xref: /netbsd-src/lib/libpthread/pthread_mutex.c (revision d909946ca08dceb44d7d0f22ec9488679695d976)
1 /*	$NetBSD: pthread_mutex.c,v 1.62 2016/07/17 13:49:43 skrll Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * To track threads waiting for mutexes to be released, we use lockless
34  * lists built on atomic operations and memory barriers.
35  *
36  * A simple spinlock would be faster and make the code easier to
37  * follow, but spinlocks are problematic in userspace.  If a thread is
38  * preempted by the kernel while holding a spinlock, any other thread
39  * attempting to acquire that spinlock will needlessly busy wait.
40  *
41  * There is no good way to know that the holding thread is no longer
42  * running, nor to request a wake-up once it has begun running again.
43  * Of more concern, threads in the SCHED_FIFO class do not have a
44  * limited time quantum and so could spin forever, preventing the
45  * thread holding the spinlock from getting CPU time: it would never
46  * be released.
47  */
48 
49 #include <sys/cdefs.h>
50 __RCSID("$NetBSD: pthread_mutex.c,v 1.62 2016/07/17 13:49:43 skrll Exp $");
51 
52 #include <sys/types.h>
53 #include <sys/lwpctl.h>
54 #include <sys/sched.h>
55 #include <sys/lock.h>
56 
57 #include <errno.h>
58 #include <limits.h>
59 #include <stdlib.h>
60 #include <time.h>
61 #include <string.h>
62 #include <stdio.h>
63 
64 #include "pthread.h"
65 #include "pthread_int.h"
66 #include "reentrant.h"
67 
68 #define	MUTEX_WAITERS_BIT		((uintptr_t)0x01)
69 #define	MUTEX_RECURSIVE_BIT		((uintptr_t)0x02)
70 #define	MUTEX_DEFERRED_BIT		((uintptr_t)0x04)
71 #define	MUTEX_PROTECT_BIT		((uintptr_t)0x08)
72 #define	MUTEX_THREAD			((uintptr_t)~0x0f)
73 
74 #define	MUTEX_HAS_WAITERS(x)		((uintptr_t)(x) & MUTEX_WAITERS_BIT)
75 #define	MUTEX_RECURSIVE(x)		((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
76 #define	MUTEX_PROTECT(x)		((uintptr_t)(x) & MUTEX_PROTECT_BIT)
77 #define	MUTEX_OWNER(x)			((uintptr_t)(x) & MUTEX_THREAD)
78 
79 #define	MUTEX_GET_TYPE(x)		\
80     ((int)(((uintptr_t)(x) & 0x000000ff) >> 0))
81 #define	MUTEX_SET_TYPE(x, t) 		\
82     (x) = (void *)(((uintptr_t)(x) & ~0x000000ff) | ((t) << 0))
83 #define	MUTEX_GET_PROTOCOL(x)		\
84     ((int)(((uintptr_t)(x) & 0x0000ff00) >> 8))
85 #define	MUTEX_SET_PROTOCOL(x, p)	\
86     (x) = (void *)(((uintptr_t)(x) & ~0x0000ff00) | ((p) << 8))
87 #define	MUTEX_GET_CEILING(x)		\
88     ((int)(((uintptr_t)(x) & 0x00ff0000) >> 16))
89 #define	MUTEX_SET_CEILING(x, c)	\
90     (x) = (void *)(((uintptr_t)(x) & ~0x00ff0000) | ((c) << 16))
91 
92 #if __GNUC_PREREQ__(3, 0)
93 #define	NOINLINE		__attribute ((noinline))
94 #else
95 #define	NOINLINE		/* nothing */
96 #endif
97 
98 static void	pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
99 static int	pthread__mutex_lock_slow(pthread_mutex_t *,
100     const struct timespec *);
101 static int	pthread__mutex_unlock_slow(pthread_mutex_t *);
102 static void	pthread__mutex_pause(void);
103 
104 int		_pthread_mutex_held_np(pthread_mutex_t *);
105 pthread_t	_pthread_mutex_owner_np(pthread_mutex_t *);
106 
107 __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
108 __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
109 
110 __strong_alias(__libc_mutex_init,pthread_mutex_init)
111 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
112 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
113 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
114 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
115 
116 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
117 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
118 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
119 
120 int
121 pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
122 {
123 	uintptr_t type, proto, val, ceil;
124 
125 	if (__predict_false(__uselibcstub))
126 		return __libc_mutex_init_stub(ptm, attr);
