xref: /netbsd-src/lib/libpthread/pthread_mutex.c (revision fff57c5525bbe431aee7bdb3983954f0627a42cb)
1 /*	$NetBSD: pthread_mutex.c,v 1.50 2008/05/25 17:05:28 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * To track threads waiting for mutexes to be released, we use lockless
34  * lists built on atomic operations and memory barriers.
35  *
36  * A simple spinlock would be faster and make the code easier to
37  * follow, but spinlocks are problematic in userspace.  If a thread is
38  * preempted by the kernel while holding a spinlock, any other thread
39  * attempting to acquire that spinlock will needlessly busy wait.
40  *
41  * There is no good way to know that the holding thread is no longer
42  * running, nor to request a wake-up once it has begun running again.
43  * Of more concern, threads in the SCHED_FIFO class do not have a
44  * limited time quantum and so could spin forever, preventing the
45  * thread holding the spinlock from getting CPU time: it would never
46  * be released.
47  */
48 
49 #include <sys/cdefs.h>
50 __RCSID("$NetBSD: pthread_mutex.c,v 1.50 2008/05/25 17:05:28 ad Exp $");
51 
52 #include <sys/types.h>
53 #include <sys/lwpctl.h>
54 
55 #include <errno.h>
56 #include <limits.h>
57 #include <stdlib.h>
58 #include <string.h>
59 #include <stdio.h>
60 
61 #include "pthread.h"
62 #include "pthread_int.h"
63 
64 #define	MUTEX_WAITERS_BIT		((uintptr_t)0x01)
65 #define	MUTEX_RECURSIVE_BIT		((uintptr_t)0x02)
66 #define	MUTEX_DEFERRED_BIT		((uintptr_t)0x04)
67 #define	MUTEX_THREAD			((uintptr_t)-16L)
68 
69 #define	MUTEX_HAS_WAITERS(x)		((uintptr_t)(x) & MUTEX_WAITERS_BIT)
70 #define	MUTEX_RECURSIVE(x)		((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
71 #define	MUTEX_OWNER(x)			((uintptr_t)(x) & MUTEX_THREAD)
72 
73 #if __GNUC_PREREQ__(3, 0)
74 #define	NOINLINE		__attribute ((noinline))
75 #else
76 #define	NOINLINE		/* nothing */
77 #endif
78 
79 static void	pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
80 static int	pthread__mutex_lock_slow(pthread_mutex_t *);
81 static int	pthread__mutex_unlock_slow(pthread_mutex_t *);
82 static void	pthread__mutex_pause(void);
83 
84 int		_pthread_mutex_held_np(pthread_mutex_t *);
85 pthread_t	_pthread_mutex_owner_np(pthread_mutex_t *);
86 
87 __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
88 __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
89 
90 __strong_alias(__libc_mutex_init,pthread_mutex_init)
91 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
92 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
93 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
94 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
95 
96 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
97 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
98 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
99 
100 __strong_alias(__libc_thr_once,pthread_once)
101 
102 int
103 pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
104 {
105 	intptr_t type;
106 
107 	if (attr == NULL)
108 		type = PTHREAD_MUTEX_NORMAL;
109 	else
110 		type = (intptr_t)attr->ptma_private;
111 
112 	switch (type) {
113 	case PTHREAD_MUTEX_ERRORCHECK:
114 		ptm->ptm_errorcheck = 1;
115 		ptm->ptm_owner = NULL;
116 		break;
117 	case PTHREAD_MUTEX_RECURSIVE:
118 		ptm->ptm_errorcheck = 0;
119 		ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
120 		break;
121 	default:
122 		ptm->ptm_errorcheck = 0;
123 		ptm->ptm_owner = NULL;
124 		break;
125 	}
126 
127 	ptm->ptm_magic = _PT_MUTEX_MAGIC;
128 	ptm->ptm_waiters = NULL;
129 	ptm->ptm_recursed = 0;
130 
131 	return 0;
132 }
133 
134 
135 int
136 pthread_mutex_destroy(pthread_mutex_t *ptm)
137 {
138 
139 	pthread__error(EINVAL, "Invalid mutex",
140 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
141 	pthread__error(EBUSY, "Destroying locked mutex",
142 	    MUTEX_OWNER(ptm->ptm_owner) == 0);
143 
144 	ptm->ptm_magic = _PT_MUTEX_DEAD;
145 	return 0;
146 }
147 
148 int
149 pthread_mutex_lock(pthread_mutex_t *ptm)
150 {
151 	pthread_t self;
152 	void *val;
153 
154 	self = pthread__self();
155 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
156 	if (__predict_true(val == NULL)) {
157 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
158 		membar_enter();
159 #endif
160 		return 0;
161 	}
162 	return pthread__mutex_lock_slow(ptm);
163 }
164 
165 /* We want function call overhead. */
166 NOINLINE static void
167 pthread__mutex_pause(void)
168 {
169 
170 	pthread__smt_pause();
171 }
172 
173 /*
174  * Spin while the holder is running.  'lwpctl' gives us the true
175  * status of the thread.  pt_blocking is set by libpthread in order
176  * to cut out system call and kernel spinlock overhead on remote CPUs
177  * (could represent many thousands of clock cycles).  pt_blocking also
178  * makes this thread yield if the target is calling sched_yield().
