xref: /netbsd-src/libexec/ld.elf_so/arch/sparc/mdreloc.c (revision c2f76ff004a2cb67efe5b12d97bd3ef7fe89e18d)
1 /*	$NetBSD: mdreloc.c,v 1.44 2010/08/06 16:33:18 joerg Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg and by Charles M. Hannum.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 #ifndef lint
34 __RCSID("$NetBSD: mdreloc.c,v 1.44 2010/08/06 16:33:18 joerg Exp $");
35 #endif /* not lint */
36 
37 #include <errno.h>
38 #include <stdio.h>
39 #include <stdlib.h>
40 #include <string.h>
41 #include <unistd.h>
42 
43 #include "rtldenv.h"
44 #include "debug.h"
45 #include "rtld.h"
46 
47 /*
48  * The following table holds for each relocation type:
49  *	- the width in bits of the memory location the relocation
50  *	  applies to (not currently used)
51  *	- the number of bits the relocation value must be shifted to the
52  *	  right (i.e. discard least significant bits) to fit into
53  *	  the appropriate field in the instruction word.
54  *	- flags indicating whether
55  *		* the relocation involves a symbol
56  *		* the relocation is relative to the current position
57  *		* the relocation is for a GOT entry
58  *		* the relocation is relative to the load address
59  *
60  */
61 #define _RF_S		0x80000000		/* Resolve symbol */
62 #define _RF_A		0x40000000		/* Use addend */
63 #define _RF_P		0x20000000		/* Location relative */
64 #define _RF_G		0x10000000		/* GOT offset */
65 #define _RF_B		0x08000000		/* Load address relative */
66 #define _RF_U		0x04000000		/* Unaligned */
67 #define _RF_SZ(s)	(((s) & 0xff) << 8)	/* memory target size */
68 #define _RF_RS(s)	( (s) & 0xff)		/* right shift */
69 static const int reloc_target_flags[] = {
70 	0,							/* NONE */
71 	_RF_S|_RF_A|		_RF_SZ(8)  | _RF_RS(0),		/* RELOC_8 */
72 	_RF_S|_RF_A|		_RF_SZ(16) | _RF_RS(0),		/* RELOC_16 */
73 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* RELOC_32 */
74 	_RF_S|_RF_A|_RF_P|	_RF_SZ(8)  | _RF_RS(0),		/* DISP_8 */
75 	_RF_S|_RF_A|_RF_P|	_RF_SZ(16) | _RF_RS(0),		/* DISP_16 */
76 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* DISP_32 */
77 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP_30 */
78 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP_22 */
79 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(10),	/* HI22 */
80 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 22 */
81 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 13 */
82 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* LO10 */
83 	_RF_G|			_RF_SZ(32) | _RF_RS(0),		/* GOT10 */
84 	_RF_G|			_RF_SZ(32) | _RF_RS(0),		/* GOT13 */
85 	_RF_G|			_RF_SZ(32) | _RF_RS(10),	/* GOT22 */
86 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* PC10 */
87 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(10),	/* PC22 */
88 	      _RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WPLT30 */
