1 /* $NetBSD: mdreloc.c,v 1.38 2005/12/24 20:59:31 perry Exp $ */ 2 3 /*- 4 * Copyright (c) 2000 Eduardo Horvath. 5 * Copyright (c) 1999, 2002 The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Paul Kranenburg and by Charles M. Hannum. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the NetBSD 22 * Foundation, Inc. and its contributors. 23 * 4. Neither the name of The NetBSD Foundation nor the names of its 24 * contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 #include <sys/cdefs.h> 41 #ifndef lint 42 __RCSID("$NetBSD: mdreloc.c,v 1.38 2005/12/24 20:59:31 perry Exp $"); 43 #endif /* not lint */ 44 45 #include <errno.h> 46 #include <stdio.h> 47 #include <stdlib.h> 48 #include <string.h> 49 #include <unistd.h> 50 #include <sys/stat.h> 51 52 #include "rtldenv.h" 53 #include "debug.h" 54 #include "rtld.h" 55 56 /* 57 * The following table holds for each relocation type: 58 * - the width in bits of the memory location the relocation 59 * applies to (not currently used) 60 * - the number of bits the relocation value must be shifted to the 61 * right (i.e. discard least significant bits) to fit into 62 * the appropriate field in the instruction word. 63 * - flags indicating whether 64 * * the relocation involves a symbol 65 * * the relocation is relative to the current position 66 * * the relocation is for a GOT entry 67 * * the relocation is relative to the load address 68 * 69 */ 70 #define _RF_S 0x80000000 /* Resolve symbol */ 71 #define _RF_A 0x40000000 /* Use addend */ 72 #define _RF_P 0x20000000 /* Location relative */ 73 #define _RF_G 0x10000000 /* GOT offset */ 74 #define _RF_B 0x08000000 /* Load address relative */ 75 #define _RF_U 0x04000000 /* Unaligned */ 76 #define _RF_SZ(s) (((s) & 0xff) << 8) /* memory target size */ 77 #define _RF_RS(s) ( (s) & 0xff) /* right shift */ 78 static const int reloc_target_flags[] = { 79 0, /* NONE */ 80 _RF_S|_RF_A| _RF_SZ(8) | _RF_RS(0), /* RELOC_8 */ 81 _RF_S|_RF_A| _RF_SZ(16) | _RF_RS(0), /* RELOC_16 */ 82 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* RELOC_32 */ 83 _RF_S|_RF_A|_RF_P| _RF_SZ(8) | _RF_RS(0), /* DISP_8 */ 84 _RF_S|_RF_A|_RF_P| _RF_SZ(16) | _RF_RS(0), /* DISP_16 */ 85 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* DISP_32 */ 86 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_30 */ 87 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_22 */ 88 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* HI22 */ 89 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 22 */ 90 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 13 */ 91 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* LO10 */ 92 _RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT10 */ 93 _RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT13 */ 94 _RF_G| _RF_SZ(32) | _RF_RS(10), /* GOT22 */ 95 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PC10 */ 96 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PC22 */ 97 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WPLT30 */ 98 _RF_SZ(32) | _RF_RS(0), /* COPY */ 99 _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* GLOB_DAT */ 100 _RF_SZ(32) | _RF_RS(0), /* JMP_SLOT */ 101 _RF_A| _RF_B| _RF_SZ(64) | _RF_RS(0), /* RELATIVE */ 102 _RF_S|_RF_A| _RF_U| _RF_SZ(32) | _RF_RS(0), /* UA_32 */ 103 104 _RF_A| _RF_SZ(32) | _RF_RS(0), /* PLT32 */ 105 _RF_A| _RF_SZ(32) | _RF_RS(10), /* HIPLT22 */ 106 _RF_A| _RF_SZ(32) | _RF_RS(0), /* LOPLT10 */ 107 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PCPLT32 */ 108 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PCPLT22 */ 109 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PCPLT10 */ 110 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 10 */ 111 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 11 */ 112 _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* 64 */ 113 _RF_S|_RF_A|/*extra*/ _RF_SZ(32) | _RF_RS(0), /* OLO10 */ 114 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(42), /* HH22 */ 115 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(32), /* HM10 */ 116 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* LM22 */ 117 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(42), /* PC_HH22 */ 118 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(32), /* PC_HM10 */ 119 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PC_LM22 */ 120 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP16 */ 121 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP19 */ 122 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* GLOB_JMP */ 123 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 7 */ 124 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 5 */ 125 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 6 */ 126 _RF_S|_RF_A|_RF_P| _RF_SZ(64) | _RF_RS(0), /* DISP64 */ 127 _RF_A| _RF_SZ(64) | _RF_RS(0), /* PLT64 */ 128 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* HIX22 */ 129 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* LOX10 */ 130 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(22), /* H44 */ 131 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(12), /* M44 */ 132 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* L44 */ 133 _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* REGISTER */ 134 _RF_S|_RF_A| _RF_U| _RF_SZ(64) | _RF_RS(0), /* UA64 */ 135 _RF_S|_RF_A| _RF_U| _RF_SZ(16) | _RF_RS(0), /* UA16 */ 136 }; 137 138 #ifdef RTLD_DEBUG_RELOC 139 static const char *reloc_names[] = { 140 "NONE", "RELOC_8", "RELOC_16", "RELOC_32", "DISP_8", 141 "DISP_16", "DISP_32", "WDISP_30", "WDISP_22", "HI22", 142 "22", "13", "LO10", "GOT10", "GOT13", 143 "GOT22", "PC10", "PC22", "WPLT30", "COPY", 144 "GLOB_DAT", "JMP_SLOT", "RELATIVE", "UA_32", "PLT32", 145 "HIPLT22", "LOPLT10", "LOPLT10", "PCPLT22", "PCPLT32", 146 "10", "11", "64", "OLO10", "HH22", 147 "HM10", "LM22", "PC_HH22", "PC_HM10", "PC_LM22", 148 "WDISP16", "WDISP19", "GLOB_JMP", "7", "5", "6", 149 "DISP64", "PLT64", "HIX22", "LOX10", "H44", "M44", 150 "L44", "REGISTER", "UA64", "UA16" 151 }; 152 #endif 153 154 #define RELOC_RESOLVE_SYMBOL(t) ((reloc_target_flags[t] & _RF_S) != 0) 155 #define RELOC_PC_RELATIVE(t) ((reloc_target_flags[t] & _RF_P) != 0) 156 #define RELOC_BASE_RELATIVE(t) ((reloc_target_flags[t] & _RF_B) != 0) 157 #define RELOC_UNALIGNED(t) ((reloc_target_flags[t] & _RF_U) != 0) 158 #define RELOC_USE_ADDEND(t) ((reloc_target_flags[t] & _RF_A) != 0) 159 #define RELOC_TARGET_SIZE(t) ((reloc_target_flags[t] >> 8) & 0xff) 160 #define RELOC_VALUE_RIGHTSHIFT(t) (reloc_target_flags[t] & 