1 /* $NetBSD: lfs.c,v 1.19 2005/10/13 21:14:45 jmc Exp $ */ 2 /*- 3 * Copyright (c) 2003 The NetBSD Foundation, Inc. 4 * All rights reserved. 5 * 6 * This code is derived from software contributed to The NetBSD Foundation 7 * by Konrad E. Schroder <perseant@hhhh.org>. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by the NetBSD 20 * Foundation, Inc. and its contributors. 21 * 4. Neither the name of The NetBSD Foundation nor the names of its 22 * contributors may be used to endorse or promote products derived 23 * from this software without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 35 * POSSIBILITY OF SUCH DAMAGE. 36 */ 37 /* 38 * Copyright (c) 1989, 1991, 1993 39 * The Regents of the University of California. All rights reserved. 40 * (c) UNIX System Laboratories, Inc. 41 * All or some portions of this file are derived from material licensed 42 * to the University of California by American Telephone and Telegraph 43 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 44 * the permission of UNIX System Laboratories, Inc. 45 * 46 * Redistribution and use in source and binary forms, with or without 47 * modification, are permitted provided that the following conditions 48 * are met: 49 * 1. Redistributions of source code must retain the above copyright 50 * notice, this list of conditions and the following disclaimer. 51 * 2. Redistributions in binary form must reproduce the above copyright 52 * notice, this list of conditions and the following disclaimer in the 53 * documentation and/or other materials provided with the distribution. 54 * 3. Neither the name of the University nor the names of its contributors 55 * may be used to endorse or promote products derived from this software 56 * without specific prior written permission. 57 * 58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 68 * SUCH DAMAGE. 69 * 70 * @(#)ufs_bmap.c 8.8 (Berkeley) 8/11/95 71 */ 72 73 74 #include <sys/types.h> 75 #include <sys/param.h> 76 #include <sys/time.h> 77 #include <sys/buf.h> 78 #include <sys/mount.h> 79 80 #include <ufs/ufs/inode.h> 81 #include <ufs/ufs/ufsmount.h> 82 #define vnode uvnode 83 #include <ufs/lfs/lfs.h> 84 #undef vnode 85 86 #include <assert.h> 87 #include <err.h> 88 #include <errno.h> 89 #include <stdarg.h> 90 #include <stdio.h> 91 #include <stdlib.h> 92 #include <string.h> 93 #include <unistd.h> 94 95 #include "bufcache.h" 96 #include "vnode.h" 97 #include "lfs_user.h" 98 #include "segwrite.h" 99 100 #define panic call_panic 101 102 extern u_int32_t cksum(void *, size_t); 103 extern u_int32_t lfs_sb_cksum(struct dlfs *); 104 extern void pwarn(const char *, ...); 105 106 extern struct uvnodelst vnodelist; 107 extern struct uvnodelst getvnodelist[VNODE_HASH_MAX]; 108 extern int nvnodes; 109 110 int fsdirty = 0; 111 void (*panic_func)(int, const char *, va_list) = my_vpanic; 112 113 /* 114 * LFS buffer and uvnode operations 115 */ 116 117 int 118 lfs_vop_strategy(struct ubuf * bp) 119 { 120 int count; 121 122 if (bp->b_flags & B_READ) { 123 count = pread(bp->b_vp->v_fd, bp->b_data, bp->b_bcount, 124 dbtob(bp->b_blkno)); 125 if (count == bp->b_bcount) 126 bp->b_flags |= B_DONE; 127 } else { 128 count = pwrite(bp->b_vp->v_fd, bp->b_data, bp->b_bcount, 129 dbtob(bp->b_blkno)); 130 if (count == 0) { 131 perror("pwrite"); 132 return -1; 133 } 134 bp->b_flags &= ~B_DELWRI; 135 reassignbuf(bp, bp->b_vp); 136 } 137 return 0; 138 } 139 140 int 141 lfs_vop_bwrite(struct ubuf * bp) 142 { 143 struct lfs *fs; 144 145 fs = bp->b_vp->v_fs; 146 if (!