xref: /netbsd-src/lib/libwrap/hosts_access.c (revision 23c8222edbfb0f0932d88a8351d3a0cf817dfb9e)
1 /*	$NetBSD: hosts_access.c,v 1.17 2002/12/26 12:53:59 lukem Exp $	*/
2 
3  /*
4   * This module implements a simple access control language that is based on
5   * host (or domain) names, NIS (host) netgroup names, IP addresses (or
6   * network numbers) and daemon process names. When a match is found the
7   * search is terminated, and depending on whether PROCESS_OPTIONS is defined,
8   * a list of options is executed or an optional shell command is executed.
9   *
10   * Host and user names are looked up on demand, provided that suitable endpoint
11   * information is available as sockaddr_in structures or TLI netbufs. As a
12   * side effect, the pattern matching process may change the contents of
13   * request structure fields.
14   *
15   * Diagnostics are reported through syslog(3).
16   *
17   * Compile with -DNETGROUP if your library provides support for netgroups.
18   *
19   * Author: Wietse Venema, Eindhoven University of Technology, The Netherlands.
20   */
21 
22 #include <sys/cdefs.h>
23 #ifndef lint
24 #if 0
25 static char sccsid[] = "@(#) hosts_access.c 1.21 97/02/12 02:13:22";
26 #else
27 __RCSID("$NetBSD: hosts_access.c,v 1.17 2002/12/26 12:53:59 lukem Exp $");
28 #endif
29 #endif
30 
31 /* System libraries. */
32 
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #ifdef INET6
36 #include <sys/socket.h>
37 #endif
38 #include <netinet/in.h>
39 #include <arpa/inet.h>
40 #include <stdio.h>
41 #include <stdlib.h>
42 #include <syslog.h>
43 #include <ctype.h>
44 #include <errno.h>
45 #include <setjmp.h>
46 #include <string.h>
47 #include <netdb.h>
48 #ifdef  NETGROUP
49 #include <netgroup.h>
50 #include <rpcsvc/ypclnt.h>
51 #endif
52 
53 /* Local stuff. */
54 
55 #include "tcpd.h"
56 
57 /* Error handling. */
58 
59 extern jmp_buf tcpd_buf;
60 
61 /* Delimiters for lists of daemons or clients. */
62 
63 static char sep[] = ", \t\r\n";
64 
65 /* Constants to be used in assignments only, not in comparisons... */
66 
67 #define	YES		1
68 #define	NO		0
69 
70  /*
71   * These variables are globally visible so that they can be redirected in
72   * verification mode.
73   */
74 
75 char   *hosts_allow_table = HOSTS_ALLOW;
76 char   *hosts_deny_table = HOSTS_DENY;
77 int     hosts_access_verbose = 0;
78 
79  /*
80   * In a long-running process, we are not at liberty to just go away.
81   */
82 
83 int     resident = (-1);		/* -1, 0: unknown; +1: yes */
84 
85 /* Forward declarations. */
86 
87 static int table_match __P((char *, struct request_info *));
88 static int list_match __P((char *, struct request_info *,
89     int (*)(char *, struct request_info *)));
90 static int server_match __P((char *, struct request_info *));
91 static int client_match __P((char *, struct request_info *));
92 static int host_match __P((char *, struct host_info *));
93 static int rbl_match __P((char *, char *));
94 static int string_match __P((char *, char *));
95 static int masked_match __P((char *, char *, char *));
96 static int masked_match4 __P((char *, char *, char *));
97 #ifdef INET6
98 static int masked_match6 __P((char *, char *, char *));
99 #endif
100 
101 /* Size of logical line buffer. */
102 
103 #define	BUFLEN 2048
104 
105 /* hosts_access - host access control facility */
106 
107 int     hosts_access(request)
108 struct request_info *request;
109 {
110     int     verdict;
111 
112     /*
113      * If the (daemon, client) pair is matched by an entry in the file
114      * /etc/hosts.allow, access is granted. Otherwise, if the (daemon,
115      * client) pair is matched by an entry in the file /etc/hosts.deny,
116      * access is denied. Otherwise, access is granted. A non-existent
117      * access-control file is treated as an empty file.