0xff) 161 162 static const long reloc_target_bitmask[] = { 163 #define _BM(x) (~(-(1ULL << (x)))) 164 0, /* NONE */ 165 _BM(8), _BM(16), _BM(32), /* RELOC_8, _16, _32 */ 166 _BM(8), _BM(16), _BM(32), /* DISP8, DISP16, DISP32 */ 167 _BM(30), _BM(22), /* WDISP30, WDISP22 */ 168 _BM(22), _BM(22), /* HI22, _22 */ 169 _BM(13), _BM(10), /* RELOC_13, _LO10 */ 170 _BM(10), _BM(13), _BM(22), /* GOT10, GOT13, GOT22 */ 171 _BM(10), _BM(22), /* _PC10, _PC22 */ 172 _BM(30), 0, /* _WPLT30, _COPY */ 173 _BM(32), _BM(32), _BM(32), /* _GLOB_DAT, JMP_SLOT, _RELATIVE */ 174 _BM(32), _BM(32), /* _UA32, PLT32 */ 175 _BM(22), _BM(10), /* _HIPLT22, LOPLT10 */ 176 _BM(32), _BM(22), _BM(10), /* _PCPLT32, _PCPLT22, _PCPLT10 */ 177 _BM(10), _BM(11), -1, /* _10, _11, _64 */ 178 _BM(10), _BM(22), /* _OLO10, _HH22 */ 179 _BM(10), _BM(22), /* _HM10, _LM22 */ 180 _BM(22), _BM(10), _BM(22), /* _PC_HH22, _PC_HM10, _PC_LM22 */ 181 _BM(16), _BM(19), /* _WDISP16, _WDISP19 */ 182 -1, /* GLOB_JMP */ 183 _BM(7), _BM(5), _BM(6) /* _7, _5, _6 */ 184 -1, -1, /* DISP64, PLT64 */ 185 _BM(22), _BM(13), /* HIX22, LOX10 */ 186 _BM(22), _BM(10), _BM(13), /* H44, M44, L44 */ 187 -1, -1, _BM(16), /* REGISTER, UA64, UA16 */ 188 #undef _BM 189 }; 190 #define RELOC_VALUE_BITMASK(t) (reloc_target_bitmask[t]) 191 192 /* 193 * Instruction templates: 194 */ 195 #define BAA 0x10400000 /* ba,a %xcc, 0 */ 196 #define SETHI 0x03000000 /* sethi %hi(0), %g1 */ 197 #define JMP 0x81c06000 /* jmpl %g1+%lo(0), %g0 */ 198 #define NOP 0x01000000 /* sethi %hi(0), %g0 */ 199 #define OR 0x82806000 /* or %g1, 0, %g1 */ 200 #define XOR 0x82c06000 /* xor %g1, 0, %g1 */ 201 #define MOV71 0x8283a000 /* or %o7, 0, %g1 */ 202 #define MOV17 0x9c806000 /* or %g1, 0, %o7 */ 203 #define CALL 0x40000000 /* call 0 */ 204 #define SLLX 0x8b407000 /* sllx %g1, 0, %g1 */ 205 #define SETHIG5 0x0b000000 /* sethi %hi(0), %g5 */ 206 #define ORG5 0x82804005 /* or %g1, %g5, %g1 */ 207 208 209 /* %hi(v)/%lo(v) with variable shift */ 210 #define HIVAL(v, s) (((v) >> (s)) & 0x003fffff) 211 #define LOVAL(v, s) (((v) >> (s)) & 0x000003ff) 212 213 void _rtld_bind_start_0(long, long); 214 void _rtld_bind_start_1(long, long); 215 void _rtld_relocate_nonplt_self(Elf_Dyn *, Elf_Addr); 216 caddr_t _rtld_bind(const Obj_Entry *, Elf_Word); 217 218 /* 219 * Install rtld function call into this PLT slot. 220 */ 221 #define SAVE 0x9de3bf50 /* i.e. `save %sp,-176,%sp' */ 222 #define SETHI_l0 0x21000000 223 #define SETHI_l1 0x23000000 224 #define OR_l0_l0 0xa0142000 225 #define SLLX_l0_32_l0 0xa12c3020 226 #define OR_l0_l1_l0 0xa0140011 227 #define JMPL_l0_o0 0x91c42000 228 #define MOV_g1_o1 0x92100001 229 230 void _rtld_install_plt(Elf_Word *, Elf_Addr); 231 static inline int _rtld_relocate_plt_object(const Obj_Entry *, 232 const Elf_Rela *, Elf_Addr *); 233 234 void 235 _rtld_install_plt(Elf_Word *pltgot, Elf_Addr proc) 236 { 237 pltgot[0] = SAVE; 238 pltgot[1] = SETHI_l0 | HIVAL(proc, 42); 239 pltgot[2] = SETHI_l1 | HIVAL(proc, 10); 240 pltgot[3] = OR_l0_l0 | LOVAL(proc, 32); 241 pltgot[4] = SLLX_l0_32_l0; 242 pltgot[5] = OR_l0_l1_l0; 243 pltgot[6] = JMPL_l0_o0 | LOVAL(proc, 0); 244 pltgot[7] = MOV_g1_o1; 245 } 246 247 void 248 _rtld_setup_pltgot(const Obj_Entry *obj) 249 { 250 /* 251 * On sparc64 we got troubles. 