xref: /netbsd-src/lib/libpthread/pthread_tsd.c (revision 6d322f2f4598f0d8a138f10ea648ec4fabe41f8b)
1 /*	$NetBSD: pthread_tsd.c,v 1.11 2013/03/21 16:49:12 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2007 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Nathan J. Williams, by Andrew Doran, and by Christos Zoulas.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __RCSID("$NetBSD: pthread_tsd.c,v 1.11 2013/03/21 16:49:12 christos Exp $");
34 
35 /* Functions and structures dealing with thread-specific data */
36 #include <errno.h>
37 
38 #include "pthread.h"
39 #include "pthread_int.h"
40 #include "reentrant.h"
41 
42 
43 static pthread_mutex_t tsd_mutex = PTHREAD_MUTEX_INITIALIZER;
44 static int nextkey;
45 
46 PTQ_HEAD(pthread__tsd_list, pt_specific)
47     pthread__tsd_list[PTHREAD_KEYS_MAX];
48 void (*pthread__tsd_destructors[PTHREAD_KEYS_MAX])(void *);
49 
50 __strong_alias(__libc_thr_keycreate,pthread_key_create)
51 __strong_alias(__libc_thr_keydelete,pthread_key_delete)
52 
53 static void
54 /*ARGSUSED*/
55 null_destructor(void *p)
56 {
57 }
58 
59 #include <err.h>
60 #include <stdlib.h>
61 int
62 pthread_key_create(pthread_key_t *key, void (*destructor)(void *))
63 {
64 	int i;
65 
66 	if (__predict_false(__uselibcstub))
67 		return __libc_thr_keycreate_stub(key, destructor);
68 
69 	/* Get a lock on the allocation list */
70 	pthread_mutex_lock(&tsd_mutex);
71 
72 	/* Find an available slot:
73 	 * The condition for an available slot is one with the destructor
74 	 * not being NULL. If the desired destructor is NULL we set it to
75 	 * our own internal destructor to satisfy the non NULL condition.
76 	 */
77 	/* 1. Search from "nextkey" to the end of the list. */
78 	for (i = nextkey; i < PTHREAD_KEYS_MAX; i++)
79 		if (pthread__tsd_destructors[i] == NULL)
80 			break;
81 
82 	if (i == PTHREAD_KEYS_MAX) {
83 		/* 2. If that didn't work, search from the start
84 		 *    of the list back to "nextkey".
85 		 */
86 		for (i = 0; i < nextkey; i++)
87 			if (pthread__tsd_destructors[i] == NULL)
88 				break;
89 
90 		if (i == nextkey) {
91 			/* If we didn't find one here, there isn't one
92 			 * to be found.
93 			 */
94 			pthread_mutex_unlock(&tsd_mutex);
95 			return EAGAIN;
96 		}
97 	}
98 
99 	/* Got one. */
100 	pthread__assert(PTQ_EMPTY(&pthread__tsd_list[i]));
101 	pthread__tsd_destructors[i] = destructor ? destructor : null_destructor;
102 
103 	nextkey = (i + 1) % PTHREAD_KEYS_MAX;
104 	pthread_mutex_unlock(&tsd_mutex);
105 	*key = i;
106 
107 	return 0;
108 }
109 
110 /*
111  * Each thread holds an array of PTHREAD_KEYS_MAX pt_specific list
112  * elements. When an element is used it is inserted into the appropriate
113  * key bucket of pthread__tsd_list. This means that ptqe_prev == NULL,
114  * means that the element is not threaded, ptqe_prev != NULL it is
115  * already part of the list. When we set to a NULL value we delete from the
116  * list if it was in the list, and when we set to non-NULL value, we insert
117  * in the list if it was not already there.
