1 /* $NetBSD: segwrite.c,v 1.12 2006/05/23 22:35:20 jnemeth Exp $ */ 2 /*- 3 * Copyright (c) 2003 The NetBSD Foundation, Inc. 4 * All rights reserved. 5 * 6 * This code is derived from software contributed to The NetBSD Foundation 7 * by Konrad E. Schroder <perseant@hhhh.org>. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by the NetBSD 20 * Foundation, Inc. and its contributors. 21 * 4. Neither the name of The NetBSD Foundation nor the names of its 22 * contributors may be used to endorse or promote products derived 23 * from this software without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 35 * POSSIBILITY OF SUCH DAMAGE. 36 */ 37 /* 38 * Copyright (c) 1991, 1993 39 * The Regents of the University of California. All rights reserved. 40 * 41 * Redistribution and use in source and binary forms, with or without 42 * modification, are permitted provided that the following conditions 43 * are met: 44 * 1. Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * 2. Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in the 48 * documentation and/or other materials provided with the distribution. 49 * 3. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95 66 */ 67 68 /* 69 * Partial segment writer, taken from the kernel and adapted for userland. 70 */ 71 #include <sys/types.h> 72 #include <sys/param.h> 73 #include <sys/time.h> 74 #include <sys/buf.h> 75 #include <sys/mount.h> 76 77 #include <ufs/ufs/inode.h> 78 #include <ufs/ufs/ufsmount.h> 79 80 /* Override certain things to make <ufs/lfs/lfs.h> work */ 81 #define vnode uvnode 82 #define buf ubuf 83 #define panic call_panic 84 85 #include <ufs/lfs/lfs.h> 86 87 #include <assert.h> 88 #include <stdio.h> 89 #include <stdlib.h> 90 #include <string.h> 91 #include <err.h> 92 #include <errno.h> 93 94 #include "bufcache.h" 95 #include "vnode.h" 96 #include "lfs_user.h" 97 #include "segwrite.h" 98 99 /* Compatibility definitions */ 100 extern off_t locked_queue_bytes; 101 int locked_queue_count; 102 off_t written_bytes = 0; 103 off_t written_data = 0; 104 off_t written_indir = 0; 105 off_t written_dev = 0; 106 int written_inodes = 0; 107 108 /* Global variables */ 109 time_t write_time; 110 111 extern u_int32_t cksum(void *, size_t); 112 extern u_int32_t lfs_sb_cksum(struct dlfs *); 113 extern int preen; 114 115 /* 116 * Logical block number match routines used when traversing the dirty block 117 * chain. 118 */ 119 int 120 lfs_match_data(struct lfs * fs, struct ubuf * bp) 121 { 122 return (bp->b_lblkno >= 0); 123 } 124 125 int 126 lfs_match_indir(struct lfs * fs, struct ubuf * bp) 127 { 128 daddr_t lbn; 129 130 lbn = bp->b_lblkno; 131 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0); 132 } 133 134 int 135 lfs_match_dindir(struct lfs * fs, struct ubuf * bp) 136 { 137 daddr_t lbn; 138 139 lbn = bp->b_lblkno; 140 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1); 141 } 142 143 int 144 lfs_match_tindir(struct lfs * fs, struct ubuf * bp) 145 { 146 daddr_t lbn; 147 148 lbn = bp->b_lblkno; 149 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2); 150 } 151 152 /* 153 * Do a checkpoint. 