xref: /netbsd-src/libexec/ld.elf_so/arch/sparc/mdreloc.c (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 /*	$NetBSD: mdreloc.c,v 1.47 2011/03/31 12:47:01 nakayama Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg and by Charles M. Hannum.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 #ifndef lint
34 __RCSID("$NetBSD: mdreloc.c,v 1.47 2011/03/31 12:47:01 nakayama Exp $");
35 #endif /* not lint */
36 
37 #include <errno.h>
38 #include <stdio.h>
39 #include <stdlib.h>
40 #include <string.h>
41 #include <unistd.h>
42 
43 #include "rtldenv.h"
44 #include "debug.h"
45 #include "rtld.h"
46 
47 /*
48  * The following table holds for each relocation type:
49  *	- the width in bits of the memory location the relocation
50  *	  applies to (not currently used)
51  *	- the number of bits the relocation value must be shifted to the
52  *	  right (i.e. discard least significant bits) to fit into
53  *	  the appropriate field in the instruction word.
54  *	- flags indicating whether
55  *		* the relocation involves a symbol
56  *		* the relocation is relative to the current position
57  *		* the relocation is for a GOT entry
58  *		* the relocation is relative to the load address
59  *
60  */
61 #define _RF_S		0x80000000		/* Resolve symbol */
62 #define _RF_A		0x40000000		/* Use addend */
63 #define _RF_P		0x20000000		/* Location relative */
64 #define _RF_G		0x10000000		/* GOT offset */
65 #define _RF_B		0x08000000		/* Load address relative */
66 #define _RF_U		0x04000000		/* Unaligned */
67 #define _RF_SZ(s)	(((s) & 0xff) << 8)	/* memory target size */
68 #define _RF_RS(s)	( (s) & 0xff)		/* right shift */
69 static const int reloc_target_flags[R_TYPE(TLS_TPOFF64)+1] = {
70 	0,							/* NONE */
71 	_RF_S|_RF_A|		_RF_SZ(8)  | _RF_RS(0),		/* RELOC_8 */
72 	_RF_S|_RF_A|		_RF_SZ(16) | _RF_RS(0),		/* RELOC_16 */
73 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* RELOC_32 */
74 	_RF_S|_RF_A|_RF_P|	_RF_SZ(8)  | _RF_RS(0),		/* DISP_8 */
75 	_RF_S|_RF_A|_RF_P|	_RF_SZ(16) | _RF_RS(0),		/* DISP_16 */
76 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* DISP_32 */
77 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP_30 */
78 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP_22 */
79 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(10),	/* HI22 */
80 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 22 */
81 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 13 */
82 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* LO10 */
83 	_RF_G|			_RF_SZ(32) | _RF_RS(0),		/* GOT10 */
84 	_RF_G|			_RF_SZ(32) | _RF_RS(0),		/* GOT13 */
85 	_RF_G|			_RF_SZ(32) | _RF_RS(10),	/* GOT22 */
86 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* PC10 */
87 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(10),	/* PC22 */
88 	      _RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WPLT30 */
89 				_RF_SZ(32) | _RF_RS(0),		/* COPY */
90 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* GLOB_DAT */