127 
128 	if (attr == NULL) {
129 		type = PTHREAD_MUTEX_NORMAL;
130 		proto = PTHREAD_PRIO_NONE;
131 		ceil = 0;
132 	} else {
133 		val = (uintptr_t)attr->ptma_private;
134 
135 		type = MUTEX_GET_TYPE(val);
136 		proto = MUTEX_GET_PROTOCOL(val);
137 		ceil = MUTEX_GET_CEILING(val);
138 	}
139 	switch (type) {
140 	case PTHREAD_MUTEX_ERRORCHECK:
141 		__cpu_simple_lock_set(&ptm->ptm_errorcheck);
142 		ptm->ptm_owner = NULL;
143 		break;
144 	case PTHREAD_MUTEX_RECURSIVE:
145 		__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
146 		ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
147 		break;
148 	default:
149 		__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
150 		ptm->ptm_owner = NULL;
151 		break;
152 	}
153 	switch (proto) {
154 	case PTHREAD_PRIO_PROTECT:
155 		val = (uintptr_t)ptm->ptm_owner;
156 		val |= MUTEX_PROTECT_BIT;
157 		ptm->ptm_owner = (void *)val;
158 		break;
159 
160 	}
161 	ptm->ptm_magic = _PT_MUTEX_MAGIC;
162 	ptm->ptm_waiters = NULL;
163 	ptm->ptm_recursed = 0;
164 	ptm->ptm_ceiling = (unsigned char)ceil;
165 
166 	return 0;
167 }
168 
169 int
170 pthread_mutex_destroy(pthread_mutex_t *ptm)
171 {
172 
173 	if (__predict_false(__uselibcstub))
174 		return __libc_mutex_destroy_stub(ptm);
175 
176 	pthread__error(EINVAL, "Invalid mutex",
177 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
178 	pthread__error(EBUSY, "Destroying locked mutex",
179 	    MUTEX_OWNER(ptm->ptm_owner) == 0);
180 
181 	ptm->ptm_magic = _PT_MUTEX_DEAD;
182 	return 0;
183 }
184 
185 int
186 pthread_mutex_lock(pthread_mutex_t *ptm)
187 {
188 	pthread_t self;
189 	void *val;
190 
191 	if (__predict_false(__uselibcstub))
192 		return __libc_mutex_lock_stub(ptm);
193 
194 	self = pthread__self();
195 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
196 	if (__predict_true(val == NULL)) {
197 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
198 		membar_enter();
199 #endif
200 		return 0;
201 	}
202 	return pthread__mutex_lock_slow(ptm, NULL);
203 }
204 
205 int
206 pthread_mutex_timedlock(pthread_mutex_t* ptm, const struct timespec *ts)
207 {
208 	pthread_t self;
209 	void *val;
210 
211 	self = pthread__self();
212 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
213 	if (__predict_true(val == NULL)) {
214 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
215 		membar_enter();
216 #endif
217 		return 0;
218 	}
219 	return pthread__mutex_lock_slow(ptm, ts);
220 }
221 
222 /* We want function call overhead. */
223 NOINLINE static void
224 pthread__mutex_pause(void)
225 {
226 
227 	pthread__smt_pause();
228 }
229 
230 /*
231  * Spin while the holder is running.  'lwpctl' gives us the true
232  * status of the thread.  pt_blocking is set by libpthread in order
233  * to cut out system call and kernel spinlock overhead on remote CPUs
234  * (could represent many thousands of clock cycles).  pt_blocking also
235  * makes this thread yield if the target is calling sched_yield().
236  */
237 NOINLINE static void *
238 pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
239 {
240 	pthread_t thread;
241 	unsigned int count, i;
242 
243 	for (count = 2;; owner = ptm->ptm_owner) {
244 		thread = (pthread_t)MUTEX_OWNER(owner);
245 		if (thread == NULL)
246 			break;
247 		if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
248 		    thread->pt_blocking)
249 			break;
250 		if (count < 128)
251 			count += count;
252 		for (i = count; i != 0; i--)
253 			pthread__mutex_pause();
254 	}
255 
256 	return owner;
257 }
258 
259 NOINLINE static void
260 pthread__mutex_setwaiters(pthread_t self, pthread_mutex_t *ptm)
261 {
262 	void *new, *owner;
263 
264 	/*
265 	 * Note that the mutex can become unlocked before we set
266 	 * the waiters bit.  If that happens it's not safe to sleep
267 	 * as we may never be awoken: we must remove the current
268 	 * thread from the waiters list and try again.