(bp->b_flags & B_DELWRI)) { 147 fs->lfs_avail -= btofsb(fs, bp->b_bcount); 148 } 149 bp->b_flags |= B_DELWRI | B_LOCKED; 150 reassignbuf(bp, bp->b_vp); 151 brelse(bp); 152 return 0; 153 } 154 155 /* 156 * ufs_bmaparray does the bmap conversion, and if requested returns the 157 * array of logical blocks which must be traversed to get to a block. 158 * Each entry contains the offset into that block that gets you to the 159 * next block and the disk address of the block (if it is assigned). 160 */ 161 int 162 ufs_bmaparray(struct lfs * fs, struct uvnode * vp, daddr_t bn, daddr_t * bnp, struct indir * ap, int *nump) 163 { 164 struct inode *ip; 165 struct ubuf *bp; 166 struct indir a[NIADDR + 1], *xap; 167 daddr_t daddr; 168 daddr_t metalbn; 169 int error, num; 170 171 ip = VTOI(vp); 172 173 if (bn >= 0 && bn < NDADDR) { 174 if (nump != NULL) 175 *nump = 0; 176 *bnp = fsbtodb(fs, ip->i_ffs1_db[bn]); 177 if (*bnp == 0) 178 *bnp = -1; 179 return (0); 180 } 181 xap = ap == NULL ? a : ap; 182 if (!nump) 183 nump = # 184 if ((error = ufs_getlbns(fs, vp, bn, xap, nump)) != 0) 185 return (error); 186 187 num = *nump; 188 189 /* Get disk address out of indirect block array */ 190 daddr = ip->i_ffs1_ib[xap->in_off]; 191 192 for (bp = NULL, ++xap; --num; ++xap) { 193 /* Exit the loop if there is no disk address assigned yet and 194 * the indirect block isn't in the cache, or if we were 195 * looking for an indirect block and we've found it. */ 196 197 metalbn = xap->in_lbn; 198 if ((daddr == 0 && !incore(vp, metalbn)) || metalbn == bn) 199 break; 200 /* 201 * If we get here, we've either got the block in the cache 202 * or we have a disk address for it, go fetch it. 203 */ 204 if (bp) 205 brelse(bp); 206 207 xap->in_exists = 1; 208 bp = getblk(vp, metalbn, fs->lfs_bsize); 209 210 if (!(bp->b_flags & (B_DONE | B_DELWRI))) { 211 bp->b_blkno = fsbtodb(fs, daddr); 212 bp->b_flags |= B_READ; 213 VOP_STRATEGY(bp); 214 } 215 daddr = ((ufs_daddr_t *) bp->b_data)[xap->in_off]; 216 } 217 if (bp) 218 brelse(bp); 219 220 daddr = fsbtodb(fs, (ufs_daddr_t) daddr); 221 *bnp = daddr == 0 ? -1 : daddr; 222 return (0); 223 } 224 225 /* 226 * Create an array of logical block number/offset pairs which represent the 227 * path of indirect blocks required to access a data block. The first "pair" 228 * contains the logical block number of the appropriate single, double or 229 * triple indirect block and the offset into the inode indirect block array. 230 * Note, the logical block number of the inode single/double/triple indirect 231 * block appears twice in the array, once with the offset into the i_ffs1_ib and 232 * once with the offset into the page itself. 