xref: /netbsd-src/lib/libwrap/hosts_access.c (revision d48f14661dda8638fee055ba15d35bdfb29b9fa8)
1 /*	$NetBSD: hosts_access.c,v 1.18 2006/01/08 17:20:28 jdc Exp $	*/
2 
3  /*
4   * This module implements a simple access control language that is based on
5   * host (or domain) names, NIS (host) netgroup names, IP addresses (or
6   * network numbers) and daemon process names. When a match is found the
7   * search is terminated, and depending on whether PROCESS_OPTIONS is defined,
8   * a list of options is executed or an optional shell command is executed.
9   *
10   * Host and user names are looked up on demand, provided that suitable endpoint
11   * information is available as sockaddr_in structures or TLI netbufs. As a
12   * side effect, the pattern matching process may change the contents of
13   * request structure fields.
14   *
15   * Diagnostics are reported through syslog(3).
16   *
17   * Compile with -DNETGROUP if your library provides support for netgroups.
18   *
19   * Author: Wietse Venema, Eindhoven University of Technology, The Netherlands.
20   */
21 
22 #include <sys/cdefs.h>
23 #ifndef lint
24 #if 0
25 static char sccsid[] = "@(#) hosts_access.c 1.21 97/02/12 02:13:22";
26 #else
27 __RCSID("$NetBSD: hosts_access.c,v 1.18 2006/01/08 17:20:28 jdc Exp $");
28 #endif
29 #endif
30 
31 /* System libraries. */
32 
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #ifdef INET6
36 #include <sys/socket.h>
37 #endif
38 #include <netinet/in.h>
39 #include <arpa/inet.h>
40 #include <stdio.h>
41 #include <stdlib.h>
42 #include <syslog.h>
43 #include <ctype.h>
44 #include <errno.h>
45 #include <setjmp.h>
46 #include <string.h>
47 #include <netdb.h>
48 #ifdef  NETGROUP
49 #include <netgroup.h>
50 #include <rpcsvc/ypclnt.h>
51 #endif
52 
53 /* Local stuff. */
54 
55 #include "tcpd.h"
56 
57 /* Error handling. */
58 
59 extern jmp_buf tcpd_buf;
60 
61 /* Delimiters for lists of daemons or clients. */
62 
63 static char sep[] = ", \t\r\n";
64 
65 /* Constants to be used in assignments only, not in comparisons... */
66 
67 #define	YES		1
68 #define	NO		0
69 
70  /*
71   * These variables are globally visible so that they can be redirected in
72   * verification mode.
73   */
74 
75 char   *hosts_allow_table = HOSTS_ALLOW;
76 char   *hosts_deny_table = HOSTS_DENY;
77 int     hosts_access_verbose = 0;
78 
79  /*
80   * In a long-running process, we are not at liberty to just go away.
81   */
82 
83 int     resident = (-1);		/* -1, 0: unknown; +1: yes */
84 
85 /* Forward declarations. */
86 
87 static int table_match __P((char *, struct request_info *));
88 static int list_match __P((char *, struct request_info *,
89     int (*)(char *, struct request_info *)));
90 static int server_match __P((char *, struct request_info *));
91 static int client_match __P((char *, struct request_info *));
92 static int host_match __P((char *, struct host_info *));
93 static int rbl_match __P((char *, char *));
94 static int string_match __P((char *, char *));
95 static int masked_match __P((char *, char *, char *));
96 static int masked_match4 __P((char *, char *, char *));
97 #ifdef INET6
98 static int masked_match6 __P((char *, char *, char *));
99 #endif
100 
101 /* Size of logical line buffer. */
102 
103 #define	BUFLEN 2048
104 
105 /* hosts_access - host access control facility */
106 
107 int     hosts_access(request)
108 struct request_info *request;
109 {
110     int     verdict;
111 
112     /*
113      * If the (daemon, client) pair is matched by an entry in the file
114      * /etc/hosts.allow, access is granted. Otherwise, if the (daemon,
115      * client) pair is matched by an entry in the file /etc/hosts.deny,
116      * access is denied. Otherwise, access is granted. A non-existent
117      * access-control file is treated as an empty file.
118      *
119      * After a rule has been matched, the optional language extensions may
120      * decide to grant or refuse service anyway. Or, while a rule is being
121      * processed, a serious error is found, and it seems better to play safe
122      * and deny service. All this is done by jumping back into the
123      * hosts_access() routine, bypassing the regular return from the
124      * table_match() function calls below.
