xref: /netbsd-src/libexec/ld.elf_so/arch/sparc/mdreloc.c (revision b62fc9e20372b08e1785ff6d769312d209fa2005)
1 /*	$NetBSD: mdreloc.c,v 1.43 2010/01/13 20:17:22 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg and by Charles M. Hannum.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 #ifndef lint
34 __RCSID("$NetBSD: mdreloc.c,v 1.43 2010/01/13 20:17:22 christos Exp $");
35 #endif /* not lint */
36 
37 #include <errno.h>
38 #include <stdio.h>
39 #include <stdlib.h>
40 #include <string.h>
41 #include <unistd.h>
42 #include <sys/stat.h>
43 
44 #include "rtldenv.h"
45 #include "debug.h"
46 #include "rtld.h"
47 
48 /*
49  * The following table holds for each relocation type:
50  *	- the width in bits of the memory location the relocation
51  *	  applies to (not currently used)
52  *	- the number of bits the relocation value must be shifted to the
53  *	  right (i.e. discard least significant bits) to fit into
54  *	  the appropriate field in the instruction word.
55  *	- flags indicating whether
56  *		* the relocation involves a symbol
57  *		* the relocation is relative to the current position
58  *		* the relocation is for a GOT entry
59  *		* the relocation is relative to the load address
60  *
61  */
62 #define _RF_S		0x80000000		/* Resolve symbol */
63 #define _RF_A		0x40000000		/* Use addend */
64 #define _RF_P		0x20000000		/* Location relative */
65 #define _RF_G		0x10000000		/* GOT offset */
66 #define _RF_B		0x08000000		/* Load address relative */
67 #define _RF_U		0x04000000		/* Unaligned */
68 #define _RF_SZ(s)	(((s) & 0xff) << 8)	/* memory target size */
69 #define _RF_RS(s)	( (s) & 0xff)		/* right shift */
70 static const int reloc_target_flags[] = {
71 	0,							/* NONE */
72 	_RF_S|_RF_A|		_RF_SZ(8)  | _RF_RS(0),		/* RELOC_8 */
73 	_RF_S|_RF_A|		_RF_SZ(16) | _RF_RS(0),		/* RELOC_16 */
74 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* RELOC_32 */
75 	_RF_S|_RF_A|_RF_P|	_RF_SZ(8)  | _RF_RS(0),		/* DISP_8 */
76 	_RF_S|_RF_A|_RF_P|	_RF_SZ(16) | _RF_RS(0),		/* DISP_16 */
77 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* DISP_32 */
78 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP_30 */
79 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP_22 */
80 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(10),	/* HI22 */
81 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 22 */
82 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 13 */
83 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* LO10 */
84 	_RF_G|			_RF_SZ(32) | _RF_RS(0),		/* GOT10 */
85 	_RF_G|			_RF_SZ(32) | _RF_RS(0),		/* GOT13 */
86 	_RF_G|			_RF_SZ(32) | _RF_RS(10),	/* GOT22 */
87 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* PC10 */
88 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(10),	/* PC22 */