233 */ 234 int 235 ufs_getlbns(struct lfs * fs, struct uvnode * vp, daddr_t bn, struct indir * ap, int *nump) 236 { 237 daddr_t metalbn, realbn; 238 int64_t blockcnt; 239 int lbc; 240 int i, numlevels, off; 241 int lognindir, indir; 242 243 metalbn = 0; /* XXXGCC -Wuninitialized [sh3] */ 244 245 if (nump) 246 *nump = 0; 247 numlevels = 0; 248 realbn = bn; 249 if (bn < 0) 250 bn = -bn; 251 252 lognindir = -1; 253 for (indir = fs->lfs_nindir; indir; indir >>= 1) 254 ++lognindir; 255 256 /* Determine the number of levels of indirection. After this loop is 257 * done, blockcnt indicates the number of data blocks possible at the 258 * given level of indirection, and NIADDR - i is the number of levels 259 * of indirection needed to locate the requested block. */ 260 261 bn -= NDADDR; 262 for (lbc = 0, i = NIADDR;; i--, bn -= blockcnt) { 263 if (i == 0) 264 return (EFBIG); 265 266 lbc += lognindir; 267 blockcnt = (int64_t) 1 << lbc; 268 269 if (bn < blockcnt) 270 break; 271 } 272 273 /* Calculate the address of the first meta-block. */ 274 metalbn = -((realbn >= 0 ? realbn : -realbn) - bn + NIADDR - i); 275 276 /* At each iteration, off is the offset into the bap array which is an 277 * array of disk addresses at the current level of indirection. The 278 * logical block number and the offset in that block are stored into 279 * the argument array. */ 280 ap->in_lbn = metalbn; 281 ap->in_off = off = NIADDR - i; 282 ap->in_exists = 0; 283 ap++; 284 for (++numlevels; i <= NIADDR; i++) { 285 /* If searching for a meta-data block, quit when found. */ 286 if (metalbn == realbn) 287 break; 288 289 lbc -= lognindir; 290 blockcnt = (int64_t) 1 << lbc; 291 off = (bn >> lbc) & (fs->lfs_nindir - 1); 292 293 ++numlevels; 294 ap->in_lbn = metalbn; 295 ap->in_off = off; 296 ap->in_exists = 0; 297 ++ap; 298 299 metalbn -= -1 + (off << lbc); 300 } 301 if (nump) 302 *nump = numlevels; 303 return (0); 304 } 305 306 int 307 lfs_vop_bmap(struct uvnode * vp, daddr_t lbn, daddr_t * daddrp) 308 { 309 return ufs_bmaparray(vp->v_fs, vp, lbn, daddrp, NULL, NULL); 310 } 311 312 /* Search a block for a specific dinode. */ 313 struct ufs1_dinode * 314 lfs_ifind(struct lfs * fs, ino_t ino, struct ubuf * bp) 315 { 316 struct ufs1_dinode *dip = (struct ufs1_dinode *) bp->b_data; 317 struct ufs1_dinode *ldip, *fin; 318 319 fin = dip + INOPB(fs); 320 321 /* 322 * Read the inode block backwards, since later versions of the 323 * inode will supercede earlier ones. Though it is unlikely, it is 324 * possible that the same inode will appear in the same inode block. 325 */ 326 for (ldip = fin - 1; ldip >= dip; --ldip) 327 if (ldip->di_inumber == ino) 328 return (ldip); 329 return NULL; 330 } 331 332 /* 333 * lfs_raw_vget makes us a new vnode from the inode at the given disk address. 334 * XXX it currently loses atime information. 