269 	 *
270 	 * Because we are doing this atomically, we can't remove
271 	 * one waiter: we must remove all waiters and awken them,
272 	 * then sleep in _lwp_park() until we have been awoken.
273 	 *
274 	 * Issue a memory barrier to ensure that we are reading
275 	 * the value of ptm_owner/pt_mutexwait after we have entered
276 	 * the waiters list (the CAS itself must be atomic).
277 	 */
278 again:
279 	membar_consumer();
280 	owner = ptm->ptm_owner;
281 
282 	if (MUTEX_OWNER(owner) == 0) {
283 		pthread__mutex_wakeup(self, ptm);
284 		return;
285 	}
286 	if (!MUTEX_HAS_WAITERS(owner)) {
287 		new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
288 		if (atomic_cas_ptr(&ptm->ptm_owner, owner, new) != owner) {
289 			goto again;
290 		}
291 	}
292 
293 	/*
294 	 * Note that pthread_mutex_unlock() can do a non-interlocked CAS.
295 	 * We cannot know if the presence of the waiters bit is stable
296 	 * while the holding thread is running.  There are many assumptions;
297 	 * see sys/kern/kern_mutex.c for details.  In short, we must spin if
298 	 * we see that the holder is running again.
299 	 */
300 	membar_sync();
301 	pthread__mutex_spin(ptm, owner);
302 
303 	if (membar_consumer(), !MUTEX_HAS_WAITERS(ptm->ptm_owner)) {
304 		goto again;
305 	}
306 }
307 
308 NOINLINE static int
309 pthread__mutex_lock_slow(pthread_mutex_t *ptm, const struct timespec *ts)
310 {
311 	void *waiters, *new, *owner, *next;
312 	pthread_t self;
313 	int serrno;
314 	int error;
315 
316 	pthread__error(EINVAL, "Invalid mutex",
317 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
318 
319 	owner = ptm->ptm_owner;
320 	self = pthread__self();
321 
322 	/* Recursive or errorcheck? */
323 	if (MUTEX_OWNER(owner) == (uintptr_t)self) {
324 		if (MUTEX_RECURSIVE(owner)) {
325 			if (ptm->ptm_recursed == INT_MAX)
326 				return EAGAIN;
327 			ptm->ptm_recursed++;
328 			return 0;
329 		}
330 		if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
331 			return EDEADLK;
332 	}
333 
334 	/* priority protect */
335 	if (MUTEX_PROTECT(owner) && _sched_protect(ptm->ptm_ceiling) == -1) {
336 		return errno;
337 	}
338 	serrno = errno;
339 	for (;; owner = ptm->ptm_owner) {
340 		/* Spin while the owner is running. */
341 		owner = pthread__mutex_spin(ptm, owner);
342 
343 		/* If it has become free, try to acquire it again. */
344 		if (MUTEX_OWNER(owner) == 0) {
345 			do {
346 				new = (void *)
347 				    ((uintptr_t)self | (uintptr_t)owner);
348 				next = atomic_cas_ptr(&ptm->ptm_owner, owner,
349 				    new);
350 				if (next == owner) {
351 					errno = serrno;
352 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
353 					membar_enter();
354 #endif
355 					return 0;
356 				}
357 				owner = next;
358 			} while (MUTEX_OWNER(owner) == 0);
359 			/*
360 			 * We have lost the race to acquire the mutex.
361 			 * The new owner could be running on another
362 			 * CPU, in which case we should spin and avoid
363 			 * the overhead of blocking.
364 			 */
365 			continue;
366 		}
367 
368 		/*
369 		 * Nope, still held.  Add thread to the list of waiters.
370 		 * Issue a memory barrier to ensure mutexwait/mutexnext
371 		 * are visible before we enter the waiters list.
372 		 */
373 		self->pt_mutexwait = 1;
374 		for (waiters = ptm->ptm_waiters;; waiters = next) {
375 			self->pt_mutexnext = waiters;
376 			membar_producer();
377 			next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
378 			if (next == waiters)
379 			    	break;
380 		}
381 
382 		/* Set the waiters bit and block. */
383 		pthread__mutex_setwaiters(self, ptm);
384 
385 		/*
386 		 * We may have been awoken by the current thread above,
387 		 * or will be awoken by the current holder of the mutex.
388 		 * The key requirement is that we must not proceed until
389 		 * told that we are no longer waiting (via pt_mutexwait
390 		 * being set to zero).  Otherwise it is unsafe to re-enter
391 		 * the thread onto the waiters list.