118  *
119  * We keep this global array of lists of threads that have called
120  * pthread_set_specific with non-null values, for each key so that
121  * we don't have to check all threads for non-NULL values in
122  * pthread_key_destroy
123  *
124  * We could keep an accounting of the number of specific used
125  * entries per thread, so that we can update pt_havespecific when we delete
126  * the last one, but we don't bother for now
127  */
128 int
129 pthread__add_specific(pthread_t self, pthread_key_t key, const void *value)
130 {
131 	struct pt_specific *pt;
132 
133 	pthread__assert(key >= 0 && key < PTHREAD_KEYS_MAX);
134 
135 	pthread_mutex_lock(&tsd_mutex);
136 	pthread__assert(pthread__tsd_destructors[key] != NULL);
137 	pt = &self->pt_specific[key];
138 	self->pt_havespecific = 1;
139 	if (value) {
140 		if (pt->pts_next.ptqe_prev == NULL)
141 			PTQ_INSERT_HEAD(&pthread__tsd_list[key], pt, pts_next);
142 	} else {
143 		if (pt->pts_next.ptqe_prev != NULL) {
144 			PTQ_REMOVE(&pthread__tsd_list[key], pt, pts_next);
145 			pt->pts_next.ptqe_prev = NULL;
146 		}
147 	}
148 	pt->pts_value = __UNCONST(value);
149 	pthread_mutex_unlock(&tsd_mutex);
150 
151 	return 0;
152 }
153 
154 int
155 pthread_key_delete(pthread_key_t key)
156 {
157 	/*
158 	 * This is tricky.  The standard says of pthread_key_create()
159 	 * that new keys have the value NULL associated with them in
160 	 * all threads.  According to people who were present at the
161 	 * standardization meeting, that requirement was written
162 	 * before pthread_key_delete() was introduced, and not
163 	 * reconsidered when it was.
164 	 *
165 	 * See David Butenhof's article in comp.programming.threads:
166 	 * Subject: Re: TSD key reusing issue
167 	 * Message-ID: <u97d8.29$fL6.200@news.cpqcorp.net>
168 	 * Date: Thu, 21 Feb 2002 09:06:17 -0500
169 	 *	 http://groups.google.com/groups?\
170 	 *	 hl=en&selm=u97d8.29%24fL6.200%40news.cpqcorp.net
171 	 *
172 	 * Given:
173 	 *
174 	 * 1: Applications are not required to clear keys in all
175 	 *    threads before calling pthread_key_delete().
176 	 * 2: Clearing pointers without running destructors is a
177 	 *    memory leak.
178 	 * 3: The pthread_key_delete() function is expressly forbidden
179 	 *    to run any destructors.
180 	 *
181 	 * Option 1: Make this function effectively a no-op and
182 	 * prohibit key reuse. This is a possible resource-exhaustion
183 	 * problem given that we have a static storage area for keys,
184 	 * but having a non-static storage area would make
185 	 * pthread_setspecific() expensive (might need to realloc the
186 	 * TSD array).
187 	 *
188 	 * Option 2: Ignore the specified behavior of
189 	 * pthread_key_create() and leave the old values. If an
190 	 * application deletes a key that still has non-NULL values in
191 	 * some threads... it's probably a memory leak and hence
192 	 * incorrect anyway, and we're within our rights to let the
193 	 * application lose. However, it's possible (if unlikely) that
194 	 * the application is storing pointers to non-heap data, or
195 	 * non-pointers that have been wedged into a void pointer, so
196 	 * we can't entirely write off such applications as incorrect.
197 	 * This could also lead to running (new) destructors on old
198 	 * data that was never supposed to be associated with that
199 	 * destructor.
200 	 *
201 	 * Option 3: Follow the specified behavior of
202 	 * pthread_key_create().  Either pthread_key_create() or
203 	 * pthread_key_delete() would then have to clear the values in
204 	 * every thread's slot for that key. In order to guarantee the
205 	 * visibility of the NULL value in other threads, there would
206 	 * have to be synchronization operations in both the clearer
207 	 * and pthread_getspecific().  Putting synchronization in
208 	 * pthread_getspecific() is a big performance lose.  But in
209 	 * reality, only (buggy) reuse of an old key would require
210 	 * this synchronization; for a new key, there has to be a
211 	 * memory-visibility propagating event between the call to
212 	 * pthread_key_create() and pthread_getspecific() with that
213 	 * key, so setting the entries to NULL without synchronization
214 	 * will work, subject to problem (2) above. However, it's kind
215 	 * of slow.
216 	 *
217 	 * Note that the argument in option 3 only applies because we
218 	 * keep TSD in ordinary memory which follows the pthreads
219 	 * visibility rules. The visibility rules are not required by
220 	 * the standard to apply to TSD, so the argument doesn't
221 	 * apply in general, just to this implementation.