118      *
119      * After a rule has been matched, the optional language extensions may
120      * decide to grant or refuse service anyway. Or, while a rule is being
121      * processed, a serious error is found, and it seems better to play safe
122      * and deny service. All this is done by jumping back into the
123      * hosts_access() routine, bypassing the regular return from the
124      * table_match() function calls below.
125      */
126 
127     if (resident <= 0)
128 	resident++;
129     verdict = setjmp(tcpd_buf);
130     if (verdict != 0)
131 	return (verdict == AC_PERMIT);
132     if (table_match(hosts_allow_table, request))
133 	return (YES);
134     if (table_match(hosts_deny_table, request))
135 	return (NO);
136     return (YES);
137 }
138 
139 /* table_match - match table entries with (daemon, client) pair */
140 
141 static int table_match(table, request)
142 char   *table;
143 struct request_info *request;
144 {
145     FILE   *fp;
146     char    sv_list[BUFLEN];		/* becomes list of daemons */
147     char   *cl_list;			/* becomes list of clients */
148     char   *sh_cmd = NULL;		/* becomes optional shell command */
149     int     match = NO;
150     struct tcpd_context saved_context;
151 
152     saved_context = tcpd_context;		/* stupid compilers */
153 
154     /*
155      * Between the fopen() and fclose() calls, avoid jumps that may cause
156      * file descriptor leaks.
157      */
158 
159     if ((fp = fopen(table, "r")) != 0) {
160 	tcpd_context.file = table;
161 	tcpd_context.line = 0;
162 	while (match == NO && xgets(sv_list, sizeof(sv_list), fp) != 0) {
163 	    if (sv_list[strlen(sv_list) - 1] != '\n') {
164 		tcpd_warn("missing newline or line too long");
165 		continue;
166 	    }
167 	    if (sv_list[0] == '#' || sv_list[strspn(sv_list, " \t\r\n")] == 0)
168 		continue;
169 	    if ((cl_list = split_at(sv_list, ':')) == 0) {
170 		tcpd_warn("missing \":\" separator");
171 		continue;
172 	    }
173 	    sh_cmd = split_at(cl_list, ':');
174 	    match = list_match(sv_list, request, server_match)
175 		&& list_match(cl_list, request, client_match);
176 	}
177 	(void) fclose(fp);
178     } else if (errno != ENOENT) {
179 	tcpd_warn("cannot open %s: %m", table);
180     }
181     if (match) {
182 	if (hosts_access_verbose > 1)
183 	    syslog(LOG_DEBUG, "matched:  %s line %d",
184 		   tcpd_context.file, tcpd_context.line);
185 	if (sh_cmd) {
186 #ifdef PROCESS_OPTIONS
187 	    process_options(sh_cmd, request);
188 #else
189 	    char    cmd[BUFSIZ];
190 	    shell_cmd(percent_x(cmd, sizeof(cmd), sh_cmd, request));
191 #endif
192 	}
193     }
194     tcpd_context = saved_context;
195     return (match);
196 }
197 
198 /* list_match - match a request against a list of patterns with exceptions */
199 
200 static int list_match(list, request, match_fn)
201 char   *list;
202 struct request_info *request;
203 int   (*match_fn) __P((char *, struct request_info *));
204 {
205     char   *tok;
206     static char *last;
207     int l;
208 
209     /*
210      * Process tokens one at a time. We have exhausted all possible matches
211      * when we reach an "EXCEPT" token or the end of the list. If we do find
212      * a match, look for an "EXCEPT" list and recurse to determine whether
213      * the match is affected by any exceptions.