125      */
126 
127     if (resident <= 0)
128 	resident++;
129     verdict = setjmp(tcpd_buf);
130     if (verdict != 0)
131 	return (verdict == AC_PERMIT);
132     if (table_match(hosts_allow_table, request))
133 	return (YES);
134     if (table_match(hosts_deny_table, request))
135 	return (NO);
136     return (YES);
137 }
138 
139 /* table_match - match table entries with (daemon, client) pair */
140 
141 static int table_match(table, request)
142 char   *table;
143 struct request_info *request;
144 {
145     FILE   *fp;
146     char    sv_list[BUFLEN];		/* becomes list of daemons */
147     char   *cl_list;			/* becomes list of clients */
148     char   *sh_cmd = NULL;		/* becomes optional shell command */
149     int     match = NO;
150     struct tcpd_context saved_context;
151 
152     saved_context = tcpd_context;		/* stupid compilers */
153 
154     /*
155      * Between the fopen() and fclose() calls, avoid jumps that may cause
156      * file descriptor leaks.
157      */
158 
159     if ((fp = fopen(table, "r")) != 0) {
160 	tcpd_context.file = table;
161 	tcpd_context.line = 0;
162 	while (match == NO && xgets(sv_list, sizeof(sv_list), fp) != 0) {
163 	    if (sv_list[strlen(sv_list) - 1] != '\n') {
164 		tcpd_warn("missing newline or line too long");
165 		continue;
166 	    }
167 	    if (sv_list[0] == '#' || sv_list[strspn(sv_list, " \t\r\n")] == 0)
168 		continue;
169 	    if ((cl_list = split_at(sv_list, ':')) == 0) {
170 		tcpd_warn("missing \":\" separator");
171 		continue;
172 	    }
173 	    sh_cmd = split_at(cl_list, ':');
174 	    match = list_match(sv_list, request, server_match)
175 		&& list_match(cl_list, request, client_match);
176 	}
177 	(void) fclose(fp);
178     } else if (errno != ENOENT) {
179 	tcpd_warn("cannot open %s: %m", table);
180     }
181     if (match) {
182 	if (hosts_access_verbose > 1)
183 	    syslog(LOG_DEBUG, "matched:  %s line %d",
184 		   tcpd_context.file, tcpd_context.line);
185 	if (sh_cmd) {
186 #ifdef PROCESS_OPTIONS
187 	    process_options(sh_cmd, request);
188 #else
189 	    char    cmd[BUFSIZ];
190 	    shell_cmd(percent_x(cmd, sizeof(cmd), sh_cmd, request));
191 #endif
192 	}
193     }
194     tcpd_context = saved_context;
195     return (match);
196 }
197 
198 /* list_match - match a request against a list of patterns with exceptions */
199 
200 static int list_match(list, request, match_fn)
201 char   *list;
202 struct request_info *request;
203 int   (*match_fn) __P((char *, struct request_info *));
204 {
205     char   *tok;
206     static char *last;
207     int l;
208 
209     /*
210      * Process tokens one at a time. We have exhausted all possible matches
211      * when we reach an "EXCEPT" token or the end of the list. If we do find
212      * a match, look for an "EXCEPT" list and recurse to determine whether
213      * the match is affected by any exceptions.