89 				_RF_SZ(32) | _RF_RS(0),		/* COPY */
90 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* GLOB_DAT */
91 				_RF_SZ(32) | _RF_RS(0),		/* JMP_SLOT */
92 	      _RF_A|	_RF_B|	_RF_SZ(32) | _RF_RS(0),		/* RELATIVE */
93 	_RF_S|_RF_A|	_RF_U|	_RF_SZ(32) | _RF_RS(0),		/* UA_32 */
94 };
95 
96 #ifdef RTLD_DEBUG_RELOC
97 static const char *reloc_names[] = {
98 	"NONE", "RELOC_8", "RELOC_16", "RELOC_32", "DISP_8",
99 	"DISP_16", "DISP_32", "WDISP_30", "WDISP_22", "HI22",
100 	"22", "13", "LO10", "GOT10", "GOT13",
101 	"GOT22", "PC10", "PC22", "WPLT30", "COPY",
102 	"GLOB_DAT", "JMP_SLOT", "RELATIVE", "UA_32"
103 };
104 #endif
105 
106 #define RELOC_RESOLVE_SYMBOL(t)		((reloc_target_flags[t] & _RF_S) != 0)
107 #define RELOC_PC_RELATIVE(t)		((reloc_target_flags[t] & _RF_P) != 0)
108 #define RELOC_BASE_RELATIVE(t)		((reloc_target_flags[t] & _RF_B) != 0)
109 #define RELOC_UNALIGNED(t)		((reloc_target_flags[t] & _RF_U) != 0)
110 #define RELOC_USE_ADDEND(t)		((reloc_target_flags[t] & _RF_A) != 0)
111 #define RELOC_TARGET_SIZE(t)		((reloc_target_flags[t] >> 8) & 0xff)
112 #define RELOC_VALUE_RIGHTSHIFT(t)	(reloc_target_flags[t] & 0xff)
113 
114 static const int reloc_target_bitmask[] = {
115 #define _BM(x)	(~(-(1ULL << (x))))
116 	0,				/* NONE */
117 	_BM(8), _BM(16), _BM(32),	/* RELOC_8, _16, _32 */
118 	_BM(8), _BM(16), _BM(32),	/* DISP8, DISP16, DISP32 */
119 	_BM(30), _BM(22),		/* WDISP30, WDISP22 */
120 	_BM(22), _BM(22),		/* HI22, _22 */
121 	_BM(13), _BM(10),		/* RELOC_13, _LO10 */
122 	_BM(10), _BM(13), _BM(22),	/* GOT10, GOT13, GOT22 */
123 	_BM(10), _BM(22),		/* _PC10, _PC22 */
124 	_BM(30), 0,			/* _WPLT30, _COPY */
125 	-1, -1, -1,			/* _GLOB_DAT, JMP_SLOT, _RELATIVE */
126 	_BM(32)				/* _UA32 */
127 #undef _BM
128 };
129 #define RELOC_VALUE_BITMASK(t)	(reloc_target_bitmask[t])
130 
131 void _rtld_bind_start(void);
132 void _rtld_relocate_nonplt_self(Elf_Dyn *, Elf_Addr);
133 caddr_t _rtld_bind(const Obj_Entry *, Elf_Word);
134 static inline int _rtld_relocate_plt_object(const Obj_Entry *,
135     const Elf_Rela *, Elf_Addr *);
136 
137 void
138 _rtld_setup_pltgot(const Obj_Entry *obj)
139 {
140 	/*
141 	 * PLTGOT is the PLT on the sparc.
142 	 * The first entry holds the call the dynamic linker.
143 	 * We construct a `call' sequence that transfers
144 	 * to `_rtld_bind_start()'.
145 	 * The second entry holds the object identification.
146 	 * Note: each PLT entry is three words long.
147 	 */
148 #define SAVE	0x9de3bfa0	/* i.e. `save %sp,-96,%sp' */
149 #define CALL	0x40000000
150 #define NOP	0x01000000
151 	obj->pltgot[0] = SAVE;
152 	obj->pltgot[1] = CALL |
153 	    ((Elf_Addr) &_rtld_bind_start - (Elf_Addr) &obj->pltgot[1]) >> 2;
154 	obj->pltgot[2] = NOP;
155 	obj->pltgot[3] = (Elf_Addr) obj;
156 }
157 
158 void