179  */
180 NOINLINE static void *
181 pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
182 {
183 	pthread_t thread;
184 	unsigned int count, i;
185 
186 	for (count = 2;; owner = ptm->ptm_owner) {
187 		thread = (pthread_t)MUTEX_OWNER(owner);
188 		if (thread == NULL)
189 			break;
190 		if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
191 		    thread->pt_blocking)
192 			break;
193 		if (count < 128)
194 			count += count;
195 		for (i = count; i != 0; i--)
196 			pthread__mutex_pause();
197 	}
198 
199 	return owner;
200 }
201 
202 NOINLINE static int
203 pthread__mutex_lock_slow(pthread_mutex_t *ptm)
204 {
205 	void *waiters, *new, *owner, *next;
206 	pthread_t self;
207 
208 	pthread__error(EINVAL, "Invalid mutex",
209 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
210 
211 	owner = ptm->ptm_owner;
212 	self = pthread__self();
213 
214 	/* Recursive or errorcheck? */
215 	if (MUTEX_OWNER(owner) == (uintptr_t)self) {
216 		if (MUTEX_RECURSIVE(owner)) {
217 			if (ptm->ptm_recursed == INT_MAX)
218 				return EAGAIN;
219 			ptm->ptm_recursed++;
220 			return 0;
221 		}
222 		if (ptm->ptm_errorcheck)
223 			return EDEADLK;
224 	}
225 
226 	for (;; owner = ptm->ptm_owner) {
227 		/* Spin while the owner is running. */
228 		owner = pthread__mutex_spin(ptm, owner);
229 
230 		/* If it has become free, try to acquire it again. */
231 		if (MUTEX_OWNER(owner) == 0) {
232 			do {
233 				new = (void *)
234 				    ((uintptr_t)self | (uintptr_t)owner);
235 				next = atomic_cas_ptr(&ptm->ptm_owner, owner,
236 				    new);
237 				if (next == owner) {
238 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
239 					membar_enter();
240 #endif
241 					return 0;
242 				}
243 				owner = next;
244 			} while (MUTEX_OWNER(owner) == 0);
245 			/*
246 			 * We have lost the race to acquire the mutex.
247 			 * The new owner could be running on another
248 			 * CPU, in which case we should spin and avoid
249 			 * the overhead of blocking.
250 			 */
251 			continue;
252 		}
253 
254 		/*
255 		 * Nope, still held.  Add thread to the list of waiters.
256 		 * Issue a memory barrier to ensure mutexwait/mutexnext
257 		 * are visible before we enter the waiters list.
258 		 */
259 		self->pt_mutexwait = 1;
260 		for (waiters = ptm->ptm_waiters;; waiters = next) {
261 			self->pt_mutexnext = waiters;
262 			membar_producer();
263 			next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
264 			if (next == waiters)
265 			    	break;
266 		}
267 
268 		/*
269 		 * Set the waiters bit and block.
270 		 *
271 		 * Note that the mutex can become unlocked before we set
272 		 * the waiters bit.  If that happens it's not safe to sleep
273 		 * as we may never be awoken: we must remove the current
274 		 * thread from the waiters list and try again.
275 		 *
276 		 * Because we are doing this atomically, we can't remove
277 		 * one waiter: we must remove all waiters and awken them,
278 		 * then sleep in _lwp_park() until we have been awoken.
279 		 *
280 		 * Issue a memory barrier to ensure that we are reading
281 		 * the value of ptm_owner/pt_mutexwait after we have entered
282 		 * the waiters list (the CAS itself must be atomic).
283 		 */
284 		membar_consumer();
285 		for (owner = ptm->ptm_owner;; owner = next) {
286 			if (MUTEX_HAS_WAITERS(owner))
287 				break;
288 			if (MUTEX_OWNER(owner) == 0) {
289 				pthread__mutex_wakeup(self, ptm);
290 				break;
291 			}
292 			new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
293 			next = atomic_cas_ptr(&ptm->ptm_owner, owner, new);
294 			if (next == owner) {
295 				/*
296 				 * pthread_mutex_unlock() can do a
297 				 * non-interlocked CAS.  We cannot
298 				 * know if our attempt to set the
299 				 * waiters bit has succeeded while
300 				 * the holding thread is running.
301 				 * There are many assumptions; see
302 				 * sys/kern/kern_mutex.c for details.