252 * 253 * Instructions are 4 bytes long. 254 * Elf[64]_Addr is 8 bytes long, so are our pltglot[] 255 * array entries. 256 * Each PLT entry jumps to PLT0 to enter the dynamic 257 * linker. 258 * Loading an arbitrary 64-bit pointer takes 6 259 * instructions and 2 registers. 260 * 261 * Somehow we need to issue a save to get a new stack 262 * frame, load the address of the dynamic linker, and 263 * jump there, in 8 instructions or less. 264 * 265 * Oh, we need to fill out both PLT0 and PLT1. 266 */ 267 { 268 Elf_Word *entry = (Elf_Word *)obj->pltgot; 269 270 /* Install in entries 0 and 1 */ 271 _rtld_install_plt(&entry[0], (Elf_Addr) &_rtld_bind_start_0); 272 _rtld_install_plt(&entry[8], (Elf_Addr) &_rtld_bind_start_1); 273 274 /* 275 * Install the object reference in first slot 276 * of entry 2. 277 */ 278 obj->pltgot[8] = (Elf_Addr) obj; 279 } 280 } 281 282 void 283 _rtld_relocate_nonplt_self(Elf_Dyn *dynp, Elf_Addr relocbase) 284 { 285 const Elf_Rela *rela = 0, *relalim; 286 Elf_Addr relasz = 0; 287 Elf_Addr *where; 288 289 for (; dynp->d_tag != DT_NULL; dynp++) { 290 switch (dynp->d_tag) { 291 case DT_RELA: 292 rela = (const Elf_Rela *)(relocbase + dynp->d_un.d_ptr); 293 break; 294 case DT_RELASZ: 295 relasz = dynp->d_un.d_val; 296 break; 297 } 298 } 299 relalim = (const Elf_Rela *)((caddr_t)rela + relasz); 300 for (; rela < relalim; rela++) { 301 where = (Elf_Addr *)(relocbase + rela->r_offset); 302 *where = (Elf_Addr)(relocbase + rela->r_addend); 303 } 304 } 305 306 int 307 _rtld_relocate_nonplt_objects(const Obj_Entry *obj) 308 { 309 const Elf_Rela *rela; 310 311 for (rela = obj->rela; rela < obj->relalim; rela++) { 312 Elf_Addr *where; 313 Elf_Word type; 314 Elf_Addr value = 0, mask; 315 const Elf_Sym *def = NULL; 316 const Obj_Entry *defobj = NULL; 317 unsigned long symnum; 318 319 where = (Elf_Addr *) (obj->relocbase + rela->r_offset); 320 symnum = ELF_R_SYM(rela->r_info); 321 322 type = ELF_R_TYPE(rela->r_info); 323 if (type == R_TYPE(NONE)) 324 continue; 325 326 /* We do JMP_SLOTs in _rtld_bind() below */ 327 if (type == R_TYPE(JMP_SLOT)) 328 continue; 329 330 /* COPY relocs are also handled elsewhere */ 331 if (type == R_TYPE(COPY)) 332 continue; 333 334 /* 335 * We use the fact that relocation types are an `enum' 336 * Note: R_SPARC_UA16 is currently numerically largest. 337 */ 338 if (type > R_TYPE(UA16)) 339 return (-1); 340 341 value = rela->r_addend; 342 343 /* 344 * Handle relative relocs here, as an optimization. 345 */ 346 if (type == R_TYPE(RELATIVE)) { 347 *where = (Elf_Addr)(obj->relocbase + value); 348 rdbg(("RELATIVE in %s --> %p", obj->path, 349 (void *)*where)); 350 continue; 351 } 352 353 if (RELOC_RESOLVE_SYMBOL(type)) { 354 355 /* Find the symbol */ 356 def = _rtld_find_symdef(symnum, obj, &defobj, false); 357 if (def == NULL) 358 return (-1); 359 360 /* Add in the symbol's absolute address */ 361 value += (Elf_Addr)(defobj->relocbase + def->st_value); 362 } 363 364 if (RELOC_PC_RELATIVE(type)) { 365 value -= (Elf_Addr)where; 366 } 367 368 if (RELOC_BASE_RELATIVE(type)) { 369 /* 370 * Note that even though sparcs use `Elf_rela' 371 * exclusively we still need the implicit memory addend 372 * in relocations referring to GOT entries. 