335 */ 336 struct uvnode * 337 lfs_raw_vget(struct lfs * fs, ino_t ino, int fd, ufs_daddr_t daddr) 338 { 339 struct uvnode *vp; 340 struct inode *ip; 341 struct ufs1_dinode *dip; 342 struct ubuf *bp; 343 int i, hash; 344 345 vp = (struct uvnode *) malloc(sizeof(*vp)); 346 memset(vp, 0, sizeof(*vp)); 347 vp->v_fd = fd; 348 vp->v_fs = fs; 349 vp->v_usecount = 0; 350 vp->v_strategy_op = lfs_vop_strategy; 351 vp->v_bwrite_op = lfs_vop_bwrite; 352 vp->v_bmap_op = lfs_vop_bmap; 353 LIST_INIT(&vp->v_cleanblkhd); 354 LIST_INIT(&vp->v_dirtyblkhd); 355 356 ip = (struct inode *) malloc(sizeof(*ip)); 357 memset(ip, 0, sizeof(*ip)); 358 359 ip->i_din.ffs1_din = (struct ufs1_dinode *) 360 malloc(sizeof(struct ufs1_dinode)); 361 memset(ip->i_din.ffs1_din, 0, sizeof (struct ufs1_dinode)); 362 363 /* Initialize the inode -- from lfs_vcreate. */ 364 ip->inode_ext.lfs = malloc(sizeof(struct lfs_inode_ext)); 365 memset(ip->inode_ext.lfs, 0, sizeof(struct lfs_inode_ext)); 366 vp->v_data = ip; 367 /* ip->i_vnode = vp; */ 368 ip->i_number = ino; 369 ip->i_lockf = 0; 370 ip->i_diroff = 0; 371 ip->i_lfs_effnblks = 0; 372 ip->i_flag = 0; 373 374 /* Load inode block and find inode */ 375 if (daddr > 0) { 376 bread(fs->lfs_devvp, fsbtodb(fs, daddr), fs->lfs_ibsize, NULL, &bp); 377 bp->b_flags |= B_AGE; 378 dip = lfs_ifind(fs, ino, bp); 379 if (dip == NULL) { 380 brelse(bp); 381 free(ip); 382 free(vp); 383 return NULL; 384 } 385 memcpy(ip->i_din.ffs1_din, dip, sizeof(*dip)); 386 brelse(bp); 387 } 388 ip->i_number = ino; 389 /* ip->i_devvp = fs->lfs_devvp; */ 390 ip->i_lfs = fs; 391 392 ip->i_ffs_effnlink = ip->i_ffs1_nlink; 393 ip->i_lfs_effnblks = ip->i_ffs1_blocks; 394 ip->i_lfs_osize = ip->i_ffs1_size; 395 #if 0 396 if (fs->lfs_version > 1) { 397 ip->i_ffs1_atime = ts.tv_sec; 398 ip->i_ffs1_atimensec = ts.tv_nsec; 399 } 400 #endif 401 402 memset(ip->i_lfs_fragsize, 0, NDADDR * sizeof(*ip->i_lfs_fragsize)); 403 for (i = 0; i < NDADDR; i++) 404 if (ip->i_ffs1_db[i] != 0) 405 ip->i_lfs_fragsize[i] = blksize(fs, ip, i); 406 407 ++nvnodes; 408 hash = ((int)(intptr_t)fs + ino) & (VNODE_HASH_MAX - 1); 409 LIST_INSERT_HEAD(&getvnodelist[hash], vp, v_getvnodes); 410 LIST_INSERT_HEAD(&vnodelist, vp, v_mntvnodes); 411 412 return vp; 413 } 414 415 static struct uvnode * 416 lfs_vget(void *vfs, ino_t ino) 417 { 418 struct lfs *fs = (struct lfs *)vfs; 419 ufs_daddr_t daddr; 420 struct ubuf *bp; 421 IFILE *ifp; 422 423 LFS_IENTRY(ifp, fs, ino, bp); 424 daddr = ifp->if_daddr; 425 brelse(bp); 426 if (daddr <= 0 || dtosn(fs, daddr) >= fs->lfs_nseg) 427 return NULL; 428 return lfs_raw_vget(fs, ino, fs->lfs_ivnode->v_fd, daddr); 429 } 430 431 /* Check superblock magic number and checksum */ 432 static int 433 check_sb(struct lfs *fs) 434 { 435 u_int32_t checksum; 436 437 if (fs->lfs_magic != LFS_MAGIC) { 438 printf("Superblock magic number (0x%lx) does not match " 439 "expected 0x%lx\n", (unsigned long) fs->lfs_magic, 440 (unsigned long) LFS_MAGIC); 441 return 1; 442 } 443 /* checksum */ 444 checksum = lfs_sb_cksum(&(fs->lfs_dlfs)); 445 if (fs->lfs_cksum != checksum) { 446 printf("Superblock checksum (%lx) does not match computed checksum (%lx)\n", 447 (unsigned long) fs->lfs_cksum, (unsigned long) checksum); 448 return 1; 449 } 450 return 0; 451 } 452 453 /* Initialize LFS library; load superblocks and choose