1 /* $NetBSD: pthread_mutex.c,v 1.62 2016/07/17 13:49:43 skrll Exp $ */ 2 3 /*- 4 * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * To track threads waiting for mutexes to be released, we use lockless 34 * lists built on atomic operations and memory barriers. 35 * 36 * A simple spinlock would be faster and make the code easier to 37 * follow, but spinlocks are problematic in userspace. If a thread is 38 * preempted by the kernel while holding a spinlock, any other thread 39 * attempting to acquire that spinlock will needlessly busy wait. 40 * 41 * There is no good way to know that the holding thread is no longer 42 * running, nor to request a wake-up once it has begun running again. 43 * Of more concern, threads in the SCHED_FIFO class do not have a 44 * limited time quantum and so could spin forever, preventing the 45 * thread holding the spinlock from getting CPU time: it would never 46 * be released. 47 */ 48 49 #include <sys/cdefs.h> 50 __RCSID("$NetBSD: pthread_mutex.c,v 1.62 2016/07/17 13:49:43 skrll Exp $"); 51 52 #include <sys/types.h> 53 #include <sys/lwpctl.h> 54 #include <sys/sched.h> 55 #include <sys/lock.h> 56 57 #include <errno.h> 58 #include <limits.h> 59 #include <stdlib.h> 60 #include <time.h> 61 #include <string.h> 62 #include <stdio.h> 63 64 #include "pthread.h" 65 #include "pthread_int.h" 66 #include "reentrant.h" 67 68 #define MUTEX_WAITERS_BIT ((uintptr_t)0x01) 69 #define MUTEX_RECURSIVE_BIT ((uintptr_t)0x02) 70 #define MUTEX_DEFERRED_BIT ((uintptr_t)0x04) 71 #define MUTEX_PROTECT_BIT ((uintptr_t)0x08) 72 #define MUTEX_THREAD ((uintptr_t)~0x0f) 73 74 #define MUTEX_HAS_WAITERS(x) ((uintptr_t)(x) & MUTEX_WAITERS_BIT) 75 #define MUTEX_RECURSIVE(x) ((uintptr_t)(x) & MUTEX_RECURSIVE_BIT) 76 #define MUTEX_PROTECT(x) ((uintptr_t)(x) & MUTEX_PROTECT_BIT) 77 #define MUTEX_OWNER(x) ((uintptr_t)(x) & MUTEX_THREAD) 78 79 #define MUTEX_GET_TYPE(x) \ 80 ((int)(((uintptr_t)(x) & 0x000000ff) >> 0)) 81 #define MUTEX_SET_TYPE(x, t) \ 82 (x) = (void *)(((uintptr_t)(x) & ~0x000000ff) | ((t) << 0)) 83 #define MUTEX_GET_PROTOCOL(x) \ 84 ((int)(((uintptr_t)(x) & 0x0000ff00) >> 8)) 85 #define MUTEX_SET_PROTOCOL(x, p) \ 86 (x) = (void *)(((uintptr_t)(x) & ~0x0000ff00) | ((p) << 8)) 87 #define MUTEX_GET_CEILING(x) \ 88 ((int)(((uintptr_t)(x) & 0x00ff0000) >> 16)) 89 #define MUTEX_SET_CEILING(x, c) \ 90 (x) = (void *)(((uintptr_t)(x) & ~0x00ff0000) | ((c) << 16)) 91 92 #if __GNUC_PREREQ__(3, 0) 93 #define NOINLINE __attribute ((noinline)) 94 #else 95 #define NOINLINE /* nothing */ 96 #endif 97 98 static void pthread__mutex_wakeup(pthread_t, pthread_mutex_t *); 99 static int pthread__mutex_lock_slow(pthread_mutex_t *, 100 const struct timespec *); 101 static int pthread__mutex_unlock_slow(pthread_mutex_t *); 102 static void pthread__mutex_pause(void); 103 104 int _pthread_mutex_held_np(pthread_mutex_t *); 105 pthread_t _pthread_mutex_owner_np(pthread_mutex_t *); 106 107 __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np) 108 __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np) 109 110 __strong_alias(__libc_mutex_init,pthread_mutex_init) 111 __strong_alias(__libc_mutex_lock,pthread_mutex_lock) 112 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock) 113 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock) 