 194 sblock.fs_maxsymlinklen = (Oflag == 1 ? MAXSYMLINKLEN_UFS1 : 195 MAXSYMLINKLEN_UFS2); 196 sblock.fs_old_flags = FS_FLAGS_UPDATED; 197 if (isappleufs) 198 sblock.fs_old_flags = 0; 199 sblock.fs_flags = 0; 200 } 201 202 /* 203 * collect and verify the filesystem density info 204 */ 205 sblock.fs_avgfilesize = avgfilesize; 206 sblock.fs_avgfpdir = avgfpdir; 207 if (sblock.fs_avgfilesize <= 0) { 208 printf("illegal expected average file size %d\n", 209 sblock.fs_avgfilesize); 210 exit(14); 211 } 212 if (sblock.fs_avgfpdir <= 0) { 213 printf("illegal expected number of files per directory %d\n", 214 sblock.fs_avgfpdir); 215 exit(15); 216 } 217 /* 218 * collect and verify the block and fragment sizes 219 */ 220 sblock.fs_bsize = bsize; 221 sblock.fs_fsize = fsize; 222 if (!powerof2(sblock.fs_bsize)) { 223 printf("block size must be a power of 2, not %d\n", 224 sblock.fs_bsize); 225 exit(16); 226 } 227 if (!powerof2(sblock.fs_fsize)) { 228 printf("fragment size must be a power of 2, not %d\n", 229 sblock.fs_fsize); 230 exit(17); 231 } 232 if (sblock.fs_fsize < sectorsize) { 233 printf("fragment size %d is too small, minimum is %d\n", 234 sblock.fs_fsize, sectorsize); 235 exit(18); 236 } 237 if (sblock.fs_bsize < MINBSIZE) { 238 printf("block size %d is too small, minimum is %d\n", 239 sblock.fs_bsize, MINBSIZE); 240 exit(19); 241 } 242 if (sblock.fs_bsize > MAXBSIZE) { 243 printf("block size %d is too large, maximum is %d\n", 244 sblock.fs_bsize, MAXBSIZE); 245 exit(19); 246 } 247 if (sblock.fs_bsize < sblock.fs_fsize) { 248 printf("block size (%d) cannot be smaller than fragment size (%d)\n", 249 sblock.fs_bsize, sblock.fs_fsize); 250 exit(20); 251 } 252 253 if (maxbsize < bsize || !powerof2(maxbsize)) { 254 sblock.fs_maxbsize = sblock.fs_bsize; 255 } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) { 256 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize; 257 } else { 258 sblock.fs_maxbsize = maxbsize; 259 } 260 sblock.fs_maxcontig = maxcontig; 261 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) { 262 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize; 263 if (verbosity > 0) 264 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize); 265 } 266 if (sblock.fs_maxcontig > 1) 267 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG); 268 269 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 270 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 271 sblock.fs_qbmask = ~sblock.fs_bmask; 272 sblock.fs_qfmask = ~sblock.fs_fmask; 273 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1) 274 sblock.fs_bshift++; 275 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1) 276 sblock.fs_fshift++; 277 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 278 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1) 279 sblock.fs_fragshift++; 280 if (sblock.fs_frag > MAXFRAG) { 281 printf("fragment size %d is too small, " 282 "minimum with block size %d is %d\n", 283 sblock.fs_fsize, sblock.fs_bsize, 284 sblock.fs_bsize / MAXFRAG); 285 exit(21); 286 } 287 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize); 288 sblock.fs_size = dbtofsb(&sblock, fssize); 289 if (Oflag <= 1) { 290 if ((uint64_t)sblock.fs_size >= 1ull << 31) { 291 printf("Too many fragments (0x%" PRIx64 292 ") for a FFSv1 filesystem\n", sblock.fs_size); 293 exit(22); 294 } 295 sblock.fs_magic = FS_UFS1_MAGIC; 296 sblock.fs_sblockloc = SBLOCK_UFS1; 297 sblock.fs_nindir = sblock.fs_bsize / sizeof(int32_t); 298 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode); 299 sblock.fs_old_cgoffset = 0; 300 sblock.fs_old_cgmask = 0xffffffff; 301 sblock.fs_old_size = sblock.fs_size; 302 sblock.fs_old_rotdelay = 0; 303 sblock.fs_old_rps = 60; 304 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize; 305 sblock.fs_old_cpg = 1; 306 sblock.fs_old_interleave = 1; 307 sblock.fs_old_trackskew = 0; 308 sblock.fs_old_cpc = 0; 309 sblock.fs_old_postblformat = FS_DYNAMICPOSTBLFMT; 310 sblock.fs_old_nrpos = 1; 311 } else { 312 sblock.fs_magic = FS_UFS2_MAGIC; 313 sblock.fs_sblockloc = SBLOCK_UFS2; 314 sblock.fs_nindir = sblock.fs_bsize / sizeof(int64_t); 315 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode); 316 } 317 318 sblock.fs_sblkno = 319 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize), 320 sblock.fs_frag); 321 sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno + 322 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag)); 323 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 324 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1; 325 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) { 326 sizepb *= NINDIR(&sblock); 327 sblock.fs_maxfilesize += sizepb; 328 } 329 330 /* 331 * Calculate the number of blocks to put into each cylinder group. 332 * 333 * The cylinder group size is limited because the data structure 334 * must fit into a single block. 335 * We try to have as few cylinder groups as possible, with a proviso 336 * that we create at least MINCYLGRPS (==4) except for small 337 * filesystems. 338 * 339 * This algorithm works out how many blocks of inodes would be 340 * needed to fill the entire volume at the specified density. 