214      */
215 
216     for (tok = strtok_r(list, sep, &last); tok != 0;
217       tok = strtok_r(NULL, sep, &last)) {
218 	if (STR_EQ(tok, "EXCEPT"))		/* EXCEPT: give up */
219 	    return (NO);
220 	l = strlen(tok);
221 	if (*tok == '[' && tok[l - 1] == ']') {
222 	    tok[l - 1] = '\0';
223 	    tok++;
224 	}
225 	if (match_fn(tok, request)) {		/* YES: look for exceptions */
226 	    while ((tok = strtok_r(NULL, sep, &last)) && STR_NE(tok, "EXCEPT"))
227 		 /* VOID */ ;
228 	    return (tok == 0 || list_match(NULL, request, match_fn) == 0);
229 	}
230     }
231     return (NO);
232 }
233 
234 /* server_match - match server information */
235 
236 static int server_match(tok, request)
237 char   *tok;
238 struct request_info *request;
239 {
240     char   *host;
241 
242     if ((host = split_at(tok + 1, '@')) == 0) {	/* plain daemon */
243 	return (string_match(tok, eval_daemon(request)));
244     } else {					/* daemon@host */
245 	return (string_match(tok, eval_daemon(request))
246 		&& host_match(host, request->server));
247     }
248 }
249 
250 /* client_match - match client information */
251 
252 static int client_match(tok, request)
253 char   *tok;
254 struct request_info *request;
255 {
256     char   *host;
257 
258     if ((host = split_at(tok + 1, '@')) == 0) {	/* plain host */
259 	return (host_match(tok, request->client));
260     } else {					/* user@host */
261 	return (host_match(host, request->client)
262 		&& string_match(tok, eval_user(request)));
263     }
264 }
265 
266 /* host_match - match host name and/or address against pattern */
267 
268 static int host_match(tok, host)
269 char   *tok;
270 struct host_info *host;
271 {
272     char   *mask;
273 
274     /*
275      * This code looks a little hairy because we want to avoid unnecessary
276      * hostname lookups.
277      *
278      * The KNOWN pattern requires that both address AND name be known; some
279      * patterns are specific to host names or to host addresses; all other
280      * patterns are satisfied when either the address OR the name match.
281      */
282 
283     if (tok[0] == '@') {			/* netgroup: look it up */
284 #ifdef  NETGROUP
285 	static char *mydomain = 0;
286 	if (mydomain == 0)
287 	    yp_get_default_domain(&mydomain);
288 	return (innetgr(tok + 1, eval_hostname(host), NULL, mydomain));
289 #else
290 	tcpd_warn("netgroup support is disabled");	/* not tcpd_jump() */
291 	return (NO);
292 #endif
293     } else if (STR_EQ(tok, "KNOWN")) {		/* check address and name */
294 	char   *name = eval_hostname(host);
295 	return (STR_NE(eval_hostaddr(host), unknown) && HOSTNAME_KNOWN(name));
296     } else if (STR_EQ(tok, "LOCAL")) {		/* local: no dots in name */
297 	char   *name = eval_hostname(host);
298 	return (strchr(name, '.') == 0 && HOSTNAME_KNOWN(name));
299     } else if (strncmp(tok, "{RBL}.", 6) == 0) { /* RBL lookup in domain */
300 	return rbl_match(tok+6, eval_hostaddr(host));
301     } else if ((mask = split_at(tok, '/')) != 0) {	/* net/mask */
302 	return (masked_match(tok, mask, eval_hostaddr(host)));
303     } else {					/* anything else */
304 	return (string_match(tok, eval_hostaddr(host))
305 	    || (NOT_INADDR(tok) && string_match(tok, eval_hostname(host))));
306     }
307 }
308 
309 /* rbl_match() - match host by looking up in RBL domain */
310 
311 static int rbl_match(rbl_domain, rbl_hostaddr)
312 char   *rbl_domain;				/* RBL domain */
313 char   *rbl_hostaddr;				/* hostaddr */
314 {
315     char *rbl_name;
316     unsigned long host_address;
317     int ret = NO;
318     size_t len = strlen(rbl_domain) + (4 * 4) + 2;
319 
320     if (dot_quad_addr(rbl_hostaddr, &host_address) != 0) {
321 	tcpd_warn("unable to convert %s to address", rbl_hostaddr);
322 	return (NO);
323     }
324     /*  construct the rbl name to look up */
325     if ((rbl_name = malloc(len)) == NULL) {
326 	tcpd_jump("not enough memory to build RBL name for %s in %s", rbl_hostaddr, rbl_domain);
327 	/* NOTREACHED */
328     }
329     snprintf(rbl_name, len, "%u.%u.%u.%u.%s",
330 	    (unsigned int) ((host_address) & 0xff),
331 	    (unsigned int) ((host_address >> 8) & 0xff),
332 	    (unsigned int) ((host_address >> 16) & 0xff),
333 	    (unsigned int) ((host_address >> 24) & 0xff),
334 	    rbl_domain);
335     /* look it up */
336     if (gethostbyname(rbl_name) != NULL) {
337 	/* successful lookup - they're on the RBL list */
338 	ret = YES;
339     }
340     free(rbl_name);
341 
342     return ret;
343 }
344 
345 /* string_match - match string against pattern */
346 
347 static int string_match(tok, string)
348 char   *tok;
349 char   *string;
350 {
351     int     n;
352 
353     if (tok[0] == '.') {			/* suffix */
354 	n = strlen(string) - strlen(tok);
355 	return (n > 0 && STR_EQ(tok, string + n));
356     } else if (STR_EQ(tok, "ALL")) {		/* all: match any */
357 	return (YES);
358     } else if (STR_EQ(tok, "KNOWN")) {		/* not unknown */
359 	return (STR_NE(string, unknown));
360     } else if (tok[(n = strlen(tok)) - 1] == '.') {	/* prefix */
361 	return (STRN_EQ(tok, string, n));
362     } else {					/* exact match */
363 	return (STR_EQ(tok, string));
364     }
365 }
366 
367 /* masked_match - match address against netnumber/netmask */
368 
369 static int masked_match(net_tok, mask_tok, string)
370 char   *net_tok;
371 char   *mask_tok;
372 char   *string;
373 {
374 #ifndef INET6
375     return masked_match4(net_tok, mask_tok, string);
376 #else
377     /*
378      * masked_match4() is kept just for supporting shortened IPv4 address form.