91 				_RF_SZ(32) | _RF_RS(0),		/* JMP_SLOT */
92 	      _RF_A|	_RF_B|	_RF_SZ(32) | _RF_RS(0),		/* RELATIVE */
93 	_RF_S|_RF_A|	_RF_U|	_RF_SZ(32) | _RF_RS(0),		/* UA_32 */
94 
95 	/* TLS and 64 bit relocs not listed here... */
96 };
97 
98 #ifdef RTLD_DEBUG_RELOC
99 static const char *reloc_names[] = {
100 	"NONE", "RELOC_8", "RELOC_16", "RELOC_32", "DISP_8",
101 	"DISP_16", "DISP_32", "WDISP_30", "WDISP_22", "HI22",
102 	"22", "13", "LO10", "GOT10", "GOT13",
103 	"GOT22", "PC10", "PC22", "WPLT30", "COPY",
104 	"GLOB_DAT", "JMP_SLOT", "RELATIVE", "UA_32",
105 
106 	/* not used with 32bit userland, besides a few of the TLS ones */
107 	"PLT32",
108 	"HIPLT22", "LOPLT10", "LOPLT10", "PCPLT22", "PCPLT32",
109 	"10", "11", "64", "OLO10", "HH22",
110 	"HM10", "LM22", "PC_HH22", "PC_HM10", "PC_LM22",
111 	"WDISP16", "WDISP19", "GLOB_JMP", "7", "5", "6",
112 	"DISP64", "PLT64", "HIX22", "LOX10", "H44", "M44",
113 	"L44", "REGISTER", "UA64", "UA16",
114 	"TLS_GD_HI22", "TLS_GD_LO10", "TLS_GD_ADD", "TLS_GD_CALL",
115 	"TLS_LDM_HI22", "TLS_LDM_LO10", "TLS_LDM_ADD", "TLS_LDM_CALL",
116 	"TLS_LDO_HIX22", "TLS_LDO_LOX10", "TLS_LDO_ADD", "TLS_IE_HI22",
117 	"TLS_IE_LO10", "TLS_IE_LD", "TLS_IE_LDX", "TLS_IE_ADD", "TLS_LE_HIX22",
118 	"TLS_LE_LOX10", "TLS_DTPMOD32", "TLS_DTPMOD64", "TLS_DTPOFF32",
119 	"TLS_DTPOFF64", "TLS_TPOFF32", "TLS_TPOFF64",
120 };
121 #endif
122 
123 #define RELOC_RESOLVE_SYMBOL(t)		((reloc_target_flags[t] & _RF_S) != 0)
124 #define RELOC_PC_RELATIVE(t)		((reloc_target_flags[t] & _RF_P) != 0)
125 #define RELOC_BASE_RELATIVE(t)		((reloc_target_flags[t] & _RF_B) != 0)
126 #define RELOC_UNALIGNED(t)		((reloc_target_flags[t] & _RF_U) != 0)
127 #define RELOC_USE_ADDEND(t)		((reloc_target_flags[t] & _RF_A) != 0)
128 #define RELOC_TARGET_SIZE(t)		((reloc_target_flags[t] >> 8) & 0xff)
129 #define RELOC_VALUE_RIGHTSHIFT(t)	(reloc_target_flags[t] & 0xff)
130 #define RELOC_TLS(t)			(t >= R_TYPE(TLS_GD_HI22))
131 
132 static const int reloc_target_bitmask[] = {
133 #define _BM(x)	(~(-(1ULL << (x))))
134 	0,				/* NONE */
135 	_BM(8), _BM(16), _BM(32),	/* RELOC_8, _16, _32 */
136 	_BM(8), _BM(16), _BM(32),	/* DISP8, DISP16, DISP32 */
137 	_BM(30), _BM(22),		/* WDISP30, WDISP22 */
138 	_BM(22), _BM(22),		/* HI22, _22 */
139 	_BM(13), _BM(10),		/* RELOC_13, _LO10 */
140 	_BM(10), _BM(13), _BM(22),	/* GOT10, GOT13, GOT22 */
141 	_BM(10), _BM(22),		/* _PC10, _PC22 */
142 	_BM(30), 0,			/* _WPLT30, _COPY */
143 	-1, -1, -1,			/* _GLOB_DAT, JMP_SLOT, _RELATIVE */
144 	_BM(32)				/* _UA32 */
145 #undef _BM
146 };
147 #define RELOC_VALUE_BITMASK(t)	(reloc_target_bitmask[t])
148 
149 void _rtld_bind_start(void);
150 void _rtld_relocate_nonplt_self(Elf_Dyn *, Elf_Addr);
151 caddr_t _rtld_bind(const Obj_Entry *, Elf_Word);
152 static inline int _rtld_relocate_plt_object(const Obj_Entry *,
153     const Elf_Rela *, Elf_Addr *);
154 
155 void
156 _rtld_setup_pltgot(const Obj_Entry *obj)
157 {
158 	/*
159 	 * PLTGOT is the PLT on the sparc.