341 * It then looks at how big the 'cylinder block' would have to 342 * be and, assuming that it is linearly related to the number 343 * of inodes and blocks how many cylinder groups are needed to 344 * keep the cylinder block below the filesystem block size. 345 * 346 * The cylinder groups are then all created with the average size. 347 * 348 * Space taken by the red tape on cylinder groups other than the 349 * first is ignored. 350 */ 351 352 /* There must be space for 1 inode block and 2 data blocks */ 353 if (sblock.fs_size < sblock.fs_iblkno + 3 * sblock.fs_frag) { 354 printf("Filesystem size %lld < minimum size of %d\n", 355 (long long)sblock.fs_size, sblock.fs_iblkno + 3 * sblock.fs_frag); 356 exit(23); 357 } 358 if (num_inodes != 0) 359 inodeblks = howmany(num_inodes, INOPB(&sblock)); 360 else { 361 /* 362 * Calculate 'per inode block' so we can allocate less than 363 * 1 fragment per inode - useful for /dev. 364 */ 365 fragsperinodeblk = MAX(numfrags(&sblock, 366 (uint64_t)density * INOPB(&sblock)), 1); 367 inodeblks = (sblock.fs_size - sblock.fs_iblkno) / 368 (sblock.fs_frag + fragsperinodeblk); 369 } 370 if (inodeblks == 0) 371 inodeblks = 1; 372 /* Ensure that there are at least 2 data blocks (or we fail below) */ 373 if (inodeblks > (uint64_t)(sblock.fs_size - sblock.fs_iblkno)/sblock.fs_frag - 2) 374 inodeblks = (sblock.fs_size-sblock.fs_iblkno)/sblock.fs_frag-2; 375 /* Even UFS2 limits number of inodes to 2^31 (fs_ipg is int32_t) */ 376 if (inodeblks * INOPB(&sblock) >= 1ull << 31) 377 inodeblks = ((1ull << 31) - NBBY) / INOPB(&sblock); 378 /* 379 * See what would happen if we tried to use 1 cylinder group. 380 * Assume space linear, so work out number of cylinder groups needed. 381 */ 382 cgzero = CGSIZE_IF(&sblock, 0, 0); 383 cgall = CGSIZE_IF(&sblock, inodeblks * INOPB(&sblock), sblock.fs_size); 384 ncg = howmany(cgall - cgzero, sblock.fs_bsize - cgzero); 385 if (ncg < MINCYLGRPS) { 386 /* 387 * We would like to allocate MINCLYGRPS cylinder groups, 388 * but for small file sytems (especially ones with a lot 389 * of inodes) this is not desirable (or possible). 390 */ 391 u = sblock.fs_size / 2 / (sblock.fs_iblkno + 392 inodeblks * sblock.fs_frag); 393 if (u > ncg) 394 ncg = u; 395 if (ncg > MINCYLGRPS) 396 ncg = MINCYLGRPS; 397 if (ncg > inodeblks) 398 ncg = inodeblks; 399 } 400 /* 401 * Put an equal number of blocks in each cylinder group. 402 * Round up so we don't have more fragments in the last CG than 403 * the earlier ones (does that matter?), but kill a block if the 404 * CGSIZE becomes too big (only happens if there are a lot of CGs). 405 */ 406 sblock.fs_fpg = roundup(howmany(sblock.fs_size, ncg), sblock.fs_frag); 407 /* Round up the fragments/group so the bitmap bytes are full */ 408 sblock.fs_fpg = roundup(sblock.fs_fpg, NBBY); 409 inodes_per_cg = ((inodeblks - 1) / ncg + 1) * INOPB(&sblock); 410 411 i = CGSIZE_IF(&sblock, inodes_per_cg, sblock.fs_fpg); 412 if (i > sblock.fs_bsize) { 413 sblock.fs_fpg -= (i - sblock.fs_bsize) * NBBY; 414 /* ... and recalculate how many cylinder groups we now need */ 415 ncg = howmany(sblock.fs_size, sblock.fs_fpg); 416 inodes_per_cg = ((inodeblks - 1) / ncg + 1) * INOPB(&sblock); 417 } 418 sblock.fs_ipg = inodes_per_cg; 419 /* Sanity check on our sums... */ 420 if ((int)CGSIZE(&sblock) > sblock.fs_bsize) { 421 printf("CGSIZE miscalculated %d > %d\n", 422 (int)CGSIZE(&sblock), sblock.fs_bsize); 423 exit(24); 424 } 425 426 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 427 /* Check that the last cylinder group has enough space for the inodes */ 428 i = sblock.fs_size - sblock.fs_fpg * (ncg - 1ull); 429 if (i < sblock.fs_dblkno) { 430 /* 431 * Since we make all the cylinder groups the same size, the 432 * last will only be small if there are a large number of 433 * cylinder groups. If we pull even a fragment from each 434 * of the other groups then the last CG will be overfull. 435 * So we just kill the last CG. 436 */ 437 ncg--; 438 sblock.fs_size -= i; 439 } 440 sblock.fs_ncg = ncg; 441 442 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 443 if (Oflag <= 1) { 444 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf; 445 sblock.fs_old_nsect = sblock.fs_old_spc; 446 sblock.fs_old_npsect = sblock.fs_old_spc; 447 sblock.fs_old_ncyl = sblock.fs_ncg; 448 } 449 450 /* 451 * Cylinder group summary information for each cylinder is written 452 * into the first cylinder group. 453 * Write this fragment by fragment, but doing the first CG last 454 * (after we've taken stuff off for the structure itself and the 455 * root directory. 456 */ 457 sblock.fs_csaddr = cgdmin(&sblock, 0); 458 sblock.fs_cssize = 459 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 460 if (512 % sizeof *fscs_0) 461 errx(1, "cylinder group summary doesn't fit in sectors"); 462 fscs_0 = mmap(0, 2 * sblock.fs_fsize, PROT_READ|PROT_WRITE, 463 MAP_ANON|MAP_PRIVATE, -1, 0); 464 if (fscs_0 == MAP_FAILED) 465 exit(39); 466 memset(fscs_0, 0, 2 * sblock.fs_fsize); 467 fs_csaddr = sblock.fs_csaddr; 468 fscs_next = fscs_0; 469 fscs_end = (void *)((char *)fscs_0 + 2 * sblock.fs_fsize); 470 fscs_reset = (void *)((char *)fscs_0 + sblock.fs_fsize); 471 /* 472 * fill in remaining fields of the super block 473 */ 474 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 475 if (sblock.fs_sbsize > SBLOCKSIZE) 476 sblock.fs_sbsize = SBLOCKSIZE; 477 sblock.fs_minfree = minfree; 478 sblock.fs_maxcontig = maxcontig; 479 sblock.fs_maxbpg = maxbpg; 480 sblock.fs_optim = opt; 481 sblock.fs_cgrotor = 