303 				 * In short, we must spin if we see
304 				 * that the holder is running again.
305 				 */
306 				membar_sync();
307 				next = pthread__mutex_spin(ptm, owner);
308 			}
309 		}
310 
311 		/*
312 		 * We may have been awoken by the current thread above,
313 		 * or will be awoken by the current holder of the mutex.
314 		 * The key requirement is that we must not proceed until
315 		 * told that we are no longer waiting (via pt_mutexwait
316 		 * being set to zero).  Otherwise it is unsafe to re-enter
317 		 * the thread onto the waiters list.
318 		 */
319 		while (self->pt_mutexwait) {
320 			self->pt_blocking++;
321 			(void)_lwp_park(NULL, self->pt_unpark,
322 			    __UNVOLATILE(&ptm->ptm_waiters),
323 			    __UNVOLATILE(&ptm->ptm_waiters));
324 			self->pt_unpark = 0;
325 			self->pt_blocking--;
326 			membar_sync();
327 		}
328 	}
329 }
330 
331 int
332 pthread_mutex_trylock(pthread_mutex_t *ptm)
333 {
334 	pthread_t self;
335 	void *val, *new, *next;
336 
337 	self = pthread__self();
338 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
339 	if (__predict_true(val == NULL)) {
340 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
341 		membar_enter();
342 #endif
343 		return 0;
344 	}
345 
346 	if (MUTEX_RECURSIVE(val)) {
347 		if (MUTEX_OWNER(val) == 0) {
348 			new = (void *)((uintptr_t)self | (uintptr_t)val);
349 			next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
350 			if (__predict_true(next == val)) {
351 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
352 				membar_enter();
353 #endif
354 				return 0;
355 			}
356 		}
357 		if (MUTEX_OWNER(val) == (uintptr_t)self) {
358 			if (ptm->ptm_recursed == INT_MAX)
359 				return EAGAIN;
360 			ptm->ptm_recursed++;
361 			return 0;
362 		}
363 	}
364 
365 	return EBUSY;
366 }
367 
368 int
369 pthread_mutex_unlock(pthread_mutex_t *ptm)
370 {
371 	pthread_t self;
372 	void *value;
373 
374 	/*
375 	 * Note this may be a non-interlocked CAS.  See lock_slow()
376 	 * above and sys/kern/kern_mutex.c for details.
377 	 */
378 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
379 	membar_exit();
380 #endif
381 	self = pthread__self();
382 	value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
383 	if (__predict_true(value == self))
384 		return 0;
385 	return pthread__mutex_unlock_slow(ptm);
386 }
387 
388 NOINLINE static int
389 pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
390 {
391 	pthread_t self, owner, new;
392 	int weown, error, deferred;
393 
394 	pthread__error(EINVAL, "Invalid mutex",
395 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
396 
397 	self = pthread__self();
398 	owner = ptm->ptm_owner;
399 	weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
400 	deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
401 	error = 0;
402 
403 	if (ptm->ptm_errorcheck) {
404 		if (!weown) {
405 			error = EPERM;
406 			new = owner;
407 		} else {
408 			new = NULL;
409 		}
410 	} else if (MUTEX_RECURSIVE(owner)) {
411 		if (!weown) {
412 			error = EPERM;
413 			new = owner;
414 		} else if (ptm->ptm_recursed) {
415 			ptm->ptm_recursed--;
416 			new = owner;
417 		} else {
418 			new = (pthread_t)MUTEX_RECURSIVE_BIT;
419 		}
420 	} else {
421 		pthread__error(EPERM,
422 		    "Unlocking unlocked mutex", (owner != NULL));
423 		pthread__error(EPERM,
424 		    "Unlocking mutex owned by another thread", weown);
425 		new = NULL;
426 	}
427 
428 	/*
429 	 * Release the mutex.  If there appear to be waiters, then
430 	 * wake them up.
431 	 */
432 	if (new != owner) {
433 		owner = atomic_swap_ptr(&ptm->ptm_owner, new);
434 		if (MUTEX_HAS_WAITERS(owner) != 0) {
435 			pthread__mutex_wakeup(self, ptm);
436 			return 0;
437 		}
438 	}
439 
440 	/*
441 	 * There were no waiters, but we may have deferred waking
442 	 * other threads until mutex unlock - we must wake them now.
443 	 */
444 	if (!deferred)
445 		return error;
446 
447 	if (self->pt_nwaiters == 1) {
448 		/*
449 		 * If the calling thread is about to block, defer
450 		 * unparking the target until _lwp_park() is called.