which to use. */ 454 struct lfs * 455 lfs_init(int devfd, daddr_t sblkno, daddr_t idaddr, int dummy_read, int debug) 456 { 457 struct uvnode *devvp; 458 struct ubuf *bp; 459 int tryalt; 460 struct lfs *fs, *altfs; 461 int error; 462 463 vfs_init(); 464 465 devvp = (struct uvnode *) malloc(sizeof(*devvp)); 466 memset(devvp, 0, sizeof(*devvp)); 467 devvp->v_fs = NULL; 468 devvp->v_fd = devfd; 469 devvp->v_strategy_op = raw_vop_strategy; 470 devvp->v_bwrite_op = raw_vop_bwrite; 471 devvp->v_bmap_op = raw_vop_bmap; 472 LIST_INIT(&devvp->v_cleanblkhd); 473 LIST_INIT(&devvp->v_dirtyblkhd); 474 475 tryalt = 0; 476 if (dummy_read) { 477 if (sblkno == 0) 478 sblkno = btodb(LFS_LABELPAD); 479 fs = (struct lfs *) malloc(sizeof(*fs)); 480 memset(fs, 0, sizeof(*fs)); 481 fs->lfs_devvp = devvp; 482 } else { 483 if (sblkno == 0) { 484 sblkno = btodb(LFS_LABELPAD); 485 tryalt = 1; 486 } else if (debug) { 487 printf("No -b flag given, not attempting to verify checkpoint\n"); 488 } 489 error = bread(devvp, sblkno, LFS_SBPAD, NOCRED, &bp); 490 fs = (struct lfs *) malloc(sizeof(*fs)); 491 memset(fs, 0, sizeof(*fs)); 492 fs->lfs_dlfs = *((struct dlfs *) bp->b_data); 493 fs->lfs_devvp = devvp; 494 bp->b_flags |= B_INVAL; 495 brelse(bp); 496 497 if (tryalt) { 498 error = bread(devvp, fsbtodb(fs, fs->lfs_sboffs[1]), 499 LFS_SBPAD, NOCRED, &bp); 500 altfs = (struct lfs *) malloc(sizeof(*altfs)); 501 memset(altfs, 0, sizeof(*altfs)); 502 altfs->lfs_dlfs = *((struct dlfs *) bp->b_data); 503 altfs->lfs_devvp = devvp; 504 bp->b_flags |= B_INVAL; 505 brelse(bp); 506 507 if (check_sb(fs) || fs->lfs_idaddr <= 0) { 508 if (debug) 509 printf("Primary superblock is no good, using first alternate\n"); 510 free(fs); 511 fs = altfs; 512 } else { 513 /* If both superblocks check out, try verification */ 514 if (check_sb(altfs)) { 515 if (debug) 516 printf("First alternate superblock is no good, using primary\n"); 517 free(altfs); 518 } else { 519 if (lfs_verify(fs, altfs, devvp, debug) == fs) { 520 free(altfs); 521 } else { 522 free(fs); 523 fs = altfs; 524 } 525 } 526 } 527 } 528 if (check_sb(fs)) { 529 free(fs); 530 return NULL; 531 } 532 } 533 534 /* Compatibility */ 535 if (fs->lfs_version < 2) { 536 fs->lfs_sumsize = LFS_V1_SUMMARY_SIZE; 537 fs->lfs_ibsize = fs->lfs_bsize; 538 fs->lfs_start = fs->lfs_sboffs[0]; 539 fs->lfs_tstamp = fs->lfs_otstamp; 540 fs->lfs_fsbtodb = 0; 541 } 542 543 if (!dummy_read) { 544 fs->lfs_suflags = (u_int32_t **) malloc(2 * sizeof(u_int32_t *)); 545 fs->lfs_suflags[0] = (u_int32_t *) malloc(fs->lfs_nseg * sizeof(u_int32_t)); 546 fs->lfs_suflags[1] = (u_int32_t *) malloc(fs->lfs_nseg * sizeof(u_int32_t)); 547 } 548 549 if (idaddr == 0) 550 idaddr = fs->lfs_idaddr; 551 else 552 fs->lfs_idaddr = idaddr; 553 /* NB: If dummy_read!=0, idaddr==0 here so we get a fake inode. */ 554 fs->lfs_ivnode = lfs_raw_vget(fs, 555 (dummy_read ? LFS_IFILE_INUM : fs->lfs_ifile), devvp->v_fd, 556 idaddr); 557 558 register_vget((void *)fs, lfs_vget); 559 560 return fs; 561 } 562 563 /* 564 * Check partial segment validity between fs->lfs_offset and the given goal. 565 * 566 * If goal == 0, just keep on going until the segments stop making sense, 567 * and return the address of the last valid partial segment. 