114 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy) 115 116 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init) 117 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy) 118 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype) 119 120 int 121 pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr) 122 { 123 uintptr_t type, proto, val, ceil; 124 125 if (__predict_false(__uselibcstub)) 126 return __libc_mutex_init_stub(ptm, attr); 127 128 if (attr == NULL) { 129 type = PTHREAD_MUTEX_NORMAL; 130 proto = PTHREAD_PRIO_NONE; 131 ceil = 0; 132 } else { 133 val = (uintptr_t)attr->ptma_private; 134 135 type = MUTEX_GET_TYPE(val); 136 proto = MUTEX_GET_PROTOCOL(val); 137 ceil = MUTEX_GET_CEILING(val); 138 } 139 switch (type) { 140 case PTHREAD_MUTEX_ERRORCHECK: 141 __cpu_simple_lock_set(&ptm->ptm_errorcheck); 142 ptm->ptm_owner = NULL; 143 break; 144 case PTHREAD_MUTEX_RECURSIVE: 145 __cpu_simple_lock_clear(&ptm->ptm_errorcheck); 146 ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT; 147 break; 148 default: 149 __cpu_simple_lock_clear(&ptm->ptm_errorcheck); 150 ptm->ptm_owner = NULL; 151 break; 152 } 153 switch (proto) { 154 case PTHREAD_PRIO_PROTECT: 155 val = (uintptr_t)ptm->ptm_owner; 156 val |= MUTEX_PROTECT_BIT; 157 ptm->ptm_owner = (void *)val; 158 break; 159 160 } 161 ptm->ptm_magic = _PT_MUTEX_MAGIC; 162 ptm->ptm_waiters = NULL; 163 ptm->ptm_recursed = 0; 164 ptm->ptm_ceiling = (unsigned char)ceil; 165 166 return 0; 167 } 168 169 int 170 pthread_mutex_destroy(pthread_mutex_t *ptm) 171 { 172 173 if (__predict_false(__uselibcstub)) 174 return __libc_mutex_destroy_stub(ptm); 175 176 pthread__error(EINVAL, "Invalid mutex", 177 ptm->ptm_magic == _PT_MUTEX_MAGIC); 178 pthread__error(EBUSY, "Destroying locked mutex", 179 MUTEX_OWNER(ptm->ptm_owner) == 0); 180 181 ptm->ptm_magic = _PT_MUTEX_DEAD; 182 return 0; 183 } 184 185 int 186 pthread_mutex_lock(pthread_mutex_t *ptm) 187 { 188 pthread_t self; 189 void *val; 190 191 if (__predict_false(__uselibcstub)) 192 return __libc_mutex_lock_stub(ptm); 193 194 self = pthread__self(); 195 val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self); 196 if (__predict_true(val == NULL)) { 197 #ifndef PTHREAD__ATOMIC_IS_MEMBAR 198 membar_enter(); 199 #endif 200 return 0; 201 } 202 return pthread__mutex_lock_slow(ptm, NULL); 203 } 204 205 int 206 pthread_mutex_timedlock(pthread_mutex_t* ptm, const struct timespec *ts) 207 { 208 pthread_t self; 209 void *val; 210 211 self = pthread__self(); 212 val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self); 213 if (__predict_true(val == NULL)) { 214 #ifndef PTHREAD__ATOMIC_IS_MEMBAR 215 membar_enter(); 216 #endif 217 return 0; 218 } 219 return pthread__mutex_lock_slow(ptm, ts); 220 } 221 222 /* We want function call overhead. */ 223 NOINLINE static void 224 pthread__mutex_pause(void) 225 { 226 227 pthread__smt_pause(); 228 } 229 230 /* 231 * Spin while the holder is running. 'lwpctl' gives us the true 232 * status of the thread. pt_blocking is set by libpthread in order 233 * to cut out system call and kernel spinlock overhead on remote CPUs 234 * (could represent many thousands of clock cycles). pt_blocking also 235 * makes this thread yield if the target is calling sched_yield(). 