222 	 */
223 
224 	/*
225 	 * We do option 3; we find the list of all pt_specific structures
226 	 * threaded on the key we are deleting, unthread them, and set the
227 	 * pointer to NULL. Finally we unthread the entry, freeing it for
228 	 * further use.
229 	 *
230 	 * We don't call the destructor here, it is the responsibility
231 	 * of the application to cleanup the storage:
232 	 * 	http://pubs.opengroup.org/onlinepubs/9699919799/functions/\
233 	 *	pthread_key_delete.html
234 	 */
235 	struct pt_specific *pt;
236 
237 	if (__predict_false(__uselibcstub))
238 		return __libc_thr_keydelete_stub(key);
239 
240 	pthread__assert(key >= 0 && key < PTHREAD_KEYS_MAX);
241 
242 	pthread_mutex_lock(&tsd_mutex);
243 
244 	pthread__assert(pthread__tsd_destructors[key] != NULL);
245 
246 	while ((pt = PTQ_FIRST(&pthread__tsd_list[key])) != NULL) {
247 		PTQ_REMOVE(&pthread__tsd_list[key], pt, pts_next);
248 		pt->pts_value = NULL;
249 		pt->pts_next.ptqe_prev = NULL;
250 	}
251 
252 	pthread__tsd_destructors[key] = NULL;
253 	pthread_mutex_unlock(&tsd_mutex);
254 
255 	return 0;
256 }
257 
258 /* Perform thread-exit-time destruction of thread-specific data. */
259 void
260 pthread__destroy_tsd(pthread_t self)
261 {
262 	int i, done, iterations;
263 	void *val;
264 	void (*destructor)(void *);
265 
266 	if (!self->pt_havespecific)
267 		return;
268 	pthread_mutex_unlock(&self->pt_lock);
269 
270 	/* Butenhof, section 5.4.2 (page 167):
271 	 *
272 	 * ``Also, Pthreads sets the thread-specific data value for a
273 	 * key to NULL before calling that key's destructor (passing
274 	 * the previous value of the key) when a thread terminates [*].
275 	 * ...
276 	 * [*] That is, unfortunately, not what the standard
277 	 * says. This is one of the problems with formal standards -
278 	 * they say what they say, not what they were intended to
279 	 * say. Somehow, an error crept in, and the sentence
280 	 * specifying that "the implementation clears the
281 	 * thread-specific data value before calling the destructor"
282 	 * was deleted. Nobody noticed, and the standard was approved
283 	 * with the error. So the standard says (by omission) that if
284 	 * you want to write a portable application using
285 	 * thread-specific data, that will not hang on thread
286 	 * termination, you must call pthread_setspecific within your
287 	 * destructor function to change the value to NULL. This would
288 	 * be silly, and any serious implementation of Pthreads will
289 	 * violate the standard in this respect. Of course, the
290 	 * standard will be fixed, probably by the 1003.1n amendment
291 	 * (assorted corrections to 1003.1c-1995), but that will take
292 	 * a while.''
293 	 */
294 
295 	iterations = 4; /* We're not required to try very hard */
296 	do {
297 		done = 1;
298 		for (i = 0; i < PTHREAD_KEYS_MAX; i++) {
299 			struct pt_specific *pt = &self->pt_specific[i];
300 			if (pt->pts_next.ptqe_prev == NULL)
301 				continue;
302 			pthread_mutex_lock(&tsd_mutex);
303 
304 			if (pt->pts_next.ptqe_prev != NULL)  {
305 				PTQ_REMOVE(&pthread__tsd_list[i], pt, pts_next);
306 				val = pt->pts_value;
307 				pt->pts_value = NULL;
308 				pt->pts_next.ptqe_prev = NULL;
309 				destructor = pthread__tsd_destructors[i];
310 			} else
311 				destructor = NULL;
312 
313 			pthread_mutex_unlock(&tsd_mutex);
314 			if (destructor != NULL) {
315 				done = 0;
316 				(*destructor)(val);
317 			}
318 		}
319 	} while (!done && iterations--);
320 
321 	self->pt_havespecific = 0;
322 	pthread_mutex_lock(&self->pt_lock);
323 }
324