373 * Undoubtedly, someone f*cked this up in the distant 374 * past, and now we're stuck with it in the name of 375 * compatibility for all eternity.. 376 * 377 * In any case, the implicit and explicit should be 378 * mutually exclusive. We provide a check for that 379 * here. 380 */ 381 #ifdef DIAGNOSTIC 382 if (value != 0 && *where != 0) { 383 xprintf("BASE_REL(%s): where=%p, *where 0x%lx, " 384 "addend=0x%lx, base %p\n", 385 obj->path, where, *where, 386 rela->r_addend, obj->relocbase); 387 } 388 #endif 389 /* XXXX -- apparently we ignore the preexisting value */ 390 value += (Elf_Addr)(obj->relocbase); 391 } 392 393 mask = RELOC_VALUE_BITMASK(type); 394 value >>= RELOC_VALUE_RIGHTSHIFT(type); 395 value &= mask; 396 397 if (RELOC_UNALIGNED(type)) { 398 /* Handle unaligned relocations. */ 399 Elf_Addr tmp = 0; 400 char *ptr = (char *)where; 401 int i, size = RELOC_TARGET_SIZE(type)/8; 402 403 /* Read it in one byte at a time. */ 404 for (i=0; i<size; i++) 405 tmp = (tmp << 8) | ptr[i]; 406 407 tmp &= ~mask; 408 tmp |= value; 409 410 /* Write it back out. */ 411 for (i=0; i<size; i++) 412 ptr[i] = ((tmp >> (8*i)) & 0xff); 413 #ifdef RTLD_DEBUG_RELOC 414 value = (Elf_Addr)tmp; 415 #endif 416 417 } else if (RELOC_TARGET_SIZE(type) > 32) { 418 *where &= ~mask; 419 *where |= value; 420 #ifdef RTLD_DEBUG_RELOC 421 value = (Elf_Addr)*where; 422 #endif 423 } else { 424 Elf32_Addr *where32 = (Elf32_Addr *)where; 425 426 *where32 &= ~mask; 427 *where32 |= value; 428 #ifdef RTLD_DEBUG_RELOC 429 value = (Elf_Addr)*where32; 430 #endif 431 } 432 433 #ifdef RTLD_DEBUG_RELOC 434 if (RELOC_RESOLVE_SYMBOL(type)) { 435 rdbg(("%s %s in %s --> %p in %s", reloc_names[type], 436 obj->strtab + obj->symtab[symnum].st_name, 437 obj->path, (void *)value, defobj->path)); 438 } else { 439 rdbg(("%s in %s --> %p", reloc_names[type], 440 obj->path, (void *)value)); 441 } 442 #endif 443 } 444 return (0); 445 } 446 447 int 448 _rtld_relocate_plt_lazy(const Obj_Entry *obj) 449 { 450 return (0); 451 } 452 453 caddr_t 454 _rtld_bind(const Obj_Entry *obj, Elf_Word reloff) 455 { 456 const Elf_Rela *rela = obj->pltrela + reloff; 457 Elf_Addr result; 458 int err; 459 460 if (ELF_R_TYPE(obj->pltrela->r_info) == R_TYPE(JMP_SLOT)) { 461 /* 462 * XXXX 463 * 464 * The first four PLT entries are reserved. There is some 465 * disagreement whether they should have associated relocation 466 * entries. Both the SPARC 32-bit and 64-bit ELF 467 * specifications say that they should have relocation entries, 468 * but the 32-bit SPARC binutils do not generate them, and now 469 * the 64-bit SPARC binutils have stopped generating them too. 470 * 471 * So, to provide binary compatibility, we will check the first 472 * entry, if it is reserved it should not be of the type 473 * JMP_SLOT. If it is JMP_SLOT, then the 4 reserved entries 474 * were not generated and our index is 4 entries too far. 475 */ 476 rela -= 4; 477 } 478 479 err = _rtld_relocate_plt_object(obj, rela, &result); 480 if (err) 481 _rtld_die(); 482 483 return (caddr_t)result; 484 } 485 486 int 487 _rtld_relocate_plt_objects(const Obj_Entry *obj) 488 { 489 const Elf_Rela *rela; 490 491 rela = obj->pltrela; 492 493 /* 494 * Check for first four reserved entries - and skip them. 495 * See above for details. 