392 		 */
393 		while (self->pt_mutexwait) {
394 			self->pt_blocking++;
395 			error = _lwp_park(CLOCK_REALTIME, TIMER_ABSTIME, ts,
396 			    self->pt_unpark, __UNVOLATILE(&ptm->ptm_waiters),
397 			    __UNVOLATILE(&ptm->ptm_waiters));
398 			self->pt_unpark = 0;
399 			self->pt_blocking--;
400 			membar_sync();
401 			if (__predict_true(error != -1)) {
402 				continue;
403 			}
404 			if (errno == ETIMEDOUT && self->pt_mutexwait) {
405 				/*Remove self from waiters list*/
406 				pthread__mutex_wakeup(self, ptm);
407 				/*priority protect*/
408 				if (MUTEX_PROTECT(owner))
409 					(void)_sched_protect(-1);
410 				return ETIMEDOUT;
411 			}
412 		}
413 	}
414 }
415 
416 int
417 pthread_mutex_trylock(pthread_mutex_t *ptm)
418 {
419 	pthread_t self;
420 	void *val, *new, *next;
421 
422 	if (__predict_false(__uselibcstub))
423 		return __libc_mutex_trylock_stub(ptm);
424 
425 	self = pthread__self();
426 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
427 	if (__predict_true(val == NULL)) {
428 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
429 		membar_enter();
430 #endif
431 		return 0;
432 	}
433 
434 	if (MUTEX_RECURSIVE(val)) {
435 		if (MUTEX_OWNER(val) == 0) {
436 			new = (void *)((uintptr_t)self | (uintptr_t)val);
437 			next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
438 			if (__predict_true(next == val)) {
439 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
440 				membar_enter();
441 #endif
442 				return 0;
443 			}
444 		}
445 		if (MUTEX_OWNER(val) == (uintptr_t)self) {
446 			if (ptm->ptm_recursed == INT_MAX)
447 				return EAGAIN;
448 			ptm->ptm_recursed++;
449 			return 0;
450 		}
451 	}
452 
453 	return EBUSY;
454 }
455 
456 int
457 pthread_mutex_unlock(pthread_mutex_t *ptm)
458 {
459 	pthread_t self;
460 	void *value;
461 
462 	if (__predict_false(__uselibcstub))
463 		return __libc_mutex_unlock_stub(ptm);
464 
465 	/*
466 	 * Note this may be a non-interlocked CAS.  See lock_slow()
467 	 * above and sys/kern/kern_mutex.c for details.
468 	 */
469 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
470 	membar_exit();
471 #endif
472 	self = pthread__self();
473 	value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
474 	if (__predict_true(value == self)) {
475 		pthread__smt_wake();
476 		return 0;
477 	}
478 	return pthread__mutex_unlock_slow(ptm);
479 }
480 
481 NOINLINE static int
482 pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
483 {
484 	pthread_t self, owner, new;
485 	int weown, error, deferred;
486 
487 	pthread__error(EINVAL, "Invalid mutex",
488 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
489 
490 	self = pthread__self();
491 	owner = ptm->ptm_owner;
492 	weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
493 	deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
494 	error = 0;
495 
496 	if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
497 		if (!weown) {
498 			error = EPERM;
499 			new = owner;
500 		} else {
501 			new = NULL;
502 		}
503 	} else if (MUTEX_RECURSIVE(owner)) {
504 		if (!weown) {
505 			error = EPERM;
506 			new = owner;
507 		} else if (ptm->ptm_recursed) {
508 			ptm->ptm_recursed--;
509 			new = owner;
510 		} else {
511 			new = (pthread_t)MUTEX_RECURSIVE_BIT;
512 		}
513 	} else {
514 		pthread__error(EPERM,
515 		    "Unlocking unlocked mutex", (owner != NULL));
516 		pthread__error(EPERM,
517 		    "Unlocking mutex owned by another thread", weown);
518 		new = NULL;
519 	}
520 
521 	/*
522 	 * Release the mutex.  If there appear to be waiters, then
523 	 * wake them up.
524 	 */
525 	if (new != owner) {
526 		owner = atomic_swap_ptr(&ptm->ptm_owner, new);
527 		if (__predict_false(MUTEX_PROTECT(owner))) {
528 			/* restore elevated priority */
529 			(void)_sched_protect(-1);
530 		}
531 		if (MUTEX_HAS_WAITERS(owner) != 0) {
532 			pthread__mutex_wakeup(self, ptm);
533 			return 0;
534 		}
535 	}
536 
537 	/*
538 	 * There were no waiters, but we may have deferred waking
539 	 * other threads until mutex unlock - we must wake them now.