236 */ 237 NOINLINE static void * 238 pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner) 239 { 240 pthread_t thread; 241 unsigned int count, i; 242 243 for (count = 2;; owner = ptm->ptm_owner) { 244 thread = (pthread_t)MUTEX_OWNER(owner); 245 if (thread == NULL) 246 break; 247 if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE || 248 thread->pt_blocking) 249 break; 250 if (count < 128) 251 count += count; 252 for (i = count; i != 0; i--) 253 pthread__mutex_pause(); 254 } 255 256 return owner; 257 } 258 259 NOINLINE static void 260 pthread__mutex_setwaiters(pthread_t self, pthread_mutex_t *ptm) 261 { 262 void *new, *owner; 263 264 /* 265 * Note that the mutex can become unlocked before we set 266 * the waiters bit. If that happens it's not safe to sleep 267 * as we may never be awoken: we must remove the current 268 * thread from the waiters list and try again. 269 * 270 * Because we are doing this atomically, we can't remove 271 * one waiter: we must remove all waiters and awken them, 272 * then sleep in _lwp_park() until we have been awoken. 273 * 274 * Issue a memory barrier to ensure that we are reading 275 * the value of ptm_owner/pt_mutexwait after we have entered 276 * the waiters list (the CAS itself must be atomic). 277 */ 278 again: 279 membar_consumer(); 280 owner = ptm->ptm_owner; 281 282 if (MUTEX_OWNER(owner) == 0) { 283 pthread__mutex_wakeup(self, ptm); 284 return; 285 } 286 if (!MUTEX_HAS_WAITERS(owner)) { 287 new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT); 288 if (atomic_cas_ptr(&ptm->ptm_owner, owner, new) != owner) { 289 goto again; 290 } 291 } 292 293 /* 294 * Note that pthread_mutex_unlock() can do a non-interlocked CAS. 295 * We cannot know if the presence of the waiters bit is stable 296 * while the holding thread is running. There are many assumptions; 297 * see sys/kern/kern_mutex.c for details. In short, we must spin if 298 * we see that the holder is running again. 299 */ 300 membar_sync(); 301 pthread__mutex_spin(ptm, owner); 302 303 if (membar_consumer(), !MUTEX_HAS_WAITERS(ptm->ptm_owner)) { 304 goto again; 305 } 306 } 307 308 NOINLINE static int 309 pthread__mutex_lock_slow(pthread_mutex_t *ptm, const struct timespec *ts) 310 { 311 void *waiters, *new, *owner, *next; 312 pthread_t self; 313 int serrno; 314 int error; 315 316 pthread__error(EINVAL, "Invalid mutex", 317 ptm->ptm_magic == _PT_MUTEX_MAGIC); 318 319 owner = ptm->ptm_owner; 320 self = pthread__self(); 321 322 /* Recursive or errorcheck? */ 323 if (MUTEX_OWNER(owner) == (uintptr_t)self) { 324 if (MUTEX_RECURSIVE(owner)) { 325 if (ptm->ptm_recursed == INT_MAX) 326 return EAGAIN; 327 ptm->ptm_recursed++; 328 return 0; 329 } 330 if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) 331 return EDEADLK; 332 } 333 334 /* priority protect */ 335 if (MUTEX_PROTECT(owner) && _sched_protect(ptm->ptm_ceiling) == -1) { 336 return errno; 337 } 338 serrno = errno; 339 for (;; owner = ptm->ptm_owner) { 340 /* Spin while the owner is running. */ 341 owner = pthread__mutex_spin(ptm, owner); 342 343 /* If it has become free, try to acquire it again. */ 344 if (MUTEX_OWNER(owner) == 0) { 345 do { 346 new = (void *) 347 ((uintptr_t)self | (uintptr_t)owner); 348 next = atomic_cas_ptr(&ptm->ptm_owner, owner, 349 new); 350 if (next == owner) { 351 errno = serrno; 352 #ifndef PTHREAD__ATOMIC_IS_MEMBAR 353 membar_enter(); 354 #endif 355 return 0; 356 } 357 owner = next; 358 } while (MUTEX_OWNER(owner) == 0); 359 /* 360 * We have lost the race to acquire the mutex. 