379      * If we could get rid of shortened IPv4 form, we could just always use
380      * masked_match6().
381      */
382     if (dot_quad_addr(net_tok, NULL) != INADDR_NONE &&
383         dot_quad_addr(mask_tok, NULL) != INADDR_NONE &&
384         dot_quad_addr(string, NULL) != INADDR_NONE) {
385 	return masked_match4(net_tok, mask_tok, string);
386     } else
387 	return masked_match6(net_tok, mask_tok, string);
388 #endif
389 }
390 
391 static int masked_match4(net_tok, mask_tok, string)
392 char   *net_tok;
393 char   *mask_tok;
394 char   *string;
395 {
396     unsigned long net;
397     unsigned long mask;
398     unsigned long addr;
399 
400     /*
401      * Disallow forms other than dotted quad: the treatment that inet_addr()
402      * gives to forms with less than four components is inconsistent with the
403      * access control language. John P. Rouillard <rouilj@cs.umb.edu>.
404      */
405 
406     if (dot_quad_addr(string, &addr) != 0)
407 	return (NO);
408     if (dot_quad_addr(net_tok, &net) != 0 ||
409         dot_quad_addr(mask_tok, &mask) != 0) {
410 	tcpd_warn("bad net/mask expression: %s/%s", net_tok, mask_tok);
411 	return (NO);				/* not tcpd_jump() */
412     }
413 
414     if ((net & ~mask) != 0)
415 	tcpd_warn("host bits not all zero in %s/%s", net_tok, mask_tok);
416 
417     return ((addr & mask) == net);
418 }
419 
420 #ifdef INET6
421 static int masked_match6(net_tok, mask_tok, string)
422 char   *net_tok;
423 char   *mask_tok;
424 char   *string;
425 {
426     union {
427 	struct sockaddr sa;
428 	struct sockaddr_in sin;
429 	struct sockaddr_in6 sin6;
430     } net, mask, addr;
431     struct addrinfo hints, *res;
432     unsigned long masklen;
433     char *ep;
434     int i;
435     char *np, *mp, *ap;
436     int alen;
437 
438     memset(&hints, 0, sizeof(hints));
439     hints.ai_family = PF_UNSPEC;
440     hints.ai_socktype = SOCK_DGRAM;	/*dummy*/
441     hints.ai_flags = AI_NUMERICHOST;
442     if (getaddrinfo(net_tok, "0", &hints, &res) == 0) {
443 	if (res->ai_addrlen > sizeof(net) || res->ai_next) {
444 	    freeaddrinfo(res);
445 	    return NO;
446 	}
447 	memcpy(&net, res->ai_addr, res->ai_addrlen);
448 	freeaddrinfo(res);
449     } else
450 	return NO;
451 
452     memset(&hints, 0, sizeof(hints));
453     hints.ai_family = net.sa.sa_family;
454     hints.ai_socktype = SOCK_DGRAM;	/*dummy*/
455     hints.ai_flags = AI_NUMERICHOST;
456     ep = NULL;
457     if (getaddrinfo(mask_tok, "0", &hints, &res) == 0) {
458 	if (res->ai_family == AF_INET6 &&
459 	    ((struct sockaddr_in6 *)res->ai_addr)->sin6_scope_id) {
460 	    freeaddrinfo(res);
461 	    return NO;
462 	}
463 	if (res->ai_addrlen > sizeof(mask) || res->ai_next) {
464 	    freeaddrinfo(res);
465 	    return NO;
466 	}