0; 482 sblock.fs_pendingblocks = 0; 483 sblock.fs_pendinginodes = 0; 484 sblock.fs_cstotal.cs_ndir = 0; 485 sblock.fs_cstotal.cs_nbfree = 0; 486 sblock.fs_cstotal.cs_nifree = 0; 487 sblock.fs_cstotal.cs_nffree = 0; 488 sblock.fs_fmod = 0; 489 sblock.fs_ronly = 0; 490 sblock.fs_state = 0; 491 sblock.fs_clean = FS_ISCLEAN; 492 sblock.fs_ronly = 0; 493 sblock.fs_id[0] = (long)tv.tv_sec; /* XXXfvdl huh? */ 494 sblock.fs_id[1] = arc4random() & INT32_MAX; 495 sblock.fs_fsmnt[0] = '\0'; 496 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize); 497 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno - 498 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno); 499 sblock.fs_cstotal.cs_nbfree = 500 fragstoblks(&sblock, sblock.fs_dsize) - 501 howmany(csfrags, sblock.fs_frag); 502 sblock.fs_cstotal.cs_nffree = 503 fragnum(&sblock, sblock.fs_size) + 504 (fragnum(&sblock, csfrags) > 0 ? 505 sblock.fs_frag - fragnum(&sblock, csfrags) : 0); 506 sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO; 507 sblock.fs_cstotal.cs_ndir = 0; 508 sblock.fs_dsize -= csfrags; 509 sblock.fs_time = tv.tv_sec; 510 if (Oflag <= 1) { 511 sblock.fs_old_time = tv.tv_sec; 512 sblock.fs_old_dsize = sblock.fs_dsize; 513 sblock.fs_old_csaddr = sblock.fs_csaddr; 514 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 515 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 516 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 517 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 518 } 519 /* 520 * Dump out summary information about file system. 521 */ 522 if (verbosity > 0) { 523 #define B2MBFACTOR (1 / (1024.0 * 1024.0)) 524 printf("%s: %.1fMB (%lld sectors) block size %d, " 525 "fragment size %d\n", 526 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 527 (long long)fsbtodb(&sblock, sblock.fs_size), 528 sblock.fs_bsize, sblock.fs_fsize); 529 printf("\tusing %d cylinder groups of %.2fMB, %d blks, " 530 "%d inodes.\n", 531 sblock.fs_ncg, 532 (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 533 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); 534 #undef B2MBFACTOR 535 } 536 537 /* 538 * allocate space for superblock, cylinder group map, and 539 * two sets of inode blocks. 540 */ 541 if (sblock.fs_bsize < SBLOCKSIZE) 542 iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize; 543 else 544 iobufsize = 4 * sblock.fs_bsize; 545 iobuf_memsize = iobufsize; 546 if (!mfs && sblock.fs_magic == FS_UFS1_MAGIC) { 547 /* A larger buffer so we can write multiple inode blks */ 548 iobuf_memsize += 14 * sblock.fs_bsize; 549 } 550 for (;;) { 551 iobuf = mmap(0, iobuf_memsize, PROT_READ|PROT_WRITE, 552 MAP_ANON|MAP_PRIVATE, -1, 0); 553 if (iobuf != MAP_FAILED) 554 break; 555 if (iobuf_memsize != iobufsize) { 556 /* Try again with the smaller size */ 557 iobuf_memsize = iobufsize; 558 continue; 559 } 560 printf("Cannot allocate I/O buffer\n"); 561 exit(38); 562 } 563 memset(iobuf, 0, iobuf_memsize); 564 565 /* 566 * We now start writing to the filesystem 567 */ 568 569 if (!Nflag) { 570 /* 571 * Validate the given file system size. 572 * Verify that its last block can actually be accessed. 573 * Convert to file system fragment sized units. 574 */ 575 if (fssize <= 0) { 576 printf("preposterous size %lld\n", (long long)fssize); 577 exit(13); 578 } 579 wtfs(fssize - 1, sectorsize, iobuf); 580 581 /* 582 * Ensure there is nothing that looks like a filesystem 583 * superbock anywhere other than where ours will be. 584 * If fsck finds the wrong one all hell breaks loose! 585 */ 586 for (i = 0; ; i++) { 587 static const int sblocklist[] = SBLOCKSEARCH; 588 int sblkoff = sblocklist[i]; 589 int sz; 590 if (sblkoff == -1) 591 break; 592 /* Remove main superblock */ 593 zap_old_sblock(sblkoff); 594 /* and all possible locations for the first alternate */ 595 sblkoff += SBLOCKSIZE; 596 for (sz = SBLOCKSIZE; sz <= 0x10000; sz <<= 1) 597 zap_old_sblock(roundup(sblkoff, sz)); 598 } 599 600 if (isappleufs) { 601 struct appleufslabel appleufs; 602 ffs_appleufs_set(&appleufs, appleufs_volname, 603 tv.tv_sec, 0); 604 wtfs(APPLEUFS_LABEL_OFFSET/sectorsize, 605 APPLEUFS_LABEL_SIZE, &appleufs); 606 } else { 607 struct appleufslabel appleufs; 608 /* Look for & zap any existing valid apple ufs labels */ 609 rdfs(APPLEUFS_LABEL_OFFSET/sectorsize, 610 APPLEUFS_LABEL_SIZE, &appleufs); 611 if (ffs_appleufs_validate(fsys, &appleufs, NULL) == 0) { 612 memset(&appleufs, 0, sizeof(appleufs)); 613 wtfs(APPLEUFS_LABEL_OFFSET/sectorsize, 614 APPLEUFS_LABEL_SIZE, &appleufs); 615 } 616 } 617 } 618 619 /* 620 * Make a copy of the superblock into the buffer that we will be 621 * writing out in each cylinder group. 622 */ 623 memcpy(iobuf, &sblock, sizeof sblock); 624 if (needswap) 625 ffs_sb_swap(&sblock, (struct fs *)iobuf); 626 if ((sblock.fs_old_flags & FS_FLAGS_UPDATED) == 0) 627 memset(iobuf + offsetof(struct fs, fs_old_postbl_start), 628 0xff, 256); 629 630 if (verbosity >= 3) 631 printf("super-block backups (for fsck_ffs -b #) at:\n"); 632 /* If we are printing more than one line of numbers, line up columns */ 633 fld_width = verbosity < 4 ? 1 : snprintf(NULL, 0, "%" PRIu64, 634 (uint64_t)fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg-1))); 635 /* Get terminal width */ 636 if (ioctl(fileno(stdout), TIOCGWINSZ, &winsize) == 0) 637 max_cols = winsize.ws_col; 638 else 639 max_cols = 80; 640 if (Nflag && verbosity == 3) 641 /* Leave space to add " ..." after one row of numbers */ 642 max_cols -= 4; 643 #define BASE 0x10000 /* For some fixed-point maths */ 644 col = 0; 645 delta = verbosity > 2 ? 