154 */ 155 int 156 lfs_segwrite(struct lfs * fs, int flags) 157 { 158 struct inode *ip; 159 struct segment *sp; 160 struct uvnode *vp; 161 int redo; 162 163 lfs_seglock(fs, flags | SEGM_CKP); 164 sp = fs->lfs_sp; 165 166 lfs_writevnodes(fs, sp, VN_REG); 167 lfs_writevnodes(fs, sp, VN_DIROP); 168 ((SEGSUM *) (sp->segsum))->ss_flags &= ~(SS_CONT); 169 170 do { 171 vp = fs->lfs_ivnode; 172 fs->lfs_flags &= ~LFS_IFDIRTY; 173 ip = VTOI(vp); 174 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL || fs->lfs_idaddr <= 0) 175 lfs_writefile(fs, sp, vp); 176 177 redo = lfs_writeinode(fs, sp, ip); 178 redo += lfs_writeseg(fs, sp); 179 redo += (fs->lfs_flags & LFS_IFDIRTY); 180 } while (redo); 181 182 lfs_segunlock(fs); 183 #if 0 184 printf("wrote %" PRId64 " bytes (%" PRId32 " fsb)\n", 185 written_bytes, (ufs_daddr_t)btofsb(fs, written_bytes)); 186 printf("wrote %" PRId64 " bytes data (%" PRId32 " fsb)\n", 187 written_data, (ufs_daddr_t)btofsb(fs, written_data)); 188 printf("wrote %" PRId64 " bytes indir (%" PRId32 " fsb)\n", 189 written_indir, (ufs_daddr_t)btofsb(fs, written_indir)); 190 printf("wrote %" PRId64 " bytes dev (%" PRId32 " fsb)\n", 191 written_dev, (ufs_daddr_t)btofsb(fs, written_dev)); 192 printf("wrote %d inodes (%" PRId32 " fsb)\n", 193 written_inodes, btofsb(fs, written_inodes * fs->lfs_ibsize)); 194 #endif 195 return 0; 196 } 197 198 /* 199 * Write the dirty blocks associated with a vnode. 200 */ 201 void 202 lfs_writefile(struct lfs * fs, struct segment * sp, struct uvnode * vp) 203 { 204 struct ubuf *bp; 205 struct finfo *fip; 206 struct inode *ip; 207 IFILE *ifp; 208 209 ip = VTOI(vp); 210 211 if (sp->seg_bytes_left < fs->lfs_bsize || 212 sp->sum_bytes_left < sizeof(struct finfo)) 213 (void) lfs_writeseg(fs, sp); 214 215 sp->sum_bytes_left -= FINFOSIZE; 216 ++((SEGSUM *) (sp->segsum))->ss_nfinfo; 217 218 if (vp->v_flag & VDIROP) 219 ((SEGSUM *) (sp->segsum))->ss_flags |= (SS_DIROP | SS_CONT); 220 221 fip = sp->fip; 222 fip->fi_nblocks = 0; 223 fip->fi_ino = ip->i_number; 224 LFS_IENTRY(ifp, fs, fip->fi_ino, bp); 225 fip->fi_version = ifp->if_version; 226 brelse(bp); 227 228 lfs_gather(fs, sp, vp, lfs_match_data); 229 lfs_gather(fs, sp, vp, lfs_match_indir); 230 lfs_gather(fs, sp, vp, lfs_match_dindir); 231 lfs_gather(fs, sp, vp, lfs_match_tindir); 232 233 fip = sp->fip; 234 if (fip->fi_nblocks != 0) { 235 sp->fip = (FINFO *) ((caddr_t) fip + FINFOSIZE + 236 sizeof(ufs_daddr_t) * (fip->fi_nblocks)); 237 sp->start_lbp = &sp->fip->fi_blocks[0]; 238 } else { 239 sp->sum_bytes_left += FINFOSIZE; 240 --((SEGSUM *) (sp->segsum))->ss_nfinfo; 241 } 242 } 243 244 int 245 lfs_writeinode(struct lfs * fs, struct segment * sp, struct inode * ip) 246 { 247 struct ubuf *bp, *ibp; 248 struct ufs1_dinode *cdp; 249 IFILE *ifp; 250 SEGUSE *sup; 251 daddr_t daddr; 252 ino_t ino; 253 int error, i, ndx, fsb = 0; 254 int redo_ifile = 0; 255 struct timespec ts; 256 int gotblk = 0; 257 258 /* Allocate a new inode block if necessary. */ 259 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) && 260 sp->ibp == NULL) { 261 /* Allocate a new segment if necessary. */ 262 if (sp->seg_bytes_left < fs->lfs_ibsize || 263 sp->sum_bytes_left < sizeof(ufs_daddr_t)) 264 (void) lfs_writeseg(fs, sp); 265 266 /* Get next inode block. */ 267 daddr = fs->lfs_offset; 268 fs->lfs_offset += btofsb(fs, fs->lfs_ibsize); 269 sp->ibp = *sp->cbpp++ = 270 getblk(fs->lfs_devvp, fsbtodb(fs, daddr), 271 fs->lfs_ibsize); 272 sp->ibp->b_flags |= B_GATHERED; 273 gotblk++; 274 275 /* Zero out inode numbers */ 276 for (i = 0; i < INOPB(fs); ++i) 277 ((struct ufs1_dinode *) sp->ibp->b_data)[i].di_inumber = 0; 278 279 ++sp->start_bpp; 280 fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize); 281 /* Set remaining space counters. */ 282 sp->seg_bytes_left -= fs->lfs_ibsize; 283 sp->sum_bytes_left -= sizeof(ufs_daddr_t); 284 ndx = fs->lfs_sumsize / sizeof(ufs_daddr_t) - 285 sp->ninodes / INOPB(fs) - 1; 286 ((ufs_daddr_t *) (sp->segsum))[ndx] = daddr; 287 } 288 /* Update the inode times and copy the inode onto the inode page. */ 289 ts.tv_nsec = 0; 290 ts.tv_sec = write_time; 291 /* XXX kludge --- don't redirty the ifile just to put times on it */ 292 if (ip->i_number != LFS_IFILE_INUM) 293 LFS_ITIMES(ip, &ts, &ts, &ts); 294 295 /* 296 * If this is the Ifile, and we've already written the Ifile in this 297 * partial segment, just overwrite it (it's not on disk yet) and 298 * continue. 299 * 300 * XXX we know that the bp that we get the second time around has 301 * already been gathered. 302 */ 303 if (ip->i_number == LFS_IFILE_INUM && sp->idp) { 304 *(sp->idp) = *ip->i_din.ffs1_din; 305 ip->i_lfs_osize = ip->i_ffs1_size; 306 return 0; 307 } 308 bp = sp->ibp; 309 cdp = ((struct ufs1_dinode *) bp->b_data) + (sp->ninodes % INOPB(fs)); 310 *cdp = *ip->i_din.ffs1_din; 311 312 /* If all blocks are goig to disk, update the "size on disk" */ 313 ip->i_lfs_osize = ip->i_ffs1_size; 314 315 if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */ 316 sp->idp = ((struct ufs1_dinode *) bp->b_data) + 317 (sp->ninodes % INOPB(fs)); 318 if (gotblk) { 319 LFS_LOCK_BUF(bp); 320 assert(!(bp->b_flags & B_INVAL)); 321 brelse(bp); 322 } 323 /* Increment inode count in segment summary block. */ 324 ++((SEGSUM *) (sp->segsum))->ss_ninos; 325 326 /* If this page is full, set flag to allocate a new page. */ 327 if (++sp->ninodes % INOPB(fs) == 0) 328 sp->ibp = NULL; 329 330 /* 331 * If updating the ifile, update the super-block. Update the disk 332 * address and access times for this inode in the ifile. 333 */ 334 ino = ip->i_number; 335 if (ino == LFS_IFILE_INUM) { 336 daddr = fs->lfs_idaddr; 337 fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno); 338 } else { 339 LFS_IENTRY(ifp, fs, ino, ibp); 340 daddr = ifp->if_daddr; 341 ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb; 342 error = LFS_BWRITE_LOG(ibp); /* Ifile */ 343 } 344 345 /* 346 * Account the inode: it no longer belongs to its former segment, 347 * though it will not belong to the new segment until that segment 348 * is actually written. 349 */ 350 if (daddr != LFS_UNUSED_DADDR) { 351 u_int32_t oldsn = dtosn(fs, daddr); 352 LFS_SEGENTRY(sup, fs, oldsn, bp); 353 sup->su_nbytes -= DINODE1_SIZE; 354 redo_ifile = 355 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED)); 356 if (redo_ifile) 357 fs->lfs_flags |= LFS_IFDIRTY; 358 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */ 359 } 360 return redo_ifile; 361 } 362 363 int 364 lfs_gatherblock(struct segment * sp, struct ubuf * bp) 365 { 366 struct lfs *fs; 367 int version; 368 int j, blksinblk; 369 370 /* 371 * If full, finish this segment. We may be doing I/O, so 372 * release and reacquire the splbio(). 