467 	memcpy(&mask, res->ai_addr, res->ai_addrlen);
468 	freeaddrinfo(res);
469     } else {
470 	ep = NULL;
471 	masklen = strtoul(mask_tok, &ep, 10);
472 	if (ep && !*ep) {
473 	    memset(&mask, 0, sizeof(mask));
474 	    mask.sa.sa_family = net.sa.sa_family;
475 	    mask.sa.sa_len = net.sa.sa_len;
476 	    switch (mask.sa.sa_family) {
477 	    case AF_INET:
478 		mp = (char *)&mask.sin.sin_addr;
479 		alen = sizeof(mask.sin.sin_addr);
480 		break;
481 	    case AF_INET6:
482 		mp = (char *)&mask.sin6.sin6_addr;
483 		alen = sizeof(mask.sin6.sin6_addr);
484 		break;
485 	    default:
486 		return NO;
487 	    }
488 	    if (masklen / 8 > alen)
489 		return NO;
490 	    memset(mp, 0xff, masklen / 8);
491 	    if (masklen % 8)
492 		mp[masklen / 8] = 0xff00 >> (masklen % 8);
493 	} else
494 	    return NO;
495     }
496 
497     memset(&hints, 0, sizeof(hints));
498     hints.ai_family = PF_UNSPEC;
499     hints.ai_socktype = SOCK_DGRAM;	/*dummy*/
500     hints.ai_flags = AI_NUMERICHOST;
501     if (getaddrinfo(string, "0", &hints, &res) == 0) {
502 	if (res->ai_addrlen > sizeof(addr) || res->ai_next) {
503 	    freeaddrinfo(res);
504 	    return NO;
505 	}
506 	/* special case - IPv4 mapped address */
507 	if (net.sa.sa_family == AF_INET && res->ai_family == AF_INET6 &&
508 	    IN6_IS_ADDR_V4MAPPED(&((struct sockaddr_in6 *)res->ai_addr)->sin6_addr)) {
509 	    memset(&addr, 0, sizeof(addr));
510 	    addr.sa.sa_family = net.sa.sa_family;
511 	    addr.sa.sa_len = net.sa.sa_len;
512 	    memcpy(&addr.sin.sin_addr,
513 	        &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr.s6_addr[12],
514 		sizeof(addr.sin.sin_addr));
515 	} else
516 	    memcpy(&addr, res->ai_addr, res->ai_addrlen);
517 	freeaddrinfo(res);
518     } else
519 	return NO;
520 
521     if (net.sa.sa_family != mask.sa.sa_family ||
522         net.sa.sa_family != addr.sa.sa_family) {
523 	return NO;
524     }
525 
526     switch (net.sa.sa_family) {
527     case AF_INET:
528 	np = (char *)&net.sin.sin_addr;
529 	mp = (char *)&mask.sin.sin_addr;
530 	ap = (char *)&addr.sin.sin_addr;
531 	alen = sizeof(net.sin.sin_addr);
532 	break;
533     case AF_INET6:
534 	np = (char *)&net.sin6.sin6_addr;
535 	mp = (char *)&mask.sin6.sin6_addr;
536 	ap = (char *)&addr.sin6.sin6_addr;
537 	alen = sizeof(net.sin6.sin6_addr);
538 	break;
539     default:
540 	return NO;
541     }
542 
543     for (i = 0; i < alen; i++)
544 	if (np[i] & ~mp[i]) {
545 	    tcpd_warn("host bits not all zero in %s/%s", net_tok, mask_tok);
546 	    break;
547 	}
548 
549     for (i = 0; i < alen; i++)
550 	ap[i] &= mp[i];
551 
552     if (addr.sa.sa_family == AF_INET6 && addr.sin6.sin6_scope_id &&
553         addr.sin6.sin6_scope_id != net.sin6.sin6_scope_id)
554 	return NO;
555     return (memcmp(ap, np, alen) == 0);
556 }
557 #endif
558