496 */ 497 if (ELF_R_TYPE(obj->pltrela->r_info) != R_TYPE(JMP_SLOT)) 498 rela += 4; 499 500 for (; rela < obj->pltrelalim; rela++) 501 if (_rtld_relocate_plt_object(obj, rela, NULL) < 0) 502 return -1; 503 504 return 0; 505 } 506 507 /* 508 * New inline function that is called by _rtld_relocate_plt_object and 509 * _rtld_bind 510 */ 511 static inline int 512 _rtld_relocate_plt_object(const Obj_Entry *obj, const Elf_Rela *rela, Elf_Addr *tp) 513 { 514 Elf_Word *where = (Elf_Word *)(obj->relocbase + rela->r_offset); 515 const Elf_Sym *def; 516 const Obj_Entry *defobj; 517 Elf_Addr value, offset; 518 519 /* Fully resolve procedure addresses now */ 520 521 assert(ELF_R_TYPE(rela->r_info) == R_TYPE(JMP_SLOT)); 522 523 def = _rtld_find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj, true); 524 if (def == NULL) 525 return -1; 526 527 value = (Elf_Addr)(defobj->relocbase + def->st_value); 528 rdbg(("bind now/fixup in %s --> new=%p", 529 defobj->strtab + def->st_name, (void *)value)); 530 531 /* 532 * At the PLT entry pointed at by `where', we now construct 533 * a direct transfer to the now fully resolved function 534 * address. 535 * 536 * A PLT entry is supposed to start by looking like this: 537 * 538 * sethi %hi(. - .PLT0), %g1 539 * ba,a %xcc, .PLT1 540 * nop 541 * nop 542 * nop 543 * nop 544 * nop 545 * nop 546 * 547 * When we replace these entries we start from the second 548 * entry and do it in reverse order so the last thing we 549 * do is replace the branch. That allows us to change this 550 * atomically. 551 * 552 * We now need to find out how far we need to jump. We 553 * have a choice of several different relocation techniques 554 * which are increasingly expensive. 555 */ 556 557 offset = ((Elf_Addr)where) - value; 558 if (rela->r_addend) { 559 Elf_Addr *ptr = (Elf_Addr *)where; 560 /* 561 * This entry is >=32768. The relocations points to a 562 * PC-relative pointer to the bind_0 stub at the top of the 563 * PLT section. Update it to point to the target function. 564 */ 565 ptr[0] += value - (Elf_Addr)obj->pltgot; 566 567 } else if (offset <= (1L<<20) && offset >= -(1L<<20)) { 568 /* 569 * We're within 1MB -- we can use a direct branch insn. 570 * 571 * We can generate this pattern: 572 * 573 * sethi %hi(. - .PLT0), %g1 574 * ba,a %xcc, addr 575 * nop 576 * nop 577 * nop 578 * nop 579 * nop 580 * nop 581 * 582 */ 583 where[1] = BAA | ((offset >> 2) &0x3fffff); 584 __asm volatile("iflush %0+4" : : "r" (where)); 585 } else if (value >= 0 && value < (1L<<32)) { 586 /* 587 * We're within 32-bits of address zero. 588 * 589 * The resulting code in the jump slot is: 590 * 591 * sethi %hi(. - .PLT0), %g1 592 * sethi %hi(addr), %g1 593 * jmp %g1+%lo(addr) 594 * nop 595 * nop 596 * nop 597 * nop 598 * nop 599 * 600 */ 601 where[2] = JMP | LOVAL(value, 0); 602 where[1] = SETHI | HIVAL(value, 10); 603 __asm volatile("iflush %0+8" : : "r" (where)); 604 __asm volatile("iflush %0+4" : : "r" (where)); 605 606 } else if (value <= 0 && value > -(1L<<32)) { 607 /* 608 * We're within 32-bits of address -1. 