214      */
215 
216     for (tok = strtok_r(list, sep, &last); tok != 0;
217       tok = strtok_r(NULL, sep, &last)) {
218 	if (STR_EQ(tok, "EXCEPT"))		/* EXCEPT: give up */
219 	    return (NO);
220 	l = strlen(tok);
221 	if (*tok == '[' && tok[l - 1] == ']') {
222 	    tok[l - 1] = '\0';
223 	    tok++;
224 	}
225 	if (match_fn(tok, request)) {		/* YES: look for exceptions */
226 	    while ((tok = strtok_r(NULL, sep, &last)) && STR_NE(tok, "EXCEPT"))
227 		 /* VOID */ ;
228 	    return (tok == 0 || list_match(NULL, request, match_fn) == 0);
229 	}
230     }
231     return (NO);
232 }
233 
234 /* server_match - match server information */
235 
236 static int server_match(tok, request)
237 char   *tok;
238 struct request_info *request;
239 {
240     char   *host;
241 
242     if ((host = split_at(tok + 1, '@')) == 0) {	/* plain daemon */
243 	return (string_match(tok, eval_daemon(request)));
244     } else {					/* daemon@host */
245 	return (string_match(tok, eval_daemon(request))
246 		&& host_match(host, request->server));
247     }
248 }
249 
250 /* client_match - match client information */
251 
252 static int client_match(tok, request)
253 char   *tok;
254 struct request_info *request;
255 {
256     char   *host;
257 
258     if ((host = split_at(tok + 1, '@')) == 0) {	/* plain host */
259 	return (host_match(tok, request->client));
260     } else {					/* user@host */
261 	return (host_match(host, request->client)
262 		&& string_match(tok, eval_user(request)));
263     }
264 }
265 
266 /* host_match - match host name and/or address against pattern */
267 
268 static int host_match(tok, host)
269 char   *tok;
270 struct host_info *host;
271 {
272     char   *mask;
273 
274     /*
275      * This code looks a little hairy because we want to avoid unnecessary
276      * hostname lookups.
277      *
278      * The KNOWN pattern requires that both address AND name be known; some
279      * patterns are specific to host names or to host addresses; all other
280      * patterns are satisfied when either the address OR the name match.
281      */
282 
283     if (tok[0] == '@') {			/* netgroup: look it up */
284 #ifdef  NETGROUP
285 	static char *mydomain = 0;
286 	if (mydomain == 0)
287 	    yp_get_default_domain(&mydomain);
288 	return (innetgr(tok + 1, eval_hostname(host), NULL, mydomain));
289 #else
290 	tcpd_warn("netgroup support is disabled");	/* not tcpd_jump() */
291 	return (NO);
292 #endif
293     } else if (STR_EQ(tok, "KNOWN")) {		/* check address and name */
294 	char   *name = eval_hostname(host);
295 	return (STR_NE(eval_hostaddr(host), unknown) && HOSTNAME_KNOWN(name));
296     } else if (STR_EQ(tok, "LOCAL")) {		/* local: no dots in name */
297 	char   *name = eval_hostname(host);
298 	return (strchr(name, '.') == 0 && HOSTNAME_KNOWN(name));
299     } else if (strncmp(tok, "{RBL}.", 6) == 0) { /* RBL lookup in domain */
300 	return rbl_match(tok+6, eval_hostaddr(host));
301     } else if ((mask = split_at(tok, '/')) != 0) {	/* net/mask */
302 	return (masked_match(tok, mask, eval_hostaddr(host)));
303     } else {					/* anything else */
304 	return (string_match(tok, eval_hostaddr(host))
305 	    || (NOT_INADDR(tok) && string_match(tok, eval_hostname(host))));
306     }
307 }
308 
309 /* rbl_match() - match host by looking up in RBL domain */
310 
311 static int rbl_match(rbl_domain, rbl_hostaddr)
312 char   *rbl_domain;				/* RBL domain */
313 char   *rbl_hostaddr;				/* hostaddr */
314 {
315     char *rbl_name;
316     unsigned long host_address;
317     int ret = NO;
318     size_t len = strlen(rbl_domain) + (4 * 4) + 2;
319 
320     if (dot_quad_addr(rbl_hostaddr, &host_address) != 0) {
321 	tcpd_warn("unable to convert %s to address", rbl_hostaddr);
322 	return (NO);
323     }
324     host_address = ntohl(host_address);
325     /*  construct the rbl name to look up */
326     if ((rbl_name = malloc(len)) == NULL) {
327 	tcpd_jump("not enough memory to build RBL name for %s in %s", rbl_hostaddr, rbl_domain);
328 	/* NOTREACHED */
329     }
330     snprintf(rbl_name, len, "%u.%u.%u.%u.%s",
331 	    (unsigned int) ((host_address) & 0xff),
332 	    (unsigned int) ((host_address >> 8) & 0xff),
333 	    (unsigned int) ((host_address >> 16) & 0xff),
334 	    (unsigned int) ((host_address >> 24) & 0xff),
335 	    rbl_domain);
336     /* look it up */
337     if (gethostbyname(rbl_name) != NULL) {
338 	/* successful lookup - they're on the RBL list */
339 	ret = YES;
340     }
341     free(rbl_name);
342 
343     return ret;
344 }
345 
346 /* string_match - match string against pattern */
347 
348 static int string_match(tok, string)
349 char   *tok;
350 char   *string;
351 {
352     int     n;
353 
354     if (tok[0] == '.') {			/* suffix */
355 	n = strlen(string) - strlen(tok);
356 	return (n > 0 && STR_EQ(tok, string + n));
357     } else if (STR_EQ(tok, "ALL")) {		/* all: match any */
358 	return (YES);
359     } else if (STR_EQ(tok, "KNOWN")) {		/* not unknown */
360 	return (STR_NE(string, unknown));
361     } else if (tok[(n = strlen(tok)) - 1] == '.') {	/* prefix */
362 	return (STRN_EQ(tok, string, n));
363     } else {					/* exact match */
364 	return (STR_EQ(tok, string));
365     }
366 }
367 
368 /* masked_match - match address against netnumber/netmask */
369 
370 static int masked_match(net_tok, mask_tok, string)
371 char   *net_tok;
372 char   *mask_tok;
373 char   *string;
374 {
375 #ifndef INET6
376     return masked_match4(net_tok, mask_tok, string);
377 #else
378     /*
379      * masked_match4() is kept just for supporting shortened IPv4 address form.