373 */ 374 fs = sp->fs; 375 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize); 376 if (sp->sum_bytes_left < sizeof(ufs_daddr_t) * blksinblk || 377 sp->seg_bytes_left < bp->b_bcount) { 378 lfs_updatemeta(sp); 379 380 version = sp->fip->fi_version; 381 (void) lfs_writeseg(fs, sp); 382 383 sp->fip->fi_version = version; 384 sp->fip->fi_ino = VTOI(sp->vp)->i_number; 385 /* Add the current file to the segment summary. */ 386 ++((SEGSUM *) (sp->segsum))->ss_nfinfo; 387 sp->sum_bytes_left -= FINFOSIZE; 388 389 return 1; 390 } 391 /* Insert into the buffer list, update the FINFO block. */ 392 bp->b_flags |= B_GATHERED; 393 /* bp->b_flags &= ~B_DONE; */ 394 395 *sp->cbpp++ = bp; 396 for (j = 0; j < blksinblk; j++) 397 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j; 398 399 sp->sum_bytes_left -= sizeof(ufs_daddr_t) * blksinblk; 400 sp->seg_bytes_left -= bp->b_bcount; 401 return 0; 402 } 403 404 int 405 lfs_gather(struct lfs * fs, struct segment * sp, struct uvnode * vp, int (*match) (struct lfs *, struct ubuf *)) 406 { 407 struct ubuf *bp, *nbp; 408 int count = 0; 409 410 sp->vp = vp; 411 loop: 412 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 413 nbp = LIST_NEXT(bp, b_vnbufs); 414 415 assert(bp->b_flags & B_DELWRI); 416 if ((bp->b_flags & (B_BUSY | B_GATHERED)) || !match(fs, bp)) { 417 continue; 418 } 419 if (lfs_gatherblock(sp, bp)) { 420 goto loop; 421 } 422 count++; 423 } 424 425 lfs_updatemeta(sp); 426 sp->vp = NULL; 427 return count; 428 } 429 430 431 /* 432 * Change the given block's address to ndaddr, finding its previous 433 * location using ufs_bmaparray(). 434 * 435 * Account for this change in the segment table. 436 */ 437 void 438 lfs_update_single(struct lfs * fs, struct segment * sp, daddr_t lbn, 439 ufs_daddr_t ndaddr, int size) 440 { 441 SEGUSE *sup; 442 struct ubuf *bp; 443 struct indir a[NIADDR + 2], *ap; 444 struct inode *ip; 445 struct uvnode *vp; 446 daddr_t daddr, ooff; 447 int num, error; 448 int bb, osize, obb; 449 450 vp = sp->vp; 451 ip = VTOI(vp); 452 453 error = ufs_bmaparray(fs, vp, lbn, &daddr, a, &num); 454 if (error) 455 errx(1, "lfs_updatemeta: ufs_bmaparray returned %d looking up lbn %" PRId64 "\n", error, lbn); 456 if (daddr > 0) 457 daddr = dbtofsb(fs, daddr); 458 459 bb = fragstofsb(fs, numfrags(fs, size)); 460 switch (num) { 461 case 0: 462 ooff = ip->i_ffs1_db[lbn]; 463 if (ooff == UNWRITTEN) 464 ip->i_ffs1_blocks += bb; 465 else { 466 /* possible fragment truncation or extension */ 467 obb = btofsb(fs, ip->i_lfs_fragsize[lbn]); 468 ip->i_ffs1_blocks += (bb - obb); 469 } 470 ip->i_ffs1_db[lbn] = ndaddr; 471 break; 472 case 1: 473 ooff = ip->i_ffs1_ib[a[0].in_off]; 474 if (ooff == UNWRITTEN) 475 ip->i_ffs1_blocks += bb; 476 ip->i_ffs1_ib[a[0].in_off] = ndaddr; 477 break; 478 default: 479 ap = &a[num - 1]; 480 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NULL, &bp)) 481 errx(1, "lfs_updatemeta: bread bno %" PRId64, 482 ap->in_lbn); 483 484 ooff = ((ufs_daddr_t *) bp->b_data)[ap->in_off]; 485 if (ooff == UNWRITTEN) 486 ip->i_ffs1_blocks += bb; 487 ((ufs_daddr_t *) bp->b_data)[ap->in_off] = ndaddr; 488 (void) VOP_BWRITE(bp); 489 } 490 491 /* 492 * Update segment usage information, based on old size 493 * and location. 494 */ 495 if (daddr > 0) { 496 u_int32_t oldsn = dtosn(fs, daddr); 497 if (lbn >= 0 && lbn < NDADDR) 498 osize = ip->i_lfs_fragsize[lbn]; 499 else 500 osize = fs->lfs_bsize; 501 LFS_SEGENTRY(sup, fs, oldsn, bp); 502 sup->su_nbytes -= osize; 503 if (!(bp->b_flags & B_GATHERED)) 504 fs->lfs_flags |= LFS_IFDIRTY; 505 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); 506 } 507 /* 508 * Now that this block has a new address, and its old 509 * segment no longer owns it, we can forget about its 510 * old size. 511 */ 512 if (lbn >= 0 && lbn < NDADDR) 513 ip->i_lfs_fragsize[lbn] = size; 514 } 515 516 /* 517 * Update the metadata that points to the blocks listed in the FINFO 518 * array. 