568 * 569 * If goal != 0, return the address of the first partial segment that failed, 570 * or "goal" if we reached it without failure (the partial segment *at* goal 571 * need not be valid). 572 */ 573 ufs_daddr_t 574 try_verify(struct lfs *osb, struct uvnode *devvp, ufs_daddr_t goal, int debug) 575 { 576 ufs_daddr_t daddr, odaddr; 577 SEGSUM *sp; 578 int bc, flag; 579 struct ubuf *bp; 580 ufs_daddr_t nodirop_daddr; 581 u_int64_t serial; 582 583 odaddr = -1; 584 daddr = osb->lfs_offset; 585 nodirop_daddr = daddr; 586 serial = osb->lfs_serial; 587 while (daddr != goal) { 588 flag = 0; 589 oncemore: 590 /* Read in summary block */ 591 bread(devvp, fsbtodb(osb, daddr), osb->lfs_sumsize, NULL, &bp); 592 sp = (SEGSUM *)bp->b_data; 593 594 /* 595 * Could be a superblock instead of a segment summary. 596 * XXX should use gseguse, but right now we need to do more 597 * setup before we can...fix this 598 */ 599 if (sp->ss_magic != SS_MAGIC || 600 sp->ss_ident != osb->lfs_ident || 601 sp->ss_serial < serial || 602 sp->ss_sumsum != cksum(&sp->ss_datasum, osb->lfs_sumsize - 603 sizeof(sp->ss_sumsum))) { 604 brelse(bp); 605 if (flag == 0) { 606 flag = 1; 607 daddr += btofsb(osb, LFS_SBPAD); 608 goto oncemore; 609 } 610 break; 611 } 612 ++serial; 613 bc = check_summary(osb, sp, daddr, debug, devvp, NULL); 614 if (bc == 0) { 615 brelse(bp); 616 break; 617 } 618 assert (bc > 0); 619 odaddr = daddr; 620 daddr += btofsb(osb, osb->lfs_sumsize + bc); 621 if (dtosn(osb, odaddr) != dtosn(osb, daddr) || 622 dtosn(osb, daddr) != dtosn(osb, daddr + 623 btofsb(osb, osb->lfs_sumsize + osb->lfs_bsize))) { 624 daddr = sp->ss_next; 625 } 626 if (!(sp->ss_flags & SS_CONT)) 627 nodirop_daddr = daddr; 628 brelse(bp); 629 } 630 631 if (goal == 0) 632 return nodirop_daddr; 633 else 634 return daddr; 635 } 636 637 /* Use try_verify to check whether the newer superblock is valid. */ 638 struct lfs * 639 lfs_verify(struct lfs *sb0, struct lfs *sb1, struct uvnode *devvp, int debug) 640 { 641 ufs_daddr_t daddr; 642 struct lfs *osb, *nsb; 643 644 /* 645 * Verify the checkpoint of the newer superblock, 646 * if the timestamp/serial number of the two superblocks is 647 * different. 648 */ 649 650 osb = NULL; 651 if (debug) 652 printf("sb0 %lld, sb1 %lld\n", (long long) sb0->lfs_serial, 653 (long long) sb1->lfs_serial); 654 655 if ((sb0->lfs_version == 1 && 656 sb0->lfs_otstamp != sb1->lfs_otstamp) || 657 (sb0->lfs_version > 1 && 658 sb0->lfs_serial != sb1->lfs_serial)) { 659 if (sb0->lfs_version == 1) { 660 if (sb0->lfs_otstamp > sb1->lfs_otstamp) { 661 osb = sb1; 662 nsb = sb0; 663 } else { 664 osb = sb0; 665 nsb = sb1; 666 } 667 } else { 668 if (sb0->lfs_serial > sb1->lfs_serial) { 669 osb = sb1; 670 nsb = sb0; 671 } else { 672 osb = sb0; 673 nsb = sb1; 674 } 675 } 676 if (debug) { 677 printf("Attempting to verify newer checkpoint..."); 678 fflush(stdout); 679 } 680 daddr = try_verify(osb, devvp, nsb->lfs_offset, debug); 681 682 if (debug) 683 printf("done.