89 	      _RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WPLT30 */
90 				_RF_SZ(32) | _RF_RS(0),		/* COPY */
91 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* GLOB_DAT */
92 				_RF_SZ(32) | _RF_RS(0),		/* JMP_SLOT */
93 	      _RF_A|	_RF_B|	_RF_SZ(32) | _RF_RS(0),		/* RELATIVE */
94 	_RF_S|_RF_A|	_RF_U|	_RF_SZ(32) | _RF_RS(0),		/* UA_32 */
95 };
96 
97 #ifdef RTLD_DEBUG_RELOC
98 static const char *reloc_names[] = {
99 	"NONE", "RELOC_8", "RELOC_16", "RELOC_32", "DISP_8",
100 	"DISP_16", "DISP_32", "WDISP_30", "WDISP_22", "HI22",
101 	"22", "13", "LO10", "GOT10", "GOT13",
102 	"GOT22", "PC10", "PC22", "WPLT30", "COPY",
103 	"GLOB_DAT", "JMP_SLOT", "RELATIVE", "UA_32"
104 };
105 #endif
106 
107 #define RELOC_RESOLVE_SYMBOL(t)		((reloc_target_flags[t] & _RF_S) != 0)
108 #define RELOC_PC_RELATIVE(t)		((reloc_target_flags[t] & _RF_P) != 0)
109 #define RELOC_BASE_RELATIVE(t)		((reloc_target_flags[t] & _RF_B) != 0)
110 #define RELOC_UNALIGNED(t)		((reloc_target_flags[t] & _RF_U) != 0)
111 #define RELOC_USE_ADDEND(t)		((reloc_target_flags[t] & _RF_A) != 0)
112 #define RELOC_TARGET_SIZE(t)		((reloc_target_flags[t] >> 8) & 0xff)
113 #define RELOC_VALUE_RIGHTSHIFT(t)	(reloc_target_flags[t] & 0xff)
114 
115 static const int reloc_target_bitmask[] = {
116 #define _BM(x)	(~(-(1ULL << (x))))
117 	0,				/* NONE */
118 	_BM(8), _BM(16), _BM(32),	/* RELOC_8, _16, _32 */
119 	_BM(8), _BM(16), _BM(32),	/* DISP8, DISP16, DISP32 */
120 	_BM(30), _BM(22),		/* WDISP30, WDISP22 */
121 	_BM(22), _BM(22),		/* HI22, _22 */
122 	_BM(13), _BM(10),		/* RELOC_13, _LO10 */
123 	_BM(10), _BM(13), _BM(22),	/* GOT10, GOT13, GOT22 */
124 	_BM(10), _BM(22),		/* _PC10, _PC22 */
125 	_BM(30), 0,			/* _WPLT30, _COPY */
126 	-1, -1, -1,			/* _GLOB_DAT, JMP_SLOT, _RELATIVE */
127 	_BM(32)				/* _UA32 */
128 #undef _BM
129 };
130 #define RELOC_VALUE_BITMASK(t)	(reloc_target_bitmask[t])
131 
132 void _rtld_bind_start(void);
133 void _rtld_relocate_nonplt_self(Elf_Dyn *, Elf_Addr);
134 caddr_t _rtld_bind(const Obj_Entry *, Elf_Word);
135 static inline int _rtld_relocate_plt_object(const Obj_Entry *,
136     const Elf_Rela *, Elf_Addr *);
137 
138 void
139 _rtld_setup_pltgot(const Obj_Entry *obj)
140 {
141 	/*
142 	 * PLTGOT is the PLT on the sparc.
143 	 * The first entry holds the call the dynamic linker.
144 	 * We construct a `call' sequence that transfers
145 	 * to `_rtld_bind_start()'.
146 	 * The second entry holds the object identification.
147 	 * Note: each PLT entry is three words long.
148 	 */
149 #define SAVE	0x9de3bfa0	/* i.e. `save %sp,-96,%sp' */
150 #define CALL	0x40000000
151 #define NOP	0x01000000
152 	obj->pltgot[0] = SAVE;
153 	obj->pltgot[1] = CALL |
154 	    ((Elf_Addr) &_rtld_bind_start - (Elf_Addr) &obj->pltgot[1]) >> 2;
155 	obj->pltgot[2] = NOP;
156 	obj->pltgot[3] = (Elf_Addr) obj;
157 }
158 
159 void