160 	 * The first entry holds the call the dynamic linker.
161 	 * We construct a `call' sequence that transfers
162 	 * to `_rtld_bind_start()'.
163 	 * The second entry holds the object identification.
164 	 * Note: each PLT entry is three words long.
165 	 */
166 #define SAVE	0x9de3bfa0	/* i.e. `save %sp,-96,%sp' */
167 #define CALL	0x40000000
168 #define NOP	0x01000000
169 	obj->pltgot[0] = SAVE;
170 	obj->pltgot[1] = CALL |
171 	    ((Elf_Addr) &_rtld_bind_start - (Elf_Addr) &obj->pltgot[1]) >> 2;
172 	obj->pltgot[2] = NOP;
173 	obj->pltgot[3] = (Elf_Addr) obj;
174 }
175 
176 void
177 _rtld_relocate_nonplt_self(Elf_Dyn *dynp, Elf_Addr relocbase)
178 {
179 	const Elf_Rela *rela = 0, *relalim;
180 	Elf_Addr relasz = 0;
181 	Elf_Addr *where;
182 
183 	for (; dynp->d_tag != DT_NULL; dynp++) {
184 		switch (dynp->d_tag) {
185 		case DT_RELA:
186 			rela = (const Elf_Rela *)(relocbase + dynp->d_un.d_ptr);
187 			break;
188 		case DT_RELASZ:
189 			relasz = dynp->d_un.d_val;
190 			break;
191 		}
192 	}
193 	relalim = (const Elf_Rela *)((const uint8_t *)rela + relasz);
194 	for (; rela < relalim; rela++) {
195 		where = (Elf_Addr *)(relocbase + rela->r_offset);
196 		*where += (Elf_Addr)(relocbase + rela->r_addend);
197 	}
198 }
199 
200 int
201 _rtld_relocate_nonplt_objects(Obj_Entry *obj)
202 {
203 	const Elf_Rela *rela;
204 
205 	for (rela = obj->rela; rela < obj->relalim; rela++) {
206 		Elf_Addr *where;
207 		Elf_Word type, value, mask;
208 		const Elf_Sym *def = NULL;
209 		const Obj_Entry *defobj = NULL;
210 		unsigned long	 symnum;
211 
212 		where = (Elf_Addr *) (obj->relocbase + rela->r_offset);
213 		symnum = ELF_R_SYM(rela->r_info);
214 
215 		type = ELF_R_TYPE(rela->r_info);
216 		if (type == R_TYPE(NONE))
217 			continue;
218 
219 		/* We do JMP_SLOTs in _rtld_bind() below */
220 		if (type == R_TYPE(JMP_SLOT))
221 			continue;
222 
223 		/* COPY relocs are also handled elsewhere */
224 		if (type == R_TYPE(COPY))
225 			continue;
226 
227 		/*
228 		 * We use the fact that relocation types are an `enum'
229 		 * Note: R_SPARC_TLS_TPOFF64 is currently numerically largest.
230 		 */
231 		if (type > R_TYPE(TLS_TPOFF64))
232 			return (-1);
233 
234 		value = rela->r_addend;
235 
236 		/*
237 		 * Handle TLS relocations here, they are different.