0 : max_cols * BASE / sblock.fs_ncg; 646 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) { 647 fflush(stdout); 648 initcg(cylno, &tv); 649 if (verbosity < 2) 650 continue; 651 if (delta > 0) { 652 if (Nflag) 653 /* No point doing dots for -N */ 654 break; 655 /* Print dots scaled to end near RH margin */ 656 for (col += delta; col > BASE; col -= BASE) 657 printf("."); 658 continue; 659 } 660 /* Print superblock numbers */ 661 len = printf(" %*" PRIu64 "," + !col, fld_width, 662 (uint64_t)fsbtodb(&sblock, cgsblock(&sblock, cylno))); 663 col += len; 664 if (col + len < max_cols) 665 /* Next number fits */ 666 continue; 667 /* Next number won't fit, need a newline */ 668 if (verbosity <= 3) { 669 /* Print dots for subsequent cylinder groups */ 670 delta = sblock.fs_ncg - cylno - 1; 671 if (delta != 0) { 672 if (Nflag) { 673 printf(" ..."); 674 break; 675 } 676 delta = max_cols * BASE / delta; 677 } 678 } 679 col = 0; 680 printf("\n"); 681 } 682 #undef BASE 683 if (col > 0) 684 printf("\n"); 685 if (Nflag) 686 exit(0); 687 688 /* 689 * Now construct the initial file system, 690 */ 691 if (fsinit(&tv, mfsmode, mfsuid, mfsgid) == 0 && mfs) 692 errx(1, "Error making filesystem"); 693 sblock.fs_time = tv.tv_sec; 694 if (Oflag <= 1) { 695 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 696 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 697 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 698 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 699 } 700 /* 701 * Write out the super-block and zeros until the first cg info 702 */ 703 i = cgsblock(&sblock, 0) * sblock.fs_fsize - sblock.fs_sblockloc, 704 memset(iobuf, 0, i); 705 memcpy(iobuf, &sblock, sizeof sblock); 706 if (needswap) 707 ffs_sb_swap(&sblock, (struct fs *)iobuf); 708 if ((sblock.fs_old_flags & FS_FLAGS_UPDATED) == 0) 709 memset(iobuf + offsetof(struct fs, fs_old_postbl_start), 710 0xff, 256); 711 wtfs(sblock.fs_sblockloc / sectorsize, i, iobuf); 712 713 /* Write out first and last cylinder summary sectors */ 714 if (needswap) 715 ffs_csum_swap(fscs_0, fscs_0, sblock.fs_fsize); 716 wtfs(fsbtodb(&sblock, sblock.fs_csaddr), sblock.fs_fsize, fscs_0); 717 718 if (fscs_next > fscs_reset) { 719 if (needswap) 720 ffs_csum_swap(fscs_reset, fscs_reset, sblock.fs_fsize); 721 fs_csaddr++; 722 wtfs(fsbtodb(&sblock, fs_csaddr), sblock.fs_fsize, fscs_reset); 723 } 724 725 /* mfs doesn't need these permanently allocated */ 726 munmap(iobuf, iobuf_memsize); 727 munmap(fscs_0, 2 * sblock.fs_fsize); 728 } 729 730 /* 731 * Initialize a cylinder group. 732 */ 733 void 734 initcg(int cylno, const struct timeval *tv) 735 { 736 daddr_t cbase, dmax; 737 int32_t i, d, dlower, dupper, blkno; 738 uint32_t u; 739 struct ufs1_dinode *dp1; 740 struct ufs2_dinode *dp2; 741 int start; 742 743 /* 744 * Determine block bounds for cylinder group. 745 * Allow space for super block summary information in first 746 * cylinder group. 747 */ 748 cbase = cgbase(&sblock, cylno); 749 dmax = cbase + sblock.fs_fpg; 750 if (dmax > sblock.fs_size) 751 dmax = sblock.fs_size; 752 dlower = cgsblock(&sblock, cylno) - cbase; 753 dupper = cgdmin(&sblock, cylno) - cbase; 754 if (cylno == 0) { 755 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 756 if (dupper >= cgstart(&sblock, cylno + 1)) { 757 printf("\rToo many cylinder groups to fit summary " 758 "information into first cylinder group\n"); 759 exit(40); 760 } 761 } 762 memset(&acg, 0, sblock.fs_cgsize); 763 acg.cg_magic = CG_MAGIC; 764 acg.cg_cgx = cylno; 765 acg.cg_ndblk = dmax - cbase; 766 if (sblock.fs_contigsumsize > 0) 767 acg.cg_nclusterblks = acg.cg_ndblk >> sblock.fs_fragshift; 768 start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); 769 if (Oflag == 2) { 770 acg.cg_time = tv->tv_sec; 771 acg.cg_niblk = sblock.fs_ipg; 772 acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ? 773 sblock.fs_ipg : 2 * INOPB(&sblock); 774 acg.cg_iusedoff = start; 775 } else { 776 acg.cg_old_ncyl = sblock.fs_old_cpg; 777 if ((sblock.fs_old_flags & FS_FLAGS_UPDATED) == 0 && 778 (cylno == sblock.fs_ncg - 1)) 779 acg.cg_old_ncyl = 780 sblock.fs_old_ncyl % sblock.fs_old_cpg; 781 acg.cg_old_time = tv->tv_sec; 782 acg.cg_old_niblk = sblock.fs_ipg; 783 acg.cg_old_btotoff = start; 784 acg.cg_old_boff = acg.cg_old_btotoff + 785 sblock.fs_old_cpg * sizeof(int32_t); 786 acg.cg_iusedoff = acg.cg_old_boff + 787 sblock.fs_old_cpg * sizeof(u_int16_t); 788 } 789 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); 790 if (sblock.fs_contigsumsize <= 0) { 791 acg.cg_nextfreeoff = acg.cg_freeoff + 792 howmany(sblock.fs_fpg, CHAR_BIT); 793 } else { 794 acg.cg_clustersumoff = acg.cg_freeoff + 795 howmany(sblock.fs_fpg, CHAR_BIT) - sizeof(int32_t); 796 if (isappleufs) { 797 /* Apple PR2216969 gives rationale for this change. 