159 _rtld_relocate_nonplt_self(Elf_Dyn *dynp, Elf_Addr relocbase)
160 {
161 	const Elf_Rela *rela = 0, *relalim;
162 	Elf_Addr relasz = 0;
163 	Elf_Addr *where;
164 
165 	for (; dynp->d_tag != DT_NULL; dynp++) {
166 		switch (dynp->d_tag) {
167 		case DT_RELA:
168 			rela = (const Elf_Rela *)(relocbase + dynp->d_un.d_ptr);
169 			break;
170 		case DT_RELASZ:
171 			relasz = dynp->d_un.d_val;
172 			break;
173 		}
174 	}
175 	relalim = (const Elf_Rela *)((const uint8_t *)rela + relasz);
176 	for (; rela < relalim; rela++) {
177 		where = (Elf_Addr *)(relocbase + rela->r_offset);
178 		*where += (Elf_Addr)(relocbase + rela->r_addend);
179 	}
180 }
181 
182 int
183 _rtld_relocate_nonplt_objects(Obj_Entry *obj)
184 {
185 	const Elf_Rela *rela;
186 
187 	for (rela = obj->rela; rela < obj->relalim; rela++) {
188 		Elf_Addr *where;
189 		Elf_Word type, value, mask;
190 		const Elf_Sym *def = NULL;
191 		const Obj_Entry *defobj = NULL;
192 		unsigned long	 symnum;
193 
194 		where = (Elf_Addr *) (obj->relocbase + rela->r_offset);
195 		symnum = ELF_R_SYM(rela->r_info);
196 
197 		type = ELF_R_TYPE(rela->r_info);
198 		if (type == R_TYPE(NONE))
199 			continue;
200 
201 		/* We do JMP_SLOTs in _rtld_bind() below */
202 		if (type == R_TYPE(JMP_SLOT))
203 			continue;
204 
205 		/* COPY relocs are also handled elsewhere */
206 		if (type == R_TYPE(COPY))
207 			continue;
208 
209 		/*
210 		 * We use the fact that relocation types are an `enum'
211 		 * Note: R_SPARC_6 is currently numerically largest.
212 		 */
213 		if (type > R_TYPE(6))
214 			return (-1);
215 
216 		value = rela->r_addend;
217 
218 		/*
219 		 * Handle relative relocs here, as an optimization.
220 		 */
221 		if (type == R_TYPE(RELATIVE)) {
222 			*where += (Elf_Addr)(obj->relocbase + value);
223 			rdbg(("RELATIVE in %s --> %p", obj->path,
224 			    (void *)*where));
225 			continue;
226 		}
227 
228 		if (RELOC_RESOLVE_SYMBOL(type)) {
229 
230 			/* Find the symbol */
231 			def = _rtld_find_symdef(symnum, obj, &defobj, false);
232 			if (def == NULL)
233 				return (-1);
234 
235 			/* Add in the symbol's absolute address */
236 			value += (Elf_Word)(defobj->relocbase + def->st_value);
237 		}
238 
239 		if (RELOC_PC_RELATIVE(type)) {
240 			value -= (Elf_Word)where;
241 		}
242 
243 		if (RELOC_BASE_RELATIVE(type)) {
244 			/*
245 			 * Note that even though sparcs use `Elf_rela'
246 			 * exclusively we still need the implicit memory addend
247 			 * in relocations referring to GOT entries.
248 			 * Undoubtedly, someone f*cked this up in the distant
249 			 * past, and now we're stuck with it in the name of
250 			 * compatibility for all eternity..
251 			 *
252 			 * In any case, the implicit and explicit should be
253 			 * mutually exclusive. We provide a check for that
254 			 * here.