361 * The new owner could be running on another 362 * CPU, in which case we should spin and avoid 363 * the overhead of blocking. 364 */ 365 continue; 366 } 367 368 /* 369 * Nope, still held. Add thread to the list of waiters. 370 * Issue a memory barrier to ensure mutexwait/mutexnext 371 * are visible before we enter the waiters list. 372 */ 373 self->pt_mutexwait = 1; 374 for (waiters = ptm->ptm_waiters;; waiters = next) { 375 self->pt_mutexnext = waiters; 376 membar_producer(); 377 next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self); 378 if (next == waiters) 379 break; 380 } 381 382 /* Set the waiters bit and block. */ 383 pthread__mutex_setwaiters(self, ptm); 384 385 /* 386 * We may have been awoken by the current thread above, 387 * or will be awoken by the current holder of the mutex. 388 * The key requirement is that we must not proceed until 389 * told that we are no longer waiting (via pt_mutexwait 390 * being set to zero). Otherwise it is unsafe to re-enter 391 * the thread onto the waiters list. 392 */ 393 while (self->pt_mutexwait) { 394 self->pt_blocking++; 395 error = _lwp_park(CLOCK_REALTIME, TIMER_ABSTIME, ts, 396 self->pt_unpark, __UNVOLATILE(&ptm->ptm_waiters), 397 __UNVOLATILE(&ptm->ptm_waiters)); 398 self->pt_unpark = 0; 399 self->pt_blocking--; 400 membar_sync(); 401 if (__predict_true(error != -1)) { 402 continue; 403 } 404 if (errno == ETIMEDOUT && self->pt_mutexwait) { 405 /*Remove self from waiters list*/ 406 pthread__mutex_wakeup(self, ptm); 407 /*priority protect*/ 408 if (MUTEX_PROTECT(owner)) 409 (void)_sched_protect(-1); 410 return ETIMEDOUT; 411 } 412 } 413 } 414 } 415 416 int 417 pthread_mutex_trylock(pthread_mutex_t *ptm) 418 { 419 pthread_t self; 420 void *val, *new, *next; 421 422 if (__predict_false(__uselibcstub)) 423 return __libc_mutex_trylock_stub(ptm); 424 425 self = pthread__self(); 426 val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self); 427 if (__predict_true(val == NULL)) { 428 #ifndef PTHREAD__ATOMIC_IS_MEMBAR 429 membar_enter(); 430 #endif 431 return 0; 432 } 433 434 if (MUTEX_RECURSIVE(val)) { 435 if (MUTEX_OWNER(val) == 0) { 436 new = (void *)((uintptr_t)self | (uintptr_t)val); 437 next = atomic_cas_ptr(&ptm->ptm_owner, val, new); 438 if (__predict_true(next == val)) { 439 #ifndef PTHREAD__ATOMIC_IS_MEMBAR 440 membar_enter(); 441 #endif 442 return 0; 443 } 444 } 445 if (MUTEX_OWNER(val) == (uintptr_t)self) { 446 if (ptm->ptm_recursed == INT_MAX) 447 return EAGAIN; 448 ptm->ptm_recursed++; 449 return 0; 450 } 451 } 452 453 return EBUSY; 454 } 455 456 int 457 pthread_mutex_unlock(pthread_mutex_t *ptm) 458 { 459 pthread_t self; 460 void *value; 461 462 if (__predict_false(__uselibcstub)) 463 return __libc_mutex_unlock_stub(ptm); 464 465 /* 466 * Note this may be a non-interlocked CAS. See lock_slow() 467 * above and sys/kern/kern_mutex.c for details. 