540 	 */
541 	if (!deferred)
542 		return error;
543 
544 	if (self->pt_nwaiters == 1) {
545 		/*
546 		 * If the calling thread is about to block, defer
547 		 * unparking the target until _lwp_park() is called.
548 		 */
549 		if (self->pt_willpark && self->pt_unpark == 0) {
550 			self->pt_unpark = self->pt_waiters[0];
551 		} else {
552 			(void)_lwp_unpark(self->pt_waiters[0],
553 			    __UNVOLATILE(&ptm->ptm_waiters));
554 		}
555 	} else {
556 		(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
557 		    __UNVOLATILE(&ptm->ptm_waiters));
558 	}
559 	self->pt_nwaiters = 0;
560 
561 	return error;
562 }
563 
564 /*
565  * pthread__mutex_wakeup: unpark threads waiting for us
566  *
567  * unpark threads on the ptm->ptm_waiters list and self->pt_waiters.
568  */
569 
570 static void
571 pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
572 {
573 	pthread_t thread, next;
574 	ssize_t n, rv;
575 
576 	/*
577 	 * Take ownership of the current set of waiters.  No
578 	 * need for a memory barrier following this, all loads
579 	 * are dependent upon 'thread'.
580 	 */
581 	thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
582 	pthread__smt_wake();
583 
584 	for (;;) {
585 		/*
586 		 * Pull waiters from the queue and add to our list.
587 		 * Use a memory barrier to ensure that we safely
588 		 * read the value of pt_mutexnext before 'thread'
589 		 * sees pt_mutexwait being cleared.
590 		 */
591 		for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
592 		    n < pthread__unpark_max && thread != NULL;
593 		    thread = next) {
594 		    	next = thread->pt_mutexnext;
595 		    	if (thread != self) {
596 				self->pt_waiters[n++] = thread->pt_lid;
597 				membar_sync();
598 			}
599 			thread->pt_mutexwait = 0;
600 			/* No longer safe to touch 'thread' */
601 		}
602 
603 		switch (n) {
604 		case 0:
605 			return;
606 		case 1:
607 			/*
608 			 * If the calling thread is about to block,
609 			 * defer unparking the target until _lwp_park()
610 			 * is called.
611 			 */
612 			if (self->pt_willpark && self->pt_unpark == 0) {
613 				self->pt_unpark = self->pt_waiters[0];
614 				return;
615 			}
616 			rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
617 			    __UNVOLATILE(&ptm->ptm_waiters));
618 			if (rv != 0 && errno != EALREADY && errno != EINTR &&
619 			    errno != ESRCH) {
620 				pthread__errorfunc(__FILE__, __LINE__,
621 				    __func__, "_lwp_unpark failed");
622 			}
623 			return;
624 		default:
625 			rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
626 			    __UNVOLATILE(&ptm->ptm_waiters));
627 			if (rv != 0 && errno != EINTR) {
628 				pthread__errorfunc(__FILE__, __LINE__,
629 				    __func__, "_lwp_unpark_all failed");
630 			}
631 			break;
632 		}
633 	}
634 }
635 
636 int
637 pthread_mutexattr_init(pthread_mutexattr_t *attr)
638 {
639 	if (__predict_false(__uselibcstub))
640 		return __libc_mutexattr_init_stub(attr);
641 
642 	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
643 	attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
644 	return 0;
645 }
646 
647 int
648 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
649 {
650 	if (__predict_false(__uselibcstub))
651 		return __libc_mutexattr_destroy_stub(attr);
652 
653 	pthread__error(EINVAL, "Invalid mutex attribute",
654 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
655 
656 	return 0;
657 }
658 
659 int
660 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
661 {
662 
663 	pthread__error(EINVAL, "Invalid mutex attribute",
664 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
665 
666 	*typep = MUTEX_GET_TYPE(attr->ptma_private);
667 	return 0;
668 }
669 
670 int
671 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
672 {
673 
674 	if (__predict_false(__uselibcstub))
675 		return __libc_mutexattr_settype_stub(attr, type);
676 
677 	pthread__error(EINVAL, "Invalid mutex attribute",