798 * I believe they were mistaken, but we need to 799 * duplicate it for compatibility. -- dbj@NetBSD.org 800 */ 801 acg.cg_clustersumoff += sizeof(int32_t); 802 } 803 acg.cg_clustersumoff = 804 roundup(acg.cg_clustersumoff, sizeof(int32_t)); 805 acg.cg_clusteroff = acg.cg_clustersumoff + 806 (sblock.fs_contigsumsize + 1) * sizeof(int32_t); 807 acg.cg_nextfreeoff = acg.cg_clusteroff + 808 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); 809 } 810 if (acg.cg_nextfreeoff > sblock.fs_cgsize) { 811 printf("Panic: cylinder group too big\n"); 812 exit(37); 813 } 814 acg.cg_cs.cs_nifree += sblock.fs_ipg; 815 if (cylno == 0) 816 for (u = 0; u < ROOTINO; u++) { 817 setbit(cg_inosused(&acg, 0), u); 818 acg.cg_cs.cs_nifree--; 819 } 820 if (cylno > 0) { 821 /* 822 * In cylno 0, beginning space is reserved 823 * for boot and super blocks. 824 */ 825 for (d = 0, blkno = 0; d < dlower;) { 826 setblock(&sblock, cg_blksfree(&acg, 0), blkno); 827 if (sblock.fs_contigsumsize > 0) 828 setbit(cg_clustersfree(&acg, 0), blkno); 829 acg.cg_cs.cs_nbfree++; 830 if (Oflag <= 1) { 831 int cn = old_cbtocylno(&sblock, d); 832 old_cg_blktot(&acg, 0)[cn]++; 833 old_cg_blks(&sblock, &acg, 834 cn, 0)[old_cbtorpos(&sblock, d)]++; 835 } 836 d += sblock.fs_frag; 837 blkno++; 838 } 839 } 840 if ((i = (dupper & (sblock.fs_frag - 1))) != 0) { 841 acg.cg_frsum[sblock.fs_frag - i]++; 842 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 843 setbit(cg_blksfree(&acg, 0), dupper); 844 acg.cg_cs.cs_nffree++; 845 } 846 } 847 for (d = dupper, blkno = dupper >> sblock.fs_fragshift; 848 d + sblock.fs_frag <= acg.cg_ndblk; ) { 849 setblock(&sblock, cg_blksfree(&acg, 0), blkno); 850 if (sblock.fs_contigsumsize > 0) 851 setbit(cg_clustersfree(&acg, 0), blkno); 852 acg.cg_cs.cs_nbfree++; 853 if (Oflag <= 1) { 854 int cn = old_cbtocylno(&sblock, d); 855 old_cg_blktot(&acg, 0)[cn]++; 856 old_cg_blks(&sblock, &acg, 857 cn, 0)[old_cbtorpos(&sblock, d)]++; 858 } 859 d += sblock.fs_frag; 860 blkno++; 861 } 862 if (d < acg.cg_ndblk) { 863 acg.cg_frsum[acg.cg_ndblk - d]++; 864 for (; d < acg.cg_ndblk; d++) { 865 setbit(cg_blksfree(&acg, 0), d); 866 acg.cg_cs.cs_nffree++; 867 } 868 } 869 if (sblock.fs_contigsumsize > 0) { 870 int32_t *sump = cg_clustersum(&acg, 0); 871 u_char *mapp = cg_clustersfree(&acg, 0); 872 int map = *mapp++; 873 int bit = 1; 874 int run = 0; 875 876 for (i = 0; i < acg.cg_nclusterblks; i++) { 877 if ((map & bit) != 0) { 878 run++; 879 } else if (run != 0) { 880 if (run > sblock.fs_contigsumsize) 881 run = sblock.fs_contigsumsize; 882 sump[run]++; 883 run = 0; 884 } 885 if ((i & (CHAR_BIT - 1)) != (CHAR_BIT - 1)) { 886 bit <<= 1; 887 } else { 888 map = *mapp++; 889 bit = 1; 890 } 891 } 892 if (run != 0) { 893 if (run > sblock.fs_contigsumsize) 894 run = sblock.fs_contigsumsize; 895 sump[run]++; 896 } 897 } 898 *fscs_next++ = acg.cg_cs; 899 if (fscs_next == fscs_end) { 900 /* write block of cylinder group summary info into cyl 0 */ 901 if (needswap) 902 ffs_csum_swap(fscs_reset, fscs_reset, sblock.fs_fsize); 903 fs_csaddr++; 904 wtfs(fsbtodb(&sblock, fs_csaddr), sblock.fs_fsize, fscs_reset); 905 fscs_next = fscs_reset; 906 memset(fscs_next, 0, sblock.fs_fsize); 907 } 908 /* 909 * Write out the duplicate super block, the cylinder group map 910 * and two blocks worth of inodes in a single write. 911 */ 912 start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE; 913 memcpy(&iobuf[start], &acg, sblock.fs_cgsize); 914 if (needswap) 915 ffs_cg_swap(&acg, (struct cg*)&iobuf[start], &sblock); 916 start += sblock.fs_bsize; 917 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 918 dp2 = (struct ufs2_dinode *)(&iobuf[start]); 919 for (i = MIN(sblock.fs_ipg, 2) * INOPB(&sblock); i != 0; i--) { 920 if (sblock.fs_magic == FS_UFS1_MAGIC) { 921 /* No need to swap, it'll stay random */ 922 dp1->di_gen = arc4random() & INT32_MAX; 923 dp1++; 924 } else { 925 dp2->di_gen = arc4random() & INT32_MAX; 926 dp2++; 927 } 928 } 929 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf); 930 /* 931 * For the old file system, we have to initialize all the inodes. 932 */ 933 if (sblock.fs_magic != FS_UFS1_MAGIC) 934 return; 935 936 /* Write 'd' (usually 16 * fs_frag) file-system fragments at once */ 937 d = (iobuf_memsize - start) / sblock.fs_bsize * sblock.fs_frag; 938 dupper = sblock.fs_ipg / INOPF(&sblock); 939 for (i = 2 * sblock.fs_frag; i < dupper; i += d) { 940 if (d > dupper - i) 941 d = dupper - i; 942 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 943 do 944 dp1->di_gen = arc4random() & INT32_MAX; 945 while ((char *)++dp1 < &iobuf[iobuf_memsize]); 946 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 947 d * sblock.fs_bsize / sblock.fs_frag, &iobuf[start]); 948 } 949 } 950 951 /* 952 * initialize the file system 953 */ 954 955 #ifdef LOSTDIR 956 #define PREDEFDIR 3 957 #else 958 #define PREDEFDIR 2 959 #endif 960 961 struct direct root_dir[] = { 962 { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, 963 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 964 #ifdef LOSTDIR 965 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" }, 966 #endif 967 }; 968 struct odirect { 969 u_int32_t d_ino; 970 u_int16_t d_reclen; 971 u_int16_t d_namlen; 972 u_char d_name[FFS_MAXNAMLEN + 1]; 973 } oroot_dir[] = { 974 { ROOTINO, sizeof(struct direct), 1, "." }, 975 { ROOTINO, sizeof(struct direct), 2, ".." }, 976 #ifdef LOSTDIR 977 { LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" }, 978 #endif 979 }; 980 #ifdef LOSTDIR 981 struct direct lost_found_dir[] = { 982 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." }, 983 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 984 { 