609 * 610 * The resulting code in the jump slot is: 611 * 612 * sethi %hi(. - .PLT0), %g1 613 * sethi %hix(addr), %g1 614 * xor %g1, %lox(addr), %g1 615 * jmp %g1 616 * nop 617 * nop 618 * nop 619 * nop 620 * 621 */ 622 where[3] = JMP; 623 where[2] = XOR | ((~value) & 0x00001fff); 624 where[1] = SETHI | HIVAL(~value, 10); 625 __asm volatile("iflush %0+12" : : "r" (where)); 626 __asm volatile("iflush %0+8" : : "r" (where)); 627 __asm volatile("iflush %0+4" : : "r" (where)); 628 629 } else if (offset <= (1L<<32) && offset >= -((1L<<32) - 4)) { 630 /* 631 * We're within 32-bits -- we can use a direct call insn 632 * 633 * The resulting code in the jump slot is: 634 * 635 * sethi %hi(. - .PLT0), %g1 636 * mov %o7, %g1 637 * call (.+offset) 638 * mov %g1, %o7 639 * nop 640 * nop 641 * nop 642 * nop 643 * 644 */ 645 where[3] = MOV17; 646 where[2] = CALL | ((offset >> 4) & 0x3fffffff); 647 where[1] = MOV71; 648 __asm volatile("iflush %0+12" : : "r" (where)); 649 __asm volatile("iflush %0+8" : : "r" (where)); 650 __asm volatile("iflush %0+4" : : "r" (where)); 651 652 } else if (offset >= 0 && offset < (1L<<44)) { 653 /* 654 * We're within 44 bits. We can generate this pattern: 655 * 656 * The resulting code in the jump slot is: 657 * 658 * sethi %hi(. - .PLT0), %g1 659 * sethi %h44(addr), %g1 660 * or %g1, %m44(addr), %g1 661 * sllx %g1, 12, %g1 662 * jmp %g1+%l44(addr) 663 * nop 664 * nop 665 * nop 666 * 667 */ 668 where[4] = JMP | LOVAL(offset, 0); 669 where[3] = SLLX | 12; 670 where[2] = OR | (((offset) >> 12) & 0x00001fff); 671 where[1] = SETHI | HIVAL(offset, 22); 672 __asm volatile("iflush %0+16" : : "r" (where)); 673 __asm volatile("iflush %0+12" : : "r" (where)); 674 __asm volatile("iflush %0+8" : : "r" (where)); 675 __asm volatile("iflush %0+4" : : "r" (where)); 676 677 } else if (offset < 0 && offset > -(1L<<44)) { 678 /* 679 * We're within 44 bits. We can generate this pattern: 680 * 681 * The resulting code in the jump slot is: 682 * 683 * sethi %hi(. - .PLT0), %g1 684 * sethi %h44(-addr), %g1 685 * xor %g1, %m44(-addr), %g1 686 * sllx %g1, 12, %g1 687 * jmp %g1+%l44(addr) 688 * nop 689 * nop 690 * nop 691 * 692 */ 693 where[4] = JMP | LOVAL(offset, 0); 694 where[3] = SLLX | 12; 695 where[2] = XOR | (((~offset) >> 12) & 0x00001fff); 696 where[1] = SETHI | HIVAL(~offset, 22); 697 __asm volatile("iflush %0+16" : : "r" (where)); 698 __asm volatile("iflush %0+12" : : "r" (where)); 699 __asm volatile("iflush %0+8" : : "r" (where)); 700 __asm volatile("iflush %0+4" : : "r" (where)); 701 702 } else { 703 /* 704 * We need to load all 64-bits 705 * 706 * The resulting code in the jump slot is: 707 * 708 * sethi %hi(. - .PLT0), %g1 709 * sethi %hh(addr), %g1 710 * sethi %lm(addr), %g5 711 * or %g1, %hm(addr), %g1 712 * sllx %g1, 32, %g1 713 * or %g1, %g5, %g1 714 * jmp %g1+%lo(addr) 715 * nop 716 * 717 */ 718 where[6] = JMP | LOVAL(value, 0); 719 where[5] = ORG5; 720 where[4] = SLLX | 32; 721 where[3] = OR | LOVAL(value, 32); 722 where[2] = SETHIG5 | HIVAL(value, 10); 723 where[1] = SETHI | HIVAL(value, 42); 724 __asm volatile("iflush %0+24" : : "r" (where)); 725 __asm volatile("iflush %0+20" : : "r" (where)); 726 __asm volatile("iflush %0+16" : : "r" (where)); 727 __asm volatile("iflush %0+12" : : "r" (where)); 728 __asm volatile("iflush %0+8" : : "r" (where)); 729 __asm volatile("iflush %0+4" : : "r" (where)); 730 731 } 732 733 if (tp) 734 *tp = value; 735 736 return 0; 737 } 738