519 */ 520 void 521 lfs_updatemeta(struct segment * sp) 522 { 523 struct ubuf *sbp; 524 struct lfs *fs; 525 struct uvnode *vp; 526 daddr_t lbn; 527 int i, nblocks, num; 528 int bb; 529 int bytesleft, size; 530 531 vp = sp->vp; 532 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp; 533 534 if (vp == NULL || nblocks == 0) 535 return; 536 537 /* 538 * This count may be high due to oversize blocks from lfs_gop_write. 539 * Correct for this. (XXX we should be able to keep track of these.) 540 */ 541 fs = sp->fs; 542 for (i = 0; i < nblocks; i++) { 543 if (sp->start_bpp[i] == NULL) { 544 printf("nblocks = %d, not %d\n", i, nblocks); 545 nblocks = i; 546 break; 547 } 548 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize); 549 nblocks -= num - 1; 550 } 551 552 /* 553 * Sort the blocks. 554 */ 555 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize); 556 557 /* 558 * Record the length of the last block in case it's a fragment. 559 * If there are indirect blocks present, they sort last. An 560 * indirect block will be lfs_bsize and its presence indicates 561 * that you cannot have fragments. 562 */ 563 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) & 564 fs->lfs_bmask) + 1; 565 566 /* 567 * Assign disk addresses, and update references to the logical 568 * block and the segment usage information. 569 */ 570 for (i = nblocks; i--; ++sp->start_bpp) { 571 sbp = *sp->start_bpp; 572 lbn = *sp->start_lbp; 573 574 sbp->b_blkno = fsbtodb(fs, fs->lfs_offset); 575 576 /* 577 * If we write a frag in the wrong place, the cleaner won't 578 * be able to correctly identify its size later, and the 579 * segment will be uncleanable. (Even worse, it will assume 580 * that the indirect block that actually ends the list 581 * is of a smaller size!) 582 */ 583 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0) 584 errx(1, "lfs_updatemeta: fragment is not last block"); 585 586 /* 587 * For each subblock in this possibly oversized block, 588 * update its address on disk. 589 */ 590 for (bytesleft = sbp->b_bcount; bytesleft > 0; 591 bytesleft -= fs->lfs_bsize) { 592 size = MIN(bytesleft, fs->lfs_bsize); 593 bb = fragstofsb(fs, numfrags(fs, size)); 594 lbn = *sp->start_lbp++; 595 lfs_update_single(fs, sp, lbn, fs->lfs_offset, size); 596 fs->lfs_offset += bb; 597 } 598 599 } 600 } 601 602 /* 603 * Start a new segment. 604 */ 605 int 606 lfs_initseg(struct lfs * fs) 607 { 608 struct segment *sp; 609 SEGUSE *sup; 610 SEGSUM *ssp; 611 struct ubuf *bp, *sbp; 612 int repeat; 613 614 sp = fs->lfs_sp; 615 616 repeat = 0; 617 618 /* Advance to the next segment. */ 619 if (!LFS_PARTIAL_FITS(fs)) { 620 /* lfs_avail eats the remaining space */ 621 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - 622 fs->lfs_curseg); 623 lfs_newseg(fs); 624 repeat = 1; 625 fs->lfs_offset = fs->lfs_curseg; 626 627 sp->seg_number = dtosn(fs, fs->lfs_curseg); 628 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg); 629 630 /* 631 * If the segment contains a superblock, update the offset 632 * and summary address to skip over it. 633 */ 634 LFS_SEGENTRY(sup, fs, sp->seg_number, bp); 635 if (sup->su_flags & SEGUSE_SUPERBLOCK) { 636 fs->lfs_offset += btofsb(fs, LFS_SBPAD); 637 sp->seg_bytes_left -= LFS_SBPAD; 638 } 639 brelse(bp); 640 /* Segment zero could also contain the labelpad */ 641 if (fs->lfs_version > 1 && sp->seg_number == 0 && 642 fs->lfs_start < btofsb(fs, LFS_LABELPAD)) { 643 fs->lfs_offset += btofsb(fs, LFS_LABELPAD) - fs->lfs_start; 644 sp->seg_bytes_left -= LFS_LABELPAD - fsbtob(fs, fs->lfs_start); 645 } 646 } else { 647 sp->seg_number = dtosn(fs, fs->lfs_curseg); 648 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg - 649 (fs->lfs_offset - fs->lfs_curseg)); 650 } 651 fs->lfs_lastpseg = fs->lfs_offset; 652 653 sp->fs = fs; 654 sp->ibp = NULL; 655 sp->idp = NULL; 656 sp->ninodes = 0; 657 sp->ndupino = 0; 658 659 /* Get a new buffer for SEGSUM and enter it into the buffer list. */ 660 sp->cbpp = sp->bpp; 661 sbp = *sp->cbpp = getblk(fs->lfs_devvp, 662 fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize); 663 sp->segsum = sbp->b_data; 664 memset(sp->segsum, 0, fs->lfs_sumsize); 665 sp->start_bpp = ++sp->cbpp; 666 fs->lfs_offset += btofsb(fs, fs->lfs_sumsize); 667 668 /* Set point to SEGSUM, initialize it. */ 669 ssp = sp->segsum; 670 ssp->ss_next = fs->lfs_nextseg; 671 ssp->ss_nfinfo = ssp->ss_ninos = 0; 672 ssp->ss_magic = SS_MAGIC; 673 674 /* Set pointer to first FINFO, initialize it. */ 675 sp->fip = (struct finfo *) ((caddr_t) sp->segsum + SEGSUM_SIZE(fs)); 676 sp->fip->fi_nblocks = 0; 677 sp->start_lbp = &sp->fip->fi_blocks[0]; 678 sp->fip->fi_lastlength = 0; 679 680 sp->seg_bytes_left -= fs->lfs_sumsize; 681 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs); 682 683 LFS_LOCK_BUF(sbp); 684 brelse(sbp); 685 return repeat; 686 } 687 688 /* 689 * Return the next segment to write. 690 */ 691 void 692 lfs_newseg(struct lfs * fs) 693 { 694 CLEANERINFO *cip; 695 SEGUSE *sup; 696 struct ubuf *bp; 697 int curseg, isdirty, sn; 698 699 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp); 700 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE; 701 sup->su_nbytes = 0; 702 sup->su_nsums = 0; 703 sup->su_ninos = 0; 704 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp); 705 706 LFS_CLEANERINFO(cip, fs, bp); 707 --cip->clean; 708 ++cip->dirty; 709 fs->lfs_nclean = cip->clean; 710 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1); 711 712 fs->lfs_lastseg = fs->lfs_curseg; 713 fs->lfs_curseg = fs->lfs_nextseg; 714 for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) { 715 sn = (sn + 1) % fs->lfs_nseg; 716 if (sn == curseg) 717 errx(1, "lfs_nextseg: no clean segments"); 718 LFS_SEGENTRY(sup, fs, sn, bp); 719 isdirty = sup->su_flags & SEGUSE_DIRTY; 720 brelse(bp); 721 722 if (!isdirty) 723 break; 724 } 725 726 ++fs->lfs_nactive; 727 fs->lfs_nextseg = sntod(fs, sn); 728 } 729 730 731 int 732 lfs_writeseg(struct lfs * fs, struct segment * sp) 733 { 734 struct ubuf **bpp, *bp; 735 SEGUSE *sup; 736 SEGSUM *ssp; 737 char *datap, *dp; 738 int i; 739 int do_again, nblocks, byteoffset; 740 size_t el_size; 741 u_short ninos; 742 struct uvnode *devvp; 743 744 /* 745 * If there are no buffers other than the segment summary to write 746 * and it is not a checkpoint, don't do anything. On a checkpoint, 747 * even if there aren't any buffers, you need to write the superblock. 