0, DIRBLKSIZ, 0, 0, 0 }, 985 }; 986 struct odirect olost_found_dir[] = { 987 { LOSTFOUNDINO, sizeof(struct direct), 1, "." }, 988 { ROOTINO, sizeof(struct direct), 2, ".." }, 989 { 0, DIRBLKSIZ, 0, 0 }, 990 }; 991 #endif 992 char buf[MAXBSIZE]; 993 static void copy_dir(struct direct *, struct direct *); 994 995 int 996 fsinit(const struct timeval *tv, mode_t mfsmode, uid_t mfsuid, gid_t mfsgid) 997 { 998 union dinode node; 999 #ifdef LOSTDIR 1000 int i; 1001 int dirblksiz = DIRBLKSIZ; 1002 if (isappleufs) 1003 dirblksiz = APPLEUFS_DIRBLKSIZ; 1004 #endif 1005 1006 /* 1007 * initialize the node 1008 */ 1009 1010 #ifdef LOSTDIR 1011 /* 1012 * create the lost+found directory 1013 */ 1014 memset(&node, 0, sizeof(node)); 1015 if (Oflag == 0) { 1016 (void)makedir((struct direct *)olost_found_dir, 2); 1017 for (i = dirblksiz; i < sblock.fs_bsize; i += dirblksiz) 1018 copy_dir((struct direct*)&olost_found_dir[2], 1019 (struct direct*)&buf[i]); 1020 } else { 1021 (void)makedir(lost_found_dir, 2); 1022 for (i = dirblksiz; i < sblock.fs_bsize; i += dirblksiz) 1023 copy_dir(&lost_found_dir[2], (struct direct*)&buf[i]); 1024 } 1025 if (sblock.fs_magic == FS_UFS1_MAGIC) { 1026 node.dp1.di_atime = tv->tv_sec; 1027 node.dp1.di_atimensec = tv->tv_usec * 1000; 1028 node.dp1.di_mtime = tv->tv_sec; 1029 node.dp1.di_mtimensec = tv->tv_usec * 1000; 1030 node.dp1.di_ctime = tv->tv_sec; 1031 node.dp1.di_ctimensec = tv->tv_usec * 1000; 1032 node.dp1.di_mode = IFDIR | UMASK; 1033 node.dp1.di_nlink = 2; 1034 node.dp1.di_size = sblock.fs_bsize; 1035 node.dp1.di_db[0] = alloc(node.dp1.di_size, node.dp1.di_mode); 1036 if (node.dp1.di_db[0] == 0) 1037 return (0); 1038 node.dp1.di_blocks = btodb(fragroundup(&sblock, 1039 node.dp1.di_size)); 1040 node.dp1.di_uid = geteuid(); 1041 node.dp1.di_gid = getegid(); 1042 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), node.dp1.di_size, 1043 buf); 1044 } else { 1045 node.dp2.di_atime = tv->tv_sec; 1046 node.dp2.di_atimensec = tv->tv_usec * 1000; 1047 node.dp2.di_mtime = tv->tv_sec; 1048 node.dp2.di_mtimensec = tv->tv_usec * 1000; 1049 node.dp2.di_ctime = tv->tv_sec; 1050 node.dp2.di_ctimensec = tv->tv_usec * 1000; 1051 node.dp2.di_birthtime = tv->tv_sec; 1052 node.dp2.di_birthnsec = tv->tv_usec * 1000; 1053 node.dp2.di_mode = IFDIR | UMASK; 1054 node.dp2.di_nlink = 2; 1055 node.dp2.di_size = sblock.fs_bsize; 1056 node.dp2.di_db[0] = alloc(node.dp2.di_size, node.dp2.di_mode); 1057 if (node.dp2.di_db[0] == 0) 1058 return (0); 1059 node.dp2.di_blocks = btodb(fragroundup(&sblock, 1060 node.dp2.di_size)); 1061 node.dp2.di_uid = geteuid(); 1062 node.dp2.di_gid = getegid(); 1063 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), node.dp2.di_size, 1064 buf); 1065 } 1066 iput(&node, LOSTFOUNDINO); 1067 #endif 1068 /* 1069 * create the root directory 1070 */ 1071 memset(&node, 0, sizeof(node)); 1072 if (Oflag <= 1) { 1073 if (mfs) { 1074 node.dp1.di_mode = IFDIR | mfsmode; 1075 node.dp1.di_uid = mfsuid; 1076 node.dp1.di_gid = mfsgid; 1077 } else { 1078 node.dp1.di_mode = IFDIR | UMASK; 1079 node.dp1.di_uid = geteuid(); 1080 node.dp1.di_gid = getegid(); 1081 } 1082 node.dp1.di_nlink = PREDEFDIR; 1083 if (Oflag == 0) 1084 node.dp1.di_size = makedir((struct direct *)oroot_dir, 1085 PREDEFDIR); 1086 else 1087 node.dp1.di_size = makedir(root_dir, PREDEFDIR); 1088 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode); 1089 if (node.dp1.di_db[0] == 0) 1090 return (0); 1091 node.dp1.di_blocks = btodb(fragroundup(&sblock, 1092 node.dp1.di_size)); 1093 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, buf); 1094 } else { 1095 if (mfs) { 1096 node.dp2.di_mode = IFDIR | mfsmode; 1097 node.dp2.di_uid = mfsuid; 1098 node.dp2.di_gid = mfsgid; 1099 } else { 1100 node.dp2.di_mode = IFDIR | UMASK; 1101 node.dp2.di_uid = geteuid(); 1102 node.dp2.di_gid = getegid(); 1103 } 1104 node.dp2.di_atime = tv->tv_sec; 1105 node.dp2.di_atimensec = tv->tv_usec * 1000; 1106 node.dp2.di_mtime = tv->tv_sec; 1107 node.dp2.di_mtimensec = tv->tv_usec * 1000; 1108 node.dp2.di_ctime = tv->tv_sec; 1109 node.dp2.di_ctimensec = tv->tv_usec * 1000; 1110 node.dp2.di_birthtime = tv->tv_sec; 1111 node.dp2.di_birthnsec = tv->tv_usec * 1000; 1112 node.dp2.di_nlink = PREDEFDIR; 1113 node.dp2.di_size = makedir(root_dir, PREDEFDIR); 1114 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode); 1115 if (node.dp2.di_db[0] == 0) 1116 return (0); 1117 node.dp2.di_blocks = btodb(fragroundup(&sblock, 1118 node.dp2.di_size)); 1119 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, buf); 1120 } 1121 iput(&node, ROOTINO); 1122 return (1); 1123 } 1124 1125 /* 1126 * construct a set of directory entries in "buf". 1127 * return size of directory. 