\n"); 684 if (daddr == nsb->lfs_offset) { 685 pwarn("** Newer checkpoint verified, recovered %lld seconds of data\n", 686 (long long) nsb->lfs_tstamp - (long long) osb->lfs_tstamp); 687 sbdirty(); 688 } else { 689 pwarn("** Newer checkpoint invalid, lost %lld seconds of data\n", (long long) nsb->lfs_tstamp - (long long) osb->lfs_tstamp); 690 } 691 return (daddr == nsb->lfs_offset ? nsb : osb); 692 } 693 /* Nothing to check */ 694 return osb; 695 } 696 697 /* Verify a partial-segment summary; return the number of bytes on disk. */ 698 int 699 check_summary(struct lfs *fs, SEGSUM *sp, ufs_daddr_t pseg_addr, int debug, 700 struct uvnode *devvp, void (func(ufs_daddr_t, FINFO *))) 701 { 702 FINFO *fp; 703 int bc; /* Bytes in partial segment */ 704 int nblocks; 705 ufs_daddr_t seg_addr, daddr; 706 ufs_daddr_t *dp, *idp; 707 struct ubuf *bp; 708 int i, j, k, datac, len; 709 long sn; 710 u_int32_t *datap; 711 u_int32_t ccksum; 712 713 sn = dtosn(fs, pseg_addr); 714 seg_addr = sntod(fs, sn); 715 716 /* We've already checked the sumsum, just do the data bounds and sum */ 717 718 /* Count the blocks. */ 719 nblocks = howmany(sp->ss_ninos, INOPB(fs)); 720 bc = nblocks << (fs->lfs_version > 1 ? fs->lfs_ffshift : fs->lfs_bshift); 721 assert(bc >= 0); 722 723 fp = (FINFO *) (sp + 1); 724 for (i = 0; i < sp->ss_nfinfo; i++) { 725 nblocks += fp->fi_nblocks; 726 bc += fp->fi_lastlength + ((fp->fi_nblocks - 1) 727 << fs->lfs_bshift); 728 assert(bc >= 0); 729 fp = (FINFO *) (fp->fi_blocks + fp->fi_nblocks); 730 } 731 datap = (u_int32_t *) malloc(nblocks * sizeof(*datap)); 732 datac = 0; 733 734 dp = (ufs_daddr_t *) sp; 735 dp += fs->lfs_sumsize / sizeof(ufs_daddr_t); 736 dp--; 737 738 idp = dp; 739 daddr = pseg_addr + btofsb(fs, fs->lfs_sumsize); 740 fp = (FINFO *) (sp + 1); 741 for (i = 0, j = 0; 742 i < sp->ss_nfinfo || j < howmany(sp->ss_ninos, INOPB(fs)); i++) { 743 if (i >= sp->ss_nfinfo && *idp != daddr) { 744 pwarn("Not enough inode blocks in pseg at 0x%" PRIx32 745 ": found %d, wanted %d\n", 746 pseg_addr, j, howmany(sp->ss_ninos, INOPB(fs))); 747 if (debug) 748 pwarn("*idp=%x, daddr=%" PRIx32 "\n", *idp, 749 daddr); 750 break; 751 } 752 while (j < howmany(sp->ss_ninos, INOPB(fs)) && *idp == daddr) { 753 bread(devvp, fsbtodb(fs, daddr), fs->lfs_ibsize, NOCRED, &bp); 754 datap[datac++] = ((u_int32_t *) (bp->b_data))[0]; 755 brelse(bp); 756 757 ++j; 758 daddr += btofsb(fs, fs->lfs_ibsize); 759 --idp; 760 } 761 if (i < sp->ss_nfinfo) { 762 if (func) 763 func(daddr, fp); 764 for (k = 0; k < fp->fi_nblocks; k++) { 765 len = (k == fp->fi_nblocks - 1 ? 766 fp->fi_lastlength 767 : fs->lfs_bsize); 768 bread(devvp, fsbtodb(fs, daddr), len, NOCRED, &bp); 769 datap[datac++] = ((u_int32_t *) (bp->b_data))[0]; 770 brelse(bp); 771 daddr += btofsb(fs, len); 772 } 773 fp = (FINFO *) (fp->fi_blocks + fp->fi_nblocks); 774 } 775 } 776 777 if (datac != nblocks) { 778 pwarn("Partial segment at 0x%llx expected %d blocks counted %d\n", 779 (long long) pseg_addr, nblocks, datac); 780 } 781 ccksum = cksum(datap, nblocks * sizeof(u_int32_t)); 