380      * If we could get rid of shortened IPv4 form, we could just always use
381      * masked_match6().
382      */
383     if (dot_quad_addr(net_tok, NULL) != INADDR_NONE &&
384         dot_quad_addr(mask_tok, NULL) != INADDR_NONE &&
385         dot_quad_addr(string, NULL) != INADDR_NONE) {
386 	return masked_match4(net_tok, mask_tok, string);
387     } else
388 	return masked_match6(net_tok, mask_tok, string);
389 #endif
390 }
391 
392 static int masked_match4(net_tok, mask_tok, string)
393 char   *net_tok;
394 char   *mask_tok;
395 char   *string;
396 {
397     unsigned long net;
398     unsigned long mask;
399     unsigned long addr;
400 
401     /*
402      * Disallow forms other than dotted quad: the treatment that inet_addr()
403      * gives to forms with less than four components is inconsistent with the
404      * access control language. John P. Rouillard <rouilj@cs.umb.edu>.
405      */
406 
407     if (dot_quad_addr(string, &addr) != 0)
408 	return (NO);
409     if (dot_quad_addr(net_tok, &net) != 0 ||
410         dot_quad_addr(mask_tok, &mask) != 0) {
411 	tcpd_warn("bad net/mask expression: %s/%s", net_tok, mask_tok);
412 	return (NO);				/* not tcpd_jump() */
413     }
414 
415     if ((net & ~mask) != 0)
416 	tcpd_warn("host bits not all zero in %s/%s", net_tok, mask_tok);
417 
418     return ((addr & mask) == net);
419 }
420 
421 #ifdef INET6
422 static int masked_match6(net_tok, mask_tok, string)
423 char   *net_tok;
424 char   *mask_tok;
425 char   *string;
426 {
427     union {
428 	struct sockaddr sa;
429 	struct sockaddr_in sin;
430 	struct sockaddr_in6 sin6;
431     } net, mask, addr;
432     struct addrinfo hints, *res;
433     unsigned long masklen;
434     char *ep;
435     int i;
436     char *np, *mp, *ap;
437     int alen;
438 
439     memset(&hints, 0, sizeof(hints));
440     hints.ai_family = PF_UNSPEC;
441     hints.ai_socktype = SOCK_DGRAM;	/*dummy*/
442     hints.ai_flags = AI_NUMERICHOST;
443     if (getaddrinfo(net_tok, "0", &hints, &res) == 0) {
444 	if (res->ai_addrlen > sizeof(net) || res->ai_next) {
445 	    freeaddrinfo(res);
446 	    return NO;
447 	}
448 	memcpy(&net, res->ai_addr, res->ai_addrlen);
449 	freeaddrinfo(res);
450     } else
451 	return NO;
452 
453     memset(&hints, 0, sizeof(hints));
454     hints.ai_family = net.sa.sa_family;
455     hints.ai_socktype = SOCK_DGRAM;	/*dummy*/
456     hints.ai_flags = AI_NUMERICHOST;
457     ep = NULL;
458     if (getaddrinfo(mask_tok, "0", &hints, &res) == 0) {
459 	if (res->ai_family == AF_INET6 &&
460 	    ((struct sockaddr_in6 *)res->ai_addr)->sin6_scope_id) {
461 	    freeaddrinfo(res);
462 	    return NO;
463 	}
464 	if (res->ai_addrlen > sizeof(mask) || res->ai_next) {
465 	    freeaddrinfo(res);
466 	    return NO;
467 	}