1128 */ 1129 int 1130 makedir(struct direct *protodir, int entries) 1131 { 1132 char *cp; 1133 int i, spcleft; 1134 int dirblksiz = DIRBLKSIZ; 1135 if (isappleufs) 1136 dirblksiz = APPLEUFS_DIRBLKSIZ; 1137 1138 memset(buf, 0, DIRBLKSIZ); 1139 spcleft = dirblksiz; 1140 for (cp = buf, i = 0; i < entries - 1; i++) { 1141 protodir[i].d_reclen = DIRSIZ(Oflag == 0, &protodir[i], 0); 1142 copy_dir(&protodir[i], (struct direct*)cp); 1143 cp += protodir[i].d_reclen; 1144 spcleft -= protodir[i].d_reclen; 1145 } 1146 protodir[i].d_reclen = spcleft; 1147 copy_dir(&protodir[i], (struct direct*)cp); 1148 return (dirblksiz); 1149 } 1150 1151 /* 1152 * allocate a block or frag 1153 */ 1154 daddr_t 1155 alloc(int size, int mode) 1156 { 1157 int i, frag; 1158 daddr_t d, blkno; 1159 1160 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg); 1161 /* fs -> host byte order */ 1162 if (needswap) 1163 ffs_cg_swap(&acg, &acg, &sblock); 1164 if (acg.cg_magic != CG_MAGIC) { 1165 printf("cg 0: bad magic number\n"); 1166 return (0); 1167 } 1168 if (acg.cg_cs.cs_nbfree == 0) { 1169 printf("first cylinder group ran out of space\n"); 1170 return (0); 1171 } 1172 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) 1173 if (isblock(&sblock, cg_blksfree(&acg, 0), 1174 d >> sblock.fs_fragshift)) 1175 goto goth; 1176 printf("internal error: can't find block in cyl 0\n"); 1177 return (0); 1178 goth: 1179 blkno = fragstoblks(&sblock, d); 1180 clrblock(&sblock, cg_blksfree(&acg, 0), blkno); 1181 if (sblock.fs_contigsumsize > 0) 1182 clrbit(cg_clustersfree(&acg, 0), blkno); 1183 acg.cg_cs.cs_nbfree--; 1184 sblock.fs_cstotal.cs_nbfree--; 1185 fscs_0->cs_nbfree--; 1186 if (mode & IFDIR) { 1187 acg.cg_cs.cs_ndir++; 1188 sblock.fs_cstotal.cs_ndir++; 1189 fscs_0->cs_ndir++; 1190 } 1191 if (Oflag <= 1) { 1192 int cn = old_cbtocylno(&sblock, d); 1193 old_cg_blktot(&acg, 0)[cn]--; 1194 old_cg_blks(&sblock, &acg, 1195 cn, 0)[old_cbtorpos(&sblock, d)]--; 1196 } 1197 if (size != sblock.fs_bsize) { 1198 frag = howmany(size, sblock.fs_fsize); 1199 fscs_0->cs_nffree += sblock.fs_frag - frag; 1200 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; 1201 acg.cg_cs.cs_nffree += sblock.fs_frag - frag; 1202 acg.cg_frsum[sblock.fs_frag - frag]++; 1203 for (i = frag; i < sblock.fs_frag; i++) 1204 setbit(cg_blksfree(&acg, 0), d + i); 1205 } 1206 /* host -> fs byte order */ 1207 if (needswap) 1208 ffs_cg_swap(&acg, &acg, &sblock); 1209 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg); 1210 return (d); 1211 } 1212 1213 /* 1214 * Allocate an inode on the disk 1215 */ 1216 static void 1217 iput(union dinode *ip, ino_t ino) 1218 { 1219 daddr_t d; 1220 int c, i; 1221 struct ufs1_dinode *dp1; 1222 struct ufs2_dinode *dp2; 1223 1224 c = ino_to_cg(&sblock, ino); 1225 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg); 1226 /* fs -> host byte order */ 1227 if (needswap) 1228 ffs_cg_swap(&acg, &acg, &sblock); 1229 if (acg.cg_magic != CG_MAGIC) { 1230 printf("cg 0: bad magic number\n"); 1231 exit(31); 1232 } 1233 acg.cg_cs.cs_nifree--; 1234 setbit(cg_inosused(&acg, 0), ino); 1235 /* host -> fs byte order */ 1236 if (needswap) 1237 ffs_cg_swap(&acg, &acg, &sblock); 1238 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg); 1239 sblock.fs_cstotal.cs_nifree--; 1240 fscs_0->cs_nifree--; 1241 if (ino >= (ino_t)(sblock.fs_ipg * sblock.fs_ncg)) { 1242 printf("fsinit: inode value out of range (%llu).\n", 1243 (unsigned long long)ino); 1244 exit(32); 1245 } 1246 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino)); 1247 rdfs(d, sblock.fs_bsize, (char *)iobuf); 1248 if (sblock.fs_magic == FS_UFS1_MAGIC) { 1249 dp1 = (struct ufs1_dinode *)iobuf; 1250 dp1 += ino_to_fsbo(&sblock, ino); 1251 if (needswap) { 1252 ffs_dinode1_swap(&ip->dp1, dp1); 1253 /* ffs_dinode1_swap() doesn't swap blocks addrs */ 1254 for (i=0; i<NDADDR + NIADDR; i++) 1255 dp1->di_db[i] = bswap32(ip->dp1.di_db[i]); 1256 } else 1257 *dp1 = ip->dp1; 1258 dp1->di_gen = arc4random() & INT32_MAX; 1259 } else { 1260 dp2 = (struct ufs2_dinode *)iobuf; 1261 dp2 += ino_to_fsbo(&sblock, ino); 1262 if (needswap) { 1263 ffs_dinode2_swap(&ip->dp2, dp2); 1264 for (i=0; i<NDADDR + NIADDR; i++) 1265 dp2->di_db[i] = bswap64(ip->dp2.di_db[i]); 1266 } else 1267 *dp2 = ip->dp2; 1268 dp2->di_gen = arc4random() & INT32_MAX; 1269 } 1270 wtfs(d, sblock.fs_bsize, iobuf); 1271 } 1272 1273 /* 1274 * read a block from the file system 1275 */ 1276 void 1277 rdfs(daddr_t bno, int size, void *bf) 1278 { 1279 int n; 1280 off_t offset; 1281 1282 #ifdef MFS 1283 if (mfs) { 1284 if (Nflag) 1285 memset(bf, 0, size); 1286 else 1287 memmove(bf, membase + bno * sectorsize, size); 1288 return; 1289 } 1290 #endif 1291 offset = bno; 1292 n = pread(fsi, bf, size, offset * sectorsize); 1293 if (n != size) { 1294 printf("rdfs: read error for sector %lld: %s\n", 1295 (long long)bno, strerror(errno)); 1296 exit(34); 1297 } 1298 } 1299 1300 /* 1301 * write a block to the file system 1302 */ 1303 void 1304 wtfs(daddr_t bno, int size, void *bf) 1305 { 1306 int n; 1307 off_t offset; 1308 1309 if (Nflag) 1310 return; 1311 #ifdef MFS 1312 if (mfs) { 1313 memmove(membase + bno * sectorsize, bf, size); 1314 return; 1315 } 1316 #endif 1317 offset = bno; 1318 n = pwrite(fso, bf, size, offset * sectorsize); 1319 if (n != size) { 1320 printf("wtfs: write error for sector %lld: %s\n", 1321 (long long)bno, strerror(errno)); 1322 exit(36); 1323 } 1324 } 1325 1326 /* 1327 * check if a block is available 1328 */ 1329 int 1330 isblock(struct fs *fs, unsigned char *cp, int h) 1331 { 1332 unsigned char mask; 1333 1334 switch (fs->fs_fragshift) { 1335 case 3: 1336 return (cp[h] == 0xff); 1337 case 2: 1338 mask = 0x0f << ((h & 0x1) << 2); 1339 return ((cp[h >> 1] & mask) == mask); 1340 case 1: 1341 mask = 0x03 << ((h & 0x3) << 1); 1342 return ((cp[h >> 2] & mask) == mask); 1343 case 0: 1344 mask = 0x01 << (h & 0x7); 1345 return ((cp[h >> 3] & mask) == mask); 1346 default: 1347 #ifdef STANDALONE 1348 printf("isblock bad