451 		 */
452 		if (self->pt_willpark && self->pt_unpark == 0) {
453 			self->pt_unpark = self->pt_waiters[0];
454 		} else {
455 			(void)_lwp_unpark(self->pt_waiters[0],
456 			    __UNVOLATILE(&ptm->ptm_waiters));
457 		}
458 	} else {
459 		(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
460 		    __UNVOLATILE(&ptm->ptm_waiters));
461 	}
462 	self->pt_nwaiters = 0;
463 
464 	return error;
465 }
466 
467 static void
468 pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
469 {
470 	pthread_t thread, next;
471 	ssize_t n, rv;
472 
473 	/*
474 	 * Take ownership of the current set of waiters.  No
475 	 * need for a memory barrier following this, all loads
476 	 * are dependent upon 'thread'.
477 	 */
478 	thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
479 
480 	for (;;) {
481 		/*
482 		 * Pull waiters from the queue and add to our list.
483 		 * Use a memory barrier to ensure that we safely
484 		 * read the value of pt_mutexnext before 'thread'
485 		 * sees pt_mutexwait being cleared.
486 		 */
487 		for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
488 		    n < pthread__unpark_max && thread != NULL;
489 		    thread = next) {
490 		    	next = thread->pt_mutexnext;
491 		    	if (thread != self) {
492 				self->pt_waiters[n++] = thread->pt_lid;
493 				membar_sync();
494 			}
495 			thread->pt_mutexwait = 0;
496 			/* No longer safe to touch 'thread' */
497 		}
498 
499 		switch (n) {
500 		case 0:
501 			return;
502 		case 1:
503 			/*
504 			 * If the calling thread is about to block,
505 			 * defer unparking the target until _lwp_park()
506 			 * is called.
507 			 */
508 			if (self->pt_willpark && self->pt_unpark == 0) {
509 				self->pt_unpark = self->pt_waiters[0];
510 				return;
511 			}
512 			rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
513 			    __UNVOLATILE(&ptm->ptm_waiters));
514 			if (rv != 0 && errno != EALREADY && errno != EINTR &&
515 			    errno != ESRCH) {
516 				pthread__errorfunc(__FILE__, __LINE__,
517 				    __func__, "_lwp_unpark failed");
518 			}
519 			return;
520 		default:
521 			rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
522 			    __UNVOLATILE(&ptm->ptm_waiters));
523 			if (rv != 0 && errno != EINTR) {
524 				pthread__errorfunc(__FILE__, __LINE__,
525 				    __func__, "_lwp_unpark_all failed");
526 			}
527 			break;
528 		}
529 	}
530 }
531 int
532 pthread_mutexattr_init(pthread_mutexattr_t *attr)
533 {
534 
535 	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
536 	attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
537 	return 0;
538 }
539 
540 int
541 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
542 {
543 
544 	pthread__error(EINVAL, "Invalid mutex attribute",
545 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
546 
547 	return 0;
548 }
549 
550 
551 int
552 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
553 {
554 
555 	pthread__error(EINVAL, "Invalid mutex attribute",
556 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
557 
558 	*typep = (int)(intptr_t)attr->ptma_private;
559 	return 0;
560 }
561 
562 
563 int
564 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
565 {
566 
567 	pthread__error(EINVAL, "Invalid mutex attribute",
568 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
569 
570 	switch (type) {
571 	case PTHREAD_MUTEX_NORMAL:
572 	case PTHREAD_MUTEX_ERRORCHECK:
573 	case PTHREAD_MUTEX_RECURSIVE:
574 		attr->ptma_private = (void *)(intptr_t)type;
575 		return 0;
576 	default:
577 		return EINVAL;
578 	}
579 }
580 
581 
582 static void
583 once_cleanup(void *closure)
584 {
585 
586        pthread_mutex_unlock((pthread_mutex_t *)closure);
587 }
588 
589 
590 int
591 pthread_once(pthread_once_t *once_control, void (*routine)(void))
592 {
593 
594 	if (once_control->pto_done == 0) {
595 		pthread_mutex_lock(&once_control->pto_mutex);
596 		pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
597 		if (once_control->pto_done == 0) {
598 			routine();
599 			once_control->pto_done = 1;
600 		}
601 		pthread_cleanup_pop(1);
602 	}
603 
604 	return 0;
605 }
606 
607 void
608 pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
609 {
610 
611 	if (__predict_false(ptm == NULL ||
612 	    MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
613 	    	(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
614 	    	    __UNVOLATILE(&ptm->ptm_waiters));
615 	    	self->pt_nwaiters = 0;
616 	} else {
617 		atomic_or_ulong((volatile unsigned long *)
618 		    (uintptr_t)&ptm->ptm_owner,
619 		    (unsigned long)MUTEX_DEFERRED_BIT);
620 	}
621 }
622 
623 int
624 _pthread_mutex_held_np(pthread_mutex_t *ptm)
625 {
626 
627 	return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
628 }
629 
630 pthread_t
631 _pthread_mutex_owner_np(pthread_mutex_t *ptm)
632 {
633 
634 	return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
635 }
636