468 	memcpy(&mask, res->ai_addr, res->ai_addrlen);
469 	freeaddrinfo(res);
470     } else {
471 	ep = NULL;
472 	masklen = strtoul(mask_tok, &ep, 10);
473 	if (ep && !*ep) {
474 	    memset(&mask, 0, sizeof(mask));
475 	    mask.sa.sa_family = net.sa.sa_family;
476 	    mask.sa.sa_len = net.sa.sa_len;
477 	    switch (mask.sa.sa_family) {
478 	    case AF_INET:
479 		mp = (char *)&mask.sin.sin_addr;
480 		alen = sizeof(mask.sin.sin_addr);
481 		break;
482 	    case AF_INET6:
483 		mp = (char *)&mask.sin6.sin6_addr;
484 		alen = sizeof(mask.sin6.sin6_addr);
485 		break;
486 	    default:
487 		return NO;
488 	    }
489 	    if (masklen / 8 > alen)
490 		return NO;
491 	    memset(mp, 0xff, masklen / 8);
492 	    if (masklen % 8)
493 		mp[masklen / 8] = 0xff00 >> (masklen % 8);
494 	} else
495 	    return NO;
496     }
497 
498     memset(&hints, 0, sizeof(hints));
499     hints.ai_family = PF_UNSPEC;
500     hints.ai_socktype = SOCK_DGRAM;	/*dummy*/
501     hints.ai_flags = AI_NUMERICHOST;
502     if (getaddrinfo(string, "0", &hints, &res) == 0) {
503 	if (res->ai_addrlen > sizeof(addr) || res->ai_next) {
504 	    freeaddrinfo(res);
505 	    return NO;
506 	}
507 	/* special case - IPv4 mapped address */
508 	if (net.sa.sa_family == AF_INET && res->ai_family == AF_INET6 &&
509 	    IN6_IS_ADDR_V4MAPPED(&((struct sockaddr_in6 *)res->ai_addr)->sin6_addr)) {
510 	    memset(&addr, 0, sizeof(addr));
511 	    addr.sa.sa_family = net.sa.sa_family;
512 	    addr.sa.sa_len = net.sa.sa_len;
513 	    memcpy(&addr.sin.sin_addr,
514 	        &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr.s6_addr[12],
515 		sizeof(addr.sin.sin_addr));
516 	} else
517 	    memcpy(&addr, res->ai_addr, res->ai_addrlen);
518 	freeaddrinfo(res);
519     } else
520 	return NO;
521 
522     if (net.sa.sa_family != mask.sa.sa_family ||
523         net.sa.sa_family != addr.sa.sa_family) {
524 	return NO;
525     }
526 
527     switch (net.sa.sa_family) {
528     case AF_INET:
529 	np = (char *)&net.sin.sin_addr;
530 	mp = (char *)&mask.sin.sin_addr;
531 	ap = (char *)&addr.sin.sin_addr;
532 	alen = sizeof(net.sin.sin_addr);
533 	break;
534     case AF_INET6:
535 	np = (char *)&net.sin6.sin6_addr;
536 	mp = (char *)&mask.sin6.sin6_addr;
537 	ap = (char *)&addr.sin6.sin6_addr;
538 	alen = sizeof(net.sin6.sin6_addr);
539 	break;
540     default:
541 	return NO;
542     }
543 
544     for (i = 0; i < alen; i++)
545 	if (np[i] & ~mp[i]) {
546 	    tcpd_warn("host bits not all zero in %s/%s", net_tok, mask_tok);
547 	    break;
548 	}
549 
550     for (i = 0; i < alen; i++)
551 	ap[i] &= mp[i];
552 
553     if (addr.sa.sa_family == AF_INET6 && addr.sin6.sin6_scope_id &&
554         addr.sin6.sin6_scope_id != net.sin6.sin6_scope_id)
555 	return NO;
556     return (memcmp(ap, np, alen) == 0);
557 }
558 #endif
559