160 _rtld_relocate_nonplt_self(Elf_Dyn *dynp, Elf_Addr relocbase)
161 {
162 	const Elf_Rela *rela = 0, *relalim;
163 	Elf_Addr relasz = 0;
164 	Elf_Addr *where;
165 
166 	for (; dynp->d_tag != DT_NULL; dynp++) {
167 		switch (dynp->d_tag) {
168 		case DT_RELA:
169 			rela = (const Elf_Rela *)(relocbase + dynp->d_un.d_ptr);
170 			break;
171 		case DT_RELASZ:
172 			relasz = dynp->d_un.d_val;
173 			break;
174 		}
175 	}
176 	relalim = (const Elf_Rela *)((const uint8_t *)rela + relasz);
177 	for (; rela < relalim; rela++) {
178 		where = (Elf_Addr *)(relocbase + rela->r_offset);
179 		*where += (Elf_Addr)(relocbase + rela->r_addend);
180 	}
181 }
182 
183 int
184 _rtld_relocate_nonplt_objects(const Obj_Entry *obj)
185 {
186 	const Elf_Rela *rela;
187 
188 	for (rela = obj->rela; rela < obj->relalim; rela++) {
189 		Elf_Addr *where;
190 		Elf_Word type, value, mask;
191 		const Elf_Sym *def = NULL;
192 		const Obj_Entry *defobj = NULL;
193 		unsigned long	 symnum;
194 
195 		where = (Elf_Addr *) (obj->relocbase + rela->r_offset);
196 		symnum = ELF_R_SYM(rela->r_info);
197 
198 		type = ELF_R_TYPE(rela->r_info);
199 		if (type == R_TYPE(NONE))
200 			continue;
201 
202 		/* We do JMP_SLOTs in _rtld_bind() below */
203 		if (type == R_TYPE(JMP_SLOT))
204 			continue;
205 
206 		/* COPY relocs are also handled elsewhere */
207 		if (type == R_TYPE(COPY))
208 			continue;
209 
210 		/*
211 		 * We use the fact that relocation types are an `enum'
212 		 * Note: R_SPARC_6 is currently numerically largest.
213 		 */
214 		if (type > R_TYPE(6))
215 			return (-1);
216 
217 		value = rela->r_addend;
218 
219 		/*
220 		 * Handle relative relocs here, as an optimization.
221 		 */
222 		if (type == R_TYPE(RELATIVE)) {
223 			*where += (Elf_Addr)(obj->relocbase + value);
224 			rdbg(("RELATIVE in %s --> %p", obj->path,
225 			    (void *)*where));
226 			continue;
227 		}
228 
229 		if (RELOC_RESOLVE_SYMBOL(type)) {
230 
231 			/* Find the symbol */
232 			def = _rtld_find_symdef(symnum, obj, &defobj, false);
233 			if (def == NULL)
234 				return (-1);
235 
236 			/* Add in the symbol's absolute address */
237 			value += (Elf_Word)(defobj->relocbase + def->st_value);
238 		}
239 
240 		if (RELOC_PC_RELATIVE(type)) {
241 			value -= (Elf_Word)where;
242 		}
243 
244 		if (RELOC_BASE_RELATIVE(type)) {
245 			/*
246 			 * Note that even though sparcs use `Elf_rela'
247 			 * exclusively we still need the implicit memory addend
248 			 * in relocations referring to GOT entries.
249 			 * Undoubtedly, someone f*cked this up in the distant
250 			 * past, and now we're stuck with it in the name of
251 			 * compatibility for all eternity..
252 			 *
253 			 * In any case, the implicit and explicit should be
254 			 * mutually exclusive. We provide a check for that
255 			 * here.