238 		 */
239 		if (RELOC_TLS(type)) {
240 			switch (type) {
241 				case R_TYPE(TLS_DTPMOD32):
242 					def = _rtld_find_symdef(symnum, obj,
243 					    &defobj, false);
244 					if (def == NULL)
245 						return -1;
246 
247 					*where = (Elf_Addr)defobj->tlsindex;
248 
249 					rdbg(("TLS_DTPMOD32 %s in %s --> %p",
250 					    obj->strtab +
251 					    obj->symtab[symnum].st_name,
252 					    obj->path, (void *)*where));
253 
254 					break;
255 
256 				case R_TYPE(TLS_DTPOFF32):
257 					def = _rtld_find_symdef(symnum, obj,
258 					    &defobj, false);
259 					if (def == NULL)
260 						return -1;
261 
262 					*where = (Elf_Addr)(def->st_value
263 					    + rela->r_addend);
264 
265 					rdbg(("TLS_DTPOFF32 %s in %s --> %p",
266 					    obj->strtab +
267 					        obj->symtab[symnum].st_name,
268 					    obj->path, (void *)*where));
269 
270 					break;
271 
272 				case R_TYPE(TLS_TPOFF32):
273 					def = _rtld_find_symdef(symnum, obj,
274 					    &defobj, false);
275 					if (def == NULL)
276 						return -1;
277 
278 					if (!defobj->tls_done &&
279 						_rtld_tls_offset_allocate(obj))
280 						     return -1;
281 
282 					*where = (Elf_Addr)(def->st_value -
283 			                            defobj->tlsoffset +
284 						    rela->r_addend);
285 
286 		                        rdbg(("TLS_TPOFF32 %s in %s --> %p",
287 		                            obj->strtab +
288 					    obj->symtab[symnum].st_name,
289 		                            obj->path, (void *)*where));
290 
291 	                		break;
292 			}
293 			continue;
294 		}
295 
296 		/*
297 		 * If it is no TLS relocation (handled above), we can not
298 		 * deal with it if it is beyound R_SPARC_6.
299 		 */
300 		if (type > R_TYPE(6))
301 			return (-1);
302 
303 		/*
304 		 * Handle relative relocs here, as an optimization.
305 		 */
306 		if (type == R_TYPE(RELATIVE)) {
307 			*where += (Elf_Addr)(obj->relocbase + value);
308 			rdbg(("RELATIVE in %s --> %p", obj->path,
309 			    (void *)*where));
310 			continue;
311 		}
312 
313 		if (RELOC_RESOLVE_SYMBOL(type)) {
314 
315 			/* Find the symbol */
316 			def = _rtld_find_symdef(symnum, obj, &defobj, false);
317 			if (def == NULL)
318 				return (-1);
319 
320 			/* Add in the symbol's absolute address */
321 			value += (Elf_Word)(defobj->relocbase + def->st_value);
322 		}
323 
324 		if (RELOC_PC_RELATIVE(type)) {
325 			value -= (Elf_Word)where;
326 		}
327 
328 		if (RELOC_BASE_RELATIVE(type)) {
329 			/*
330 			 * Note that even though sparcs use `Elf_rela'
331 			 * exclusively we still need the implicit memory addend
332 			 * in relocations referring to GOT entries.
333 			 * Undoubtedly, someone f*cked this up in the distant
334 			 * past, and now we're stuck with it in the name of
335 			 * compatibility for all eternity..
336 			 *
337 			 * In any case, the implicit and explicit should be
338 			 * mutually exclusive. We provide a check for that
339 			 * here.
340 			 */
341 #define DIAGNOSTIC
342 #ifdef DIAGNOSTIC
343 			if (value != 0 && *where != 0) {
344 				xprintf("BASE_REL(%s): where=%p, *where 0x%x, "
345 					"addend=0x%x, base %p\n",
346 					obj->path, where, *where,
347 					rela->r_addend, obj->relocbase);
348 			}
349 #endif
350 			value += (Elf_Word)(obj->relocbase + *where);
351 		}
352 
353 		mask = RELOC_VALUE_BITMASK(type);
354 		value >>= RELOC_VALUE_RIGHTSHIFT(type);
355 		value &= mask;
356 
357 		if (RELOC_UNALIGNED(type)) {