748 */ 749 if ((nblocks = sp->cbpp - sp->bpp) == 1) 750 return 0; 751 752 devvp = fs->lfs_devvp; 753 754 /* Update the segment usage information. */ 755 LFS_SEGENTRY(sup, fs, sp->seg_number, bp); 756 757 /* Loop through all blocks, except the segment summary. */ 758 for (bpp = sp->bpp; ++bpp < sp->cbpp;) { 759 if ((*bpp)->b_vp != devvp) { 760 sup->su_nbytes += (*bpp)->b_bcount; 761 } 762 } 763 764 ssp = (SEGSUM *) sp->segsum; 765 766 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs); 767 sup->su_nbytes += ssp->ss_ninos * DINODE1_SIZE; 768 769 if (fs->lfs_version == 1) 770 sup->su_olastmod = write_time; 771 else 772 sup->su_lastmod = write_time; 773 sup->su_ninos += ninos; 774 ++sup->su_nsums; 775 fs->lfs_dmeta += (btofsb(fs, fs->lfs_sumsize) + btofsb(fs, ninos * 776 fs->lfs_ibsize)); 777 fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize); 778 779 do_again = !(bp->b_flags & B_GATHERED); 780 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */ 781 782 /* 783 * Compute checksum across data and then across summary; the first 784 * block (the summary block) is skipped. Set the create time here 785 * so that it's guaranteed to be later than the inode mod times. 786 */ 787 if (fs->lfs_version == 1) 788 el_size = sizeof(u_long); 789 else 790 el_size = sizeof(u_int32_t); 791 datap = dp = malloc(nblocks * el_size); 792 if (dp == NULL) 793 err(1, NULL); 794 for (bpp = sp->bpp, i = nblocks - 1; i--;) { 795 ++bpp; 796 /* Loop through gop_write cluster blocks */ 797 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount; 798 byteoffset += fs->lfs_bsize) { 799 memcpy(dp, (*bpp)->b_data + byteoffset, el_size); 800 dp += el_size; 801 } 802 bremfree(*bpp); 803 (*bpp)->b_flags |= B_BUSY; 804 } 805 if (fs->lfs_version == 1) 806 ssp->ss_ocreate = write_time; 807 else { 808 ssp->ss_create = write_time; 809 ssp->ss_serial = ++fs->lfs_serial; 810 ssp->ss_ident = fs->lfs_ident; 811 } 812 /* Set the summary block busy too */ 813 bremfree(*(sp->bpp)); 814 (*(sp->bpp))->b_flags |= B_BUSY; 815 816 ssp->ss_datasum = cksum(datap, (nblocks - 1) * el_size); 817 ssp->ss_sumsum = 818 cksum(&ssp->ss_datasum, fs->lfs_sumsize - sizeof(ssp->ss_sumsum)); 819 free(datap); 820 datap = dp = NULL; 821 fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) + 822 btofsb(fs, fs->lfs_sumsize)); 823 824 if (devvp == NULL) 825 errx(1, "devvp is NULL"); 826 for (bpp = sp->bpp, i = nblocks; i; bpp++, i--) { 827 bp = *bpp; 828 #if 0 829 printf("i = %d, bp = %p, flags %lx, bn = %" PRIx64 "\n", 830 nblocks - i, bp, bp->b_flags, bp->b_blkno); 831 printf(" vp = %p\n", bp->b_vp); 832 if (bp->b_vp != fs->lfs_devvp) 833 printf(" ino = %d lbn = %" PRId64 "\n", 834 VTOI(bp->b_vp)->i_number, bp->b_lblkno); 835 #endif 836 if (bp->b_vp == fs->lfs_devvp) 837 written_dev += bp->b_bcount; 838 else { 839 if (bp->b_lblkno >= 0) 840 written_data += bp->b_bcount; 841 else 842 written_indir += bp->b_bcount; 843 } 844 bp->b_flags &= ~(B_DELWRI | B_READ | B_GATHERED | B_ERROR | 845 B_LOCKED); 846 bwrite(bp); 847 written_bytes += bp->b_bcount; 848 } 849 written_inodes += ninos; 850 851 return (lfs_initseg(fs) || do_again); 852 } 853 854 /* 855 * Our own copy of shellsort. XXX use qsort or heapsort. 856 */ 857 void 858 lfs_shellsort(struct ubuf ** bp_array, ufs_daddr_t * lb_array, int nmemb, int size) 859 { 860 static int __rsshell_increments[] = {4, 1, 0}; 861 int incr, *incrp, t1, t2; 862 struct ubuf *bp_temp; 863 864 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;) 865 for (t1 = incr; t1 < nmemb; ++t1) 866 for (t2 = t1 - incr; t2 >= 0;) 867 if ((u_int32_t) bp_array[t2]->b_lblkno > 868 (u_int32_t) bp_array[t2 + incr]->b_lblkno) { 869 bp_temp = bp_array[t2]; 870 bp_array[t2] = bp_array[t2 + incr]; 871 bp_array[t2 + incr] = bp_temp; 872 t2 -= incr; 873 } else 874 break; 875 876 /* Reform the list of logical blocks */ 877 incr = 0; 878 for (t1 = 0; t1 < nmemb; t1++) { 879 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) { 880 lb_array[incr++] = bp_array[t1]->b_lblkno + t2; 881 } 882 } 883 } 884 885 886 /* 887 * lfs_seglock -- 888 * Single thread the segment writer. 