782 /* Check the data checksum */ 783 if (ccksum != sp->ss_datasum) { 784 pwarn("Partial segment at 0x%" PRIx32 " data checksum" 785 " mismatch: given 0x%x, computed 0x%x\n", 786 pseg_addr, sp->ss_datasum, ccksum); 787 free(datap); 788 return 0; 789 } 790 free(datap); 791 assert(bc >= 0); 792 return bc; 793 } 794 795 /* print message and exit */ 796 void 797 my_vpanic(int fatal, const char *fmt, va_list ap) 798 { 799 (void) vprintf(fmt, ap); 800 exit(8); 801 } 802 803 void 804 call_panic(const char *fmt, ...) 805 { 806 va_list ap; 807 808 va_start(ap, fmt); 809 panic_func(1, fmt, ap); 810 va_end(ap); 811 } 812 813 /* Allocate a new inode. */ 814 struct uvnode * 815 lfs_valloc(struct lfs *fs, ino_t ino) 816 { 817 struct ubuf *bp, *cbp; 818 struct ifile *ifp; 819 ino_t new_ino; 820 int error; 821 int new_gen; 822 CLEANERINFO *cip; 823 824 /* Get the head of the freelist. */ 825 LFS_GET_HEADFREE(fs, cip, cbp, &new_ino); 826 827 /* 828 * Remove the inode from the free list and write the new start 829 * of the free list into the superblock. 830 */ 831 LFS_IENTRY(ifp, fs, new_ino, bp); 832 if (ifp->if_daddr != LFS_UNUSED_DADDR) 833 panic("lfs_valloc: inuse inode %d on the free list", new_ino); 834 LFS_PUT_HEADFREE(fs, cip, cbp, ifp->if_nextfree); 835 836 new_gen = ifp->if_version; /* version was updated by vfree */ 837 brelse(bp); 838 839 /* Extend IFILE so that the next lfs_valloc will succeed. */ 840 if (fs->lfs_freehd == LFS_UNUSED_INUM) { 841 if ((error = extend_ifile(fs)) != 0) { 842 LFS_PUT_HEADFREE(fs, cip, cbp, new_ino); 843 return NULL; 844 } 845 } 846 847 /* Set superblock modified bit and increment file count. */ 848 sbdirty(); 849 ++fs->lfs_nfiles; 850 851 return lfs_raw_vget(fs, ino, fs->lfs_devvp->v_fd, 0x0); 852 } 853 854 /* 855 * Add a new block to the Ifile, to accommodate future file creations. 856 */ 857 int 858 extend_ifile(struct lfs *fs) 859 { 860 struct uvnode *vp; 861 struct inode *ip; 862 IFILE *ifp; 863 IFILE_V1 *ifp_v1; 864 struct ubuf *bp, *cbp; 865 daddr_t i, blkno, max; 866 ino_t oldlast; 867 CLEANERINFO *cip; 868 869 vp = fs->lfs_ivnode; 870 ip = VTOI(vp); 871 blkno = lblkno(fs, ip->i_ffs1_size); 872 873 bp = getblk(vp, blkno, fs->lfs_bsize); /* XXX VOP_BALLOC() */ 874 ip->i_ffs1_size += fs->lfs_bsize; 875 876 i = (blkno - fs->lfs_segtabsz - fs->lfs_cleansz) * 877 fs->lfs_ifpb; 878 LFS_GET_HEADFREE(fs, cip, cbp, &oldlast); 879 LFS_PUT_HEADFREE(fs, cip, cbp, i); 880 max = i + fs->lfs_ifpb; 881 fs->lfs_bfree -= btofsb(fs, fs->lfs_bsize); 882 883 if (fs->lfs_version == 1) { 884 for (ifp_v1 = (IFILE_V1 *)bp->b_data; i < max; ++ifp_v1) { 885 ifp_v1->if_version = 1; 886 ifp_v1->if_daddr = LFS_UNUSED_DADDR; 887 ifp_v1->if_nextfree = ++i; 888 } 889 ifp_v1--; 890 ifp_v1->if_nextfree = oldlast; 891 } else { 892 for (ifp = (IFILE *)bp->b_data; i < max; ++ifp) { 893 ifp->if_version = 1; 894 ifp->if_daddr = LFS_UNUSED_DADDR; 895 ifp->if_nextfree = ++i; 896 } 897 ifp--; 898 ifp->if_nextfree = oldlast; 899 } 900 LFS_PUT_TAILFREE(fs, cip, cbp, max - 1); 901 902 LFS_BWRITE_LOG(bp); 903 904 return 0; 905 } 906 907