358 			/* Handle unaligned relocations. */
359 			Elf_Addr tmp = 0;
360 			char *ptr = (char *)where;
361 			int i, size = RELOC_TARGET_SIZE(type)/8;
362 
363 			/* Read it in one byte at a time. */
364 			for (i=0; i<size; i++)
365 				tmp = (tmp << 8) | ptr[i];
366 
367 			tmp &= ~mask;
368 			tmp |= value;
369 
370 			/* Write it back out. */
371 			for (i=0; i<size; i++)
372 				ptr[i] = ((tmp >> (8*i)) & 0xff);
373 #ifdef RTLD_DEBUG_RELOC
374 			value = (Elf_Word)tmp;
375 #endif
376 
377 		} else {
378 			*where &= ~mask;
379 			*where |= value;
380 #ifdef RTLD_DEBUG_RELOC
381 			value = (Elf_Word)*where;
382 #endif
383 		}
384 #ifdef RTLD_DEBUG_RELOC
385 		if (RELOC_RESOLVE_SYMBOL(type)) {
386 			rdbg(("%s %s in %s --> %p in %s", reloc_names[type],
387 			    obj->strtab + obj->symtab[symnum].st_name,
388 			    obj->path, (void *)value, defobj->path));
389 		} else {
390 			rdbg(("%s in %s --> %p", reloc_names[type],
391 			    obj->path, (void *)value));
392 		}
393 #endif
394 	}
395 	return (0);
396 }
397 
398 int
399 _rtld_relocate_plt_lazy(const Obj_Entry *obj)
400 {
401 	return (0);
402 }
403 
404 caddr_t
405 _rtld_bind(const Obj_Entry *obj, Elf_Word reloff)
406 {
407 	const Elf_Rela *rela = (const Elf_Rela *)((const uint8_t *)obj->pltrela + reloff);
408 	Elf_Addr value;
409 	int err;
410 
411 	value = 0;	/* XXX gcc */
412 
413 	_rtld_shared_enter();
414 	err = _rtld_relocate_plt_object(obj, rela, &value);
415 	if (err)
416 		_rtld_die();
417 	_rtld_shared_exit();
418 
419 	return (caddr_t)value;
420 }
421 
422 int
423 _rtld_relocate_plt_objects(const Obj_Entry *obj)
424 {
425 	const Elf_Rela *rela = obj->pltrela;
426 
427 	for (; rela < obj->pltrelalim; rela++)
428 		if (_rtld_relocate_plt_object(obj, rela, NULL) < 0)
429 			return -1;
430 
431 	return 0;
432 }
433 
434 static inline int
435 _rtld_relocate_plt_object(const Obj_Entry *obj, const Elf_Rela *rela, Elf_Addr *tp)
436 {
437 	const Elf_Sym *def;
438 	const Obj_Entry *defobj;
439 	Elf_Word *where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
440 	Elf_Addr value;
441 	unsigned long info = rela->r_info;
442 
443 	assert(ELF_R_TYPE(info) == R_TYPE(JMP_SLOT));
444 
445 	def = _rtld_find_plt_symdef(ELF_R_SYM(info), obj, &defobj, tp != NULL);
446 	if (__predict_false(def == NULL))
447 		return -1;
448 	if (__predict_false(def == &_rtld_sym_zero))
449 		return 0;
450 
451 	value = (Elf_Addr)(defobj->relocbase + def->st_value);
452 	rdbg(("bind now/fixup in %s --> new=%p",
453 	    defobj->strtab + def->st_name, (void *)value));
454 
455 	/*
456 	 * At the PLT entry pointed at by `where', we now construct
457 	 * a direct transfer to the now fully resolved function
458 	 * address.  The resulting code in the jump slot is:
459 	 *
460 	 *	sethi	%hi(roffset), %g1
461 	 *	sethi	%hi(addr), %g1
462 	 *	jmp	%g1+%lo(addr)
463 	 *
464 	 * We write the third instruction first, since that leaves the
465 	 * previous `b,a' at the second word in place. Hence the whole
466 	 * PLT slot can be atomically change to the new sequence by
467 	 * writing the `sethi' instruction at word 2.
468 	 */
469 #define SETHI	0x03000000
470 #define JMP	0x81c06000
471 #define NOP	0x01000000
472 	where[2] = JMP   | (value & 0x000003ff);
473 	where[1] = SETHI | ((value >> 10) & 0x003fffff);
474 	__asm volatile("iflush %0+8" : : "r" (where));
475 	__asm volatile("iflush %0+4" : : "r" (where));
476 
477 	if (tp)
478 		*tp = value;
479 
480 	return 0;
481 }
482