678 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
679 
680 	switch (type) {
681 	case PTHREAD_MUTEX_NORMAL:
682 	case PTHREAD_MUTEX_ERRORCHECK:
683 	case PTHREAD_MUTEX_RECURSIVE:
684 		MUTEX_SET_TYPE(attr->ptma_private, type);
685 		return 0;
686 	default:
687 		return EINVAL;
688 	}
689 }
690 
691 int
692 pthread_mutexattr_getprotocol(const pthread_mutexattr_t *attr, int*proto)
693 {
694 
695 	pthread__error(EINVAL, "Invalid mutex attribute",
696 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
697 
698 	*proto = MUTEX_GET_PROTOCOL(attr->ptma_private);
699 	return 0;
700 }
701 
702 int
703 pthread_mutexattr_setprotocol(pthread_mutexattr_t* attr, int proto)
704 {
705 
706 	pthread__error(EINVAL, "Invalid mutex attribute",
707 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
708 
709 	switch (proto) {
710 	case PTHREAD_PRIO_NONE:
711 	case PTHREAD_PRIO_PROTECT:
712 		MUTEX_SET_PROTOCOL(attr->ptma_private, proto);
713 		return 0;
714 	case PTHREAD_PRIO_INHERIT:
715 		return ENOTSUP;
716 	default:
717 		return EINVAL;
718 	}
719 }
720 
721 int
722 pthread_mutexattr_getprioceiling(const pthread_mutexattr_t *attr, int *ceil)
723 {
724 
725 	pthread__error(EINVAL, "Invalid mutex attribute",
726 		attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
727 
728 	*ceil = MUTEX_GET_CEILING(attr->ptma_private);
729 	return 0;
730 }
731 
732 int
733 pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr, int ceil)
734 {
735 
736 	pthread__error(EINVAL, "Invalid mutex attribute",
737 		attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
738 
739 	if (ceil & ~0xff)
740 		return EINVAL;
741 
742 	MUTEX_SET_CEILING(attr->ptma_private, ceil);
743 	return 0;
744 }
745 
746 #ifdef _PTHREAD_PSHARED
747 int
748 pthread_mutexattr_getpshared(const pthread_mutexattr_t * __restrict attr,
749     int * __restrict pshared)
750 {
751 
752 	*pshared = PTHREAD_PROCESS_PRIVATE;
753 	return 0;
754 }
755 
756 int
757 pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared)
758 {
759 
760 	switch(pshared) {
761 	case PTHREAD_PROCESS_PRIVATE:
762 		return 0;
763 	case PTHREAD_PROCESS_SHARED:
764 		return ENOSYS;
765 	}
766 	return EINVAL;
767 }
768 #endif
769 
770 /*
771  * pthread__mutex_deferwake: try to defer unparking threads in self->pt_waiters
772  *
773  * In order to avoid unnecessary contention on the interlocking mutex,
774  * we defer waking up threads until we unlock the mutex.  The threads will
775  * be woken up when the calling thread (self) releases the first mutex with
776  * MUTEX_DEFERRED_BIT set.  It likely be the mutex 'ptm', but no problem
777  * even if it isn't.
778  */
779 
780 void
781 pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
782 {
783 
784 	if (__predict_false(ptm == NULL ||
785 	    MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
786 	    	(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
787 	    	    __UNVOLATILE(&ptm->ptm_waiters));
788 	    	self->pt_nwaiters = 0;
789 	} else {
790 		atomic_or_ulong((volatile unsigned long *)
791 		    (uintptr_t)&ptm->ptm_owner,
792 		    (unsigned long)MUTEX_DEFERRED_BIT);
793 	}
794 }
795 
796 int
797 pthread_mutex_getprioceiling(const pthread_mutex_t *ptm, int *ceil)
798 {
799 	*ceil = ptm->ptm_ceiling;
800 	return 0;
801 }
802 
803 int
804 pthread_mutex_setprioceiling(pthread_mutex_t *ptm, int ceil, int *old_ceil)
805 {
806 	int error;
807 
808 	error = pthread_mutex_lock(ptm);
809 	if (error == 0) {
810 		*old_ceil = ptm->ptm_ceiling;
811 		/*check range*/
812 		ptm->ptm_ceiling = ceil;
813 		pthread_mutex_unlock(ptm);
814 	}
815 	return error;
816 }
817 
818 int
819 _pthread_mutex_held_np(pthread_mutex_t *ptm)
820 {
821 
822 	return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
823 }
824 
825 pthread_t
826 _pthread_mutex_owner_np(pthread_mutex_t *ptm)
827 {
828 
829 	return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
830 }
831