889 */ 890 int 891 lfs_seglock(struct lfs * fs, unsigned long flags) 892 { 893 struct segment *sp; 894 895 if (fs->lfs_seglock) { 896 ++fs->lfs_seglock; 897 fs->lfs_sp->seg_flags |= flags; 898 return 0; 899 } 900 fs->lfs_seglock = 1; 901 902 sp = fs->lfs_sp = (struct segment *) malloc(sizeof(*sp)); 903 if (sp == NULL) 904 err(1, NULL); 905 sp->bpp = (struct ubuf **) malloc(fs->lfs_ssize * sizeof(struct ubuf *)); 906 if (!sp->bpp) 907 errx(!preen, "Could not allocate %zu bytes: %s", 908 (size_t)(fs->lfs_ssize * sizeof(struct ubuf *)), 909 strerror(errno)); 910 sp->seg_flags = flags; 911 sp->vp = NULL; 912 sp->seg_iocount = 0; 913 (void) lfs_initseg(fs); 914 915 return 0; 916 } 917 918 /* 919 * lfs_segunlock -- 920 * Single thread the segment writer. 921 */ 922 void 923 lfs_segunlock(struct lfs * fs) 924 { 925 struct segment *sp; 926 struct ubuf *bp; 927 928 sp = fs->lfs_sp; 929 930 if (fs->lfs_seglock == 1) { 931 if (sp->bpp != sp->cbpp) { 932 /* Free allocated segment summary */ 933 fs->lfs_offset -= btofsb(fs, fs->lfs_sumsize); 934 bp = *sp->bpp; 935 bremfree(bp); 936 bp->b_flags |= B_DONE | B_INVAL; 937 bp->b_flags &= ~B_DELWRI; 938 reassignbuf(bp, bp->b_vp); 939 bp->b_flags |= B_BUSY; /* XXX */ 940 brelse(bp); 941 } else 942 printf("unlock to 0 with no summary"); 943 944 free(sp->bpp); 945 sp->bpp = NULL; 946 free(sp); 947 fs->lfs_sp = NULL; 948 949 fs->lfs_nactive = 0; 950 951 /* Since we *know* everything's on disk, write both sbs */ 952 lfs_writesuper(fs, fs->lfs_sboffs[0]); 953 lfs_writesuper(fs, fs->lfs_sboffs[1]); 954 955 --fs->lfs_seglock; 956 fs->lfs_lockpid = 0; 957 } else if (fs->lfs_seglock == 0) { 958 errx(1, "Seglock not held"); 959 } else { 960 --fs->lfs_seglock; 961 } 962 } 963 964 int 965 lfs_writevnodes(struct lfs *fs, struct segment *sp, int op) 966 { 967 struct inode *ip; 968 struct uvnode *vp; 969 int inodes_written = 0; 970 971 LIST_FOREACH(vp, &vnodelist, v_mntvnodes) { 972 if (vp->v_bmap_op != lfs_vop_bmap) 973 continue; 974 975 ip = VTOI(vp); 976 977 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) || 978 (op != VN_DIROP && (vp->v_flag & VDIROP))) { 979 continue; 980 } 981 /* 982 * Write the inode/file if dirty and it's not the IFILE. 983 */ 984 if (ip->i_flag & IN_ALLMOD || !LIST_EMPTY(&vp->v_dirtyblkhd)) { 985 if (ip->i_number != LFS_IFILE_INUM) 986 lfs_writefile(fs, sp, vp); 987 (void) lfs_writeinode(fs, sp, ip); 988 inodes_written++; 989 } 990 } 991 return inodes_written; 992 } 993 994 void 995 lfs_writesuper(struct lfs *fs, ufs_daddr_t daddr) 996 { 997 struct ubuf *bp; 998 999 /* Set timestamp of this version of the superblock */ 1000 if (fs->lfs_version == 1) 1001 fs->lfs_otstamp = write_time; 1002 fs->lfs_tstamp = write_time; 1003 1004 /* Checksum the superblock and copy it into a buffer. */ 1005 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs)); 1006 assert(daddr > 0); 1007 bp = getblk(fs->lfs_devvp, fsbtodb(fs, daddr), LFS_SBPAD); 1008 memset(bp->b_data + sizeof(struct dlfs), 0, 1009 LFS_SBPAD - sizeof(struct dlfs)); 1010 *(struct dlfs *) bp->b_data = fs->lfs_dlfs; 1011 1012 bwrite(bp); 1013 } 1014