256 			 */
257 #define DIAGNOSTIC
258 #ifdef DIAGNOSTIC
259 			if (value != 0 && *where != 0) {
260 				xprintf("BASE_REL(%s): where=%p, *where 0x%x, "
261 					"addend=0x%x, base %p\n",
262 					obj->path, where, *where,
263 					rela->r_addend, obj->relocbase);
264 			}
265 #endif
266 			value += (Elf_Word)(obj->relocbase + *where);
267 		}
268 
269 		mask = RELOC_VALUE_BITMASK(type);
270 		value >>= RELOC_VALUE_RIGHTSHIFT(type);
271 		value &= mask;
272 
273 		if (RELOC_UNALIGNED(type)) {
274 			/* Handle unaligned relocations. */
275 			Elf_Addr tmp = 0;
276 			char *ptr = (char *)where;
277 			int i, size = RELOC_TARGET_SIZE(type)/8;
278 
279 			/* Read it in one byte at a time. */
280 			for (i=0; i<size; i++)
281 				tmp = (tmp << 8) | ptr[i];
282 
283 			tmp &= ~mask;
284 			tmp |= value;
285 
286 			/* Write it back out. */
287 			for (i=0; i<size; i++)
288 				ptr[i] = ((tmp >> (8*i)) & 0xff);
289 #ifdef RTLD_DEBUG_RELOC
290 			value = (Elf_Word)tmp;
291 #endif
292 
293 		} else {
294 			*where &= ~mask;
295 			*where |= value;
296 #ifdef RTLD_DEBUG_RELOC
297 			value = (Elf_Word)*where;
298 #endif
299 		}
300 #ifdef RTLD_DEBUG_RELOC
301 		if (RELOC_RESOLVE_SYMBOL(type)) {
302 			rdbg(("%s %s in %s --> %p in %s", reloc_names[type],
303 			    obj->strtab + obj->symtab[symnum].st_name,
304 			    obj->path, (void *)value, defobj->path));
305 		} else {
306 			rdbg(("%s in %s --> %p", reloc_names[type],
307 			    obj->path, (void *)value));
308 		}
309 #endif
310 	}
311 	return (0);
312 }
313 
314 int
315 _rtld_relocate_plt_lazy(const Obj_Entry *obj)
316 {
317 	return (0);
318 }
319 
320 caddr_t
321 _rtld_bind(const Obj_Entry *obj, Elf_Word reloff)
322 {
323 	const Elf_Rela *rela = (const Elf_Rela *)((const uint8_t *)obj->pltrela + reloff);
324 	Elf_Addr value;
325 	int err;
326 
327 	value = 0;	/* XXX gcc */
328 
329 	err = _rtld_relocate_plt_object(obj, rela, &value);
330 	if (err)
331 		_rtld_die();
332 
333 	return (caddr_t)value;
334 }
335 
336 int
337 _rtld_relocate_plt_objects(const Obj_Entry *obj)
338 {
339 	const Elf_Rela *rela = obj->pltrela;
340 
341 	for (; rela < obj->pltrelalim; rela++)
342 		if (_rtld_relocate_plt_object(obj, rela, NULL) < 0)
343 			return -1;
344 
345 	return 0;
346 }
347 
348 static inline int
349 _rtld_relocate_plt_object(const Obj_Entry *obj, const Elf_Rela *rela, Elf_Addr *tp)
350 {
351 	const Elf_Sym *def;
352 	const Obj_Entry *defobj;
353 	Elf_Word *where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
354 	Elf_Addr value;
355 	unsigned long info = rela->r_info;
356 
357 	assert(ELF_R_TYPE(info) == R_TYPE(JMP_SLOT));
358 
359 	def = _rtld_find_plt_symdef(ELF_R_SYM(info), obj, &defobj, tp != NULL);
360 	if (__predict_false(def == NULL))
361 		return -1;
362 	if (__predict_false(def == &_rtld_sym_zero))
363 		return 0;
364 
365 	value = (Elf_Addr)(defobj->relocbase + def->st_value);
366 	rdbg(("bind now/fixup in %s --> new=%p",
367 	    defobj->strtab + def->st_name, (void *)value));
368 
369 	/*
370 	 * At the PLT entry pointed at by `where', we now construct
371 	 * a direct transfer to the now fully resolved function
372 	 * address.  The resulting code in the jump slot is:
373 	 *
374 	 *	sethi	%hi(roffset), %g1
375 	 *	sethi	%hi(addr), %g1
376 	 *	jmp	%g1+%lo(addr)
377 	 *
378 	 * We write the third instruction first, since that leaves the
379 	 * previous `b,a' at the second word in place. Hence the whole
380 	 * PLT slot can be atomically change to the new sequence by
381 	 * writing the `sethi' instruction at word 2.
382 	 */
383 #define SETHI	0x03000000
384 #define JMP	0x81c06000
385 #define NOP	0x01000000
386 	where[2] = JMP   | (value & 0x000003ff);
387 	where[1] = SETHI | ((value >> 10) & 0x003fffff);
388 	__asm volatile("iflush %0+8" : : "r" (where));
389 	__asm volatile("iflush %0+4" : : "r" (where));
390 
391 	if (tp)
392 		*tp = value;
393 
394 	return 0;
395 }
396