fs_fragshift %d\n", fs->fs_fragshift); 1349 #else 1350 fprintf(stderr, "isblock bad fs_fragshift %d\n", 1351 fs->fs_fragshift); 1352 #endif 1353 return (0); 1354 } 1355 } 1356 1357 /* 1358 * take a block out of the map 1359 */ 1360 void 1361 clrblock(struct fs *fs, unsigned char *cp, int h) 1362 { 1363 switch ((fs)->fs_fragshift) { 1364 case 3: 1365 cp[h] = 0; 1366 return; 1367 case 2: 1368 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 1369 return; 1370 case 1: 1371 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 1372 return; 1373 case 0: 1374 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 1375 return; 1376 default: 1377 #ifdef STANDALONE 1378 printf("clrblock bad fs_fragshift %d\n", fs->fs_fragshift); 1379 #else 1380 fprintf(stderr, "clrblock bad fs_fragshift %d\n", 1381 fs->fs_fragshift); 1382 #endif 1383 return; 1384 } 1385 } 1386 1387 /* 1388 * put a block into the map 1389 */ 1390 void 1391 setblock(struct fs *fs, unsigned char *cp, int h) 1392 { 1393 switch (fs->fs_fragshift) { 1394 case 3: 1395 cp[h] = 0xff; 1396 return; 1397 case 2: 1398 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 1399 return; 1400 case 1: 1401 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 1402 return; 1403 case 0: 1404 cp[h >> 3] |= (0x01 << (h & 0x7)); 1405 return; 1406 default: 1407 #ifdef STANDALONE 1408 printf("setblock bad fs_frag %d\n", fs->fs_fragshift); 1409 #else 1410 fprintf(stderr, "setblock bad fs_fragshift %d\n", 1411 fs->fs_fragshift); 1412 #endif 1413 return; 1414 } 1415 } 1416 1417 /* copy a direntry to a buffer, in fs byte order */ 1418 static void 1419 copy_dir(struct direct *dir, struct direct *dbuf) 1420 { 1421 memcpy(dbuf, dir, DIRSIZ(Oflag == 0, dir, 0)); 1422 if (needswap) { 1423 dbuf->d_ino = bswap32(dir->d_ino); 1424 dbuf->d_reclen = bswap16(dir->d_reclen); 1425 if (Oflag == 0) 1426 ((struct odirect*)dbuf)->d_namlen = 1427 bswap16(((struct odirect*)dir)->d_namlen); 1428 } 1429 } 1430 1431 static int 1432 ilog2(int val) 1433 { 1434 u_int n; 1435 1436 for (n = 0; n < sizeof(n) * CHAR_BIT; n++) 1437 if (1 << n == val) 1438 return (n); 1439 errx(1, "ilog2: %d is not a power of 2\n", val); 1440 } 1441 1442 static void 1443 zap_old_sblock(int sblkoff) 1444 { 1445 static int cg0_data; 1446 uint32_t oldfs[SBLOCKSIZE / 4]; 1447 static const struct fsm { 1448 uint32_t offset; 1449 uint32_t magic; 1450 uint32_t mask; 1451 } fs_magics[] = { 1452 {offsetof(struct fs, fs_magic)/4, FS_UFS1_MAGIC, ~0u}, 1453 {offsetof(struct fs, fs_magic)/4, FS_UFS2_MAGIC, ~0u}, 1454 {0, 0x70162, ~0u}, /* LFS_MAGIC */ 1455 {14, 0xef53, 0xffff}, /* EXT2FS (little) */ 1456 {14, 0xef530000, 0xffff0000}, /* EXT2FS (big) */ 1457 {.offset = ~0u}, 1458 }; 1459 const struct fsm *fsm; 1460 1461 if (Nflag) 1462 return; 1463 1464 if (sblkoff == 0) /* Why did UFS2 add support for this? sigh. */ 1465 return; 1466 1467 if (cg0_data == 0) 1468 /* For FFSv1 this could include all the inodes. */ 1469 cg0_data = cgsblock(&sblock, 0) * sblock.fs_fsize + iobufsize; 1470 1471 /* Ignore anything that is beyond our filesystem */ 1472 if ((sblkoff + SBLOCKSIZE)/sectorsize >= fssize) 1473 return; 1474 /* Zero anything inside our filesystem... */ 1475 if (sblkoff >= sblock.fs_sblockloc) { 1476 /* ...unless we will write that area anyway */ 1477 if (sblkoff >= cg0_data) 1478 wtfs(sblkoff / sectorsize, 1479 roundup(sizeof sblock, sectorsize), iobuf); 1480 return; 1481 } 1482 1483 /* The sector might contain boot code, so we must validate it */ 1484 rdfs(sblkoff/sectorsize, sizeof oldfs, &oldfs); 1485 for (fsm = fs_magics; ; fsm++) { 1486 uint32_t v; 1487 if (fsm->mask == 0) 1488 return; 1489 v = oldfs[fsm->offset]; 1490 if ((v & fsm->mask) == fsm->magic || 1491 (bswap32(v) & fsm->mask) == fsm->magic) 1492 break; 1493 } 1494 1495 /* Just zap the magic number */ 1496 oldfs[fsm->offset] = 0; 1497 wtfs(sblkoff/sectorsize, sizeof oldfs, &oldfs); 1498 } 1499 1500 1501 #ifdef MFS 1502 /* 1503 * XXX! 1504 * Attempt to guess how much more space is available for process data. The 1505 * heuristic we use is 1506 * 1507 * max_data_limit - (sbrk(0) - etext) - 128kB 1508 * 1509 * etext approximates that start address of the data segment, and the 128kB 1510 * allows some slop for both segment gap between text and data, and for other 1511 * (libc) malloc usage. 1512 */ 1513 static void 1514 calc_memfree(void) 1515 { 1516 extern char etext; 1517 struct rlimit rlp; 1518 u_long base; 1519 1520 base = (u_long)sbrk(0) - (u_long)&etext; 1521 if (getrlimit(RLIMIT_DATA, &rlp) < 0) 1522 perror("getrlimit"); 1523 rlp.rlim_cur = rlp.rlim_max; 1524 if (setrlimit(RLIMIT_DATA, &rlp) < 0) 1525 perror("setrlimit"); 1526 memleft = rlp.rlim_max - base - (128 * 1024); 1527 } 1528 1529 /* 1530 * Internal version of malloc that trims the requested size if not enough 1531 * memory is available. 1532 */ 1533 static void * 1534 mkfs_malloc(size_t size) 1535 { 1536 u_long pgsz; 1537 caddr_t *memory; 1538 1539 if (size == 0) 1540 return (NULL); 1541 if (memleft == 0) 1542 calc_memfree(); 1543 1544 pgsz = getpagesize() - 1; 1545 size = (size + pgsz) &~ pgsz; 1546 if (size > memleft) 1547 size = memleft; 1548 memleft -= size; 1549 memory = mmap(0, size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, 1550 -1, 0); 1551 return memory != MAP_FAILED ? memory : NULL; 1552 } 1553 #endif /* MFS */ 1554