255 			 */
256 #define DIAGNOSTIC
257 #ifdef DIAGNOSTIC
258 			if (value != 0 && *where != 0) {
259 				xprintf("BASE_REL(%s): where=%p, *where 0x%x, "
260 					"addend=0x%x, base %p\n",
261 					obj->path, where, *where,
262 					rela->r_addend, obj->relocbase);
263 			}
264 #endif
265 			value += (Elf_Word)(obj->relocbase + *where);
266 		}
267 
268 		mask = RELOC_VALUE_BITMASK(type);
269 		value >>= RELOC_VALUE_RIGHTSHIFT(type);
270 		value &= mask;
271 
272 		if (RELOC_UNALIGNED(type)) {
273 			/* Handle unaligned relocations. */
274 			Elf_Addr tmp = 0;
275 			char *ptr = (char *)where;
276 			int i, size = RELOC_TARGET_SIZE(type)/8;
277 
278 			/* Read it in one byte at a time. */
279 			for (i=0; i<size; i++)
280 				tmp = (tmp << 8) | ptr[i];
281 
282 			tmp &= ~mask;
283 			tmp |= value;
284 
285 			/* Write it back out. */
286 			for (i=0; i<size; i++)
287 				ptr[i] = ((tmp >> (8*i)) & 0xff);
288 #ifdef RTLD_DEBUG_RELOC
289 			value = (Elf_Word)tmp;
290 #endif
291 
292 		} else {
293 			*where &= ~mask;
294 			*where |= value;
295 #ifdef RTLD_DEBUG_RELOC
296 			value = (Elf_Word)*where;
297 #endif
298 		}
299 #ifdef RTLD_DEBUG_RELOC
300 		if (RELOC_RESOLVE_SYMBOL(type)) {
301 			rdbg(("%s %s in %s --> %p in %s", reloc_names[type],
302 			    obj->strtab + obj->symtab[symnum].st_name,
303 			    obj->path, (void *)value, defobj->path));
304 		} else {
305 			rdbg(("%s in %s --> %p", reloc_names[type],
306 			    obj->path, (void *)value));
307 		}
308 #endif
309 	}
310 	return (0);
311 }
312 
313 int
314 _rtld_relocate_plt_lazy(const Obj_Entry *obj)
315 {
316 	return (0);
317 }
318 
319 caddr_t
320 _rtld_bind(const Obj_Entry *obj, Elf_Word reloff)
321 {
322 	const Elf_Rela *rela = (const Elf_Rela *)((const uint8_t *)obj->pltrela + reloff);
323 	Elf_Addr value;
324 	int err;
325 
326 	value = 0;	/* XXX gcc */
327 
328 	err = _rtld_relocate_plt_object(obj, rela, &value);
329 	if (err)
330 		_rtld_die();
331 
332 	return (caddr_t)value;
333 }
334 
335 int
336 _rtld_relocate_plt_objects(const Obj_Entry *obj)
337 {
338 	const Elf_Rela *rela = obj->pltrela;
339 
340 	for (; rela < obj->pltrelalim; rela++)
341 		if (_rtld_relocate_plt_object(obj, rela, NULL) < 0)
342 			return -1;
343 
344 	return 0;
345 }
346 
347 static inline int
348 _rtld_relocate_plt_object(const Obj_Entry *obj, const Elf_Rela *rela, Elf_Addr *tp)
349 {
350 	const Elf_Sym *def;
351 	const Obj_Entry *defobj;
352 	Elf_Word *where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
353 	Elf_Addr value;
354 	unsigned long info = rela->r_info;
355 
356 	assert(ELF_R_TYPE(info) == R_TYPE(JMP_SLOT));
357 
358 	def = _rtld_find_plt_symdef(ELF_R_SYM(info), obj, &defobj, tp != NULL);
359 	if (__predict_false(def == NULL))
360 		return -1;
361 	if (__predict_false(def == &_rtld_sym_zero))
362 		return 0;
363 
364 	value = (Elf_Addr)(defobj->relocbase + def->st_value);
365 	rdbg(("bind now/fixup in %s --> new=%p",
366 	    defobj->strtab + def->st_name, (void *)value));
367 
368 	/*
369 	 * At the PLT entry pointed at by `where', we now construct
370 	 * a direct transfer to the now fully resolved function
371 	 * address.  The resulting code in the jump slot is:
372 	 *
373 	 *	sethi	%hi(roffset), %g1
374 	 *	sethi	%hi(addr), %g1
375 	 *	jmp	%g1+%lo(addr)
376 	 *
377 	 * We write the third instruction first, since that leaves the
378 	 * previous `b,a' at the second word in place. Hence the whole
379 	 * PLT slot can be atomically change to the new sequence by
380 	 * writing the `sethi' instruction at word 2.
381 	 */
382 #define SETHI	0x03000000
383 #define JMP	0x81c06000
384 #define NOP	0x01000000
385 	where[2] = JMP   | (value & 0x000003ff);
386 	where[1] = SETHI | ((value >> 10) & 0x003fffff);
387 	__asm volatile("iflush %0+8" : : "r" (where));
388 	__asm volatile("iflush %0+4" : : "r" (where));
389 
390 	if (tp)
391 		*tp = value;
392 
393 	return 0;
394 }
395