468 */ 469 #ifndef PTHREAD__ATOMIC_IS_MEMBAR 470 membar_exit(); 471 #endif 472 self = pthread__self(); 473 value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL); 474 if (__predict_true(value == self)) { 475 pthread__smt_wake(); 476 return 0; 477 } 478 return pthread__mutex_unlock_slow(ptm); 479 } 480 481 NOINLINE static int 482 pthread__mutex_unlock_slow(pthread_mutex_t *ptm) 483 { 484 pthread_t self, owner, new; 485 int weown, error, deferred; 486 487 pthread__error(EINVAL, "Invalid mutex", 488 ptm->ptm_magic == _PT_MUTEX_MAGIC); 489 490 self = pthread__self(); 491 owner = ptm->ptm_owner; 492 weown = (MUTEX_OWNER(owner) == (uintptr_t)self); 493 deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT); 494 error = 0; 495 496 if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) { 497 if (!weown) { 498 error = EPERM; 499 new = owner; 500 } else { 501 new = NULL; 502 } 503 } else if (MUTEX_RECURSIVE(owner)) { 504 if (!weown) { 505 error = EPERM; 506 new = owner; 507 } else if (ptm->ptm_recursed) { 508 ptm->ptm_recursed--; 509 new = owner; 510 } else { 511 new = (pthread_t)MUTEX_RECURSIVE_BIT; 512 } 513 } else { 514 pthread__error(EPERM, 515 "Unlocking unlocked mutex", (owner != NULL)); 516 pthread__error(EPERM, 517 "Unlocking mutex owned by another thread", weown); 518 new = NULL; 519 } 520 521 /* 522 * Release the mutex. If there appear to be waiters, then 523 * wake them up. 524 */ 525 if (new != owner) { 526 owner = atomic_swap_ptr(&ptm->ptm_owner, new); 527 if (__predict_false(MUTEX_PROTECT(owner))) { 528 /* restore elevated priority */ 529 (void)_sched_protect(-1); 530 } 531 if (MUTEX_HAS_WAITERS(owner) != 0) { 532 pthread__mutex_wakeup(self, ptm); 533 return 0; 534 } 535 } 536 537 /* 538 * There were no waiters, but we may have deferred waking 539 * other threads until mutex unlock - we must wake them now. 540 */ 541 if (!deferred) 542 return error; 543 544 if (self->pt_nwaiters == 1) { 545 /* 546 * If the calling thread is about to block, defer 547 * unparking the target until _lwp_park() is called. 548 */ 549 if (self->pt_willpark && self->pt_unpark == 0) { 550 self->pt_unpark = self->pt_waiters[0]; 551 } else { 552 (void)_lwp_unpark(self->pt_waiters[0], 553 __UNVOLATILE(&ptm->ptm_waiters)); 554 } 555 } else { 556 (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters, 557 __UNVOLATILE(&ptm->ptm_waiters)); 558 } 559 self->pt_nwaiters = 0; 560 561 return error; 562 } 563 564 /* 565 * pthread__mutex_wakeup: unpark threads waiting for us 566 * 567 * unpark threads on the ptm->ptm_waiters list and self->pt_waiters. 568 */ 569 570 static void 571 pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm) 572 { 573 pthread_t thread, next; 574 ssize_t n, rv; 575 576 /* 577 * Take ownership of the current set of waiters. No 578 * need for a memory barrier following this, all loads 579 * are dependent upon 'thread'. 580 */ 581 thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL); 582 pthread__smt_wake(); 583 584 for (;;) { 585 /* 586 * Pull waiters from the queue and add to our list. 587 * Use a memory barrier to ensure that we safely 588 * read the value of pt_mutexnext before 'thread' 589 * sees pt_mutexwait being cleared. 590 */ 591 for (n = self->pt_nwaiters, self->pt_nwaiters = 0; 592 n < pthread__unpark_max && thread != NULL; 593 thread = next) { 594 next = thread->pt_mutexnext; 595 if (thread != self) { 596 self->pt_waiters[n++] = thread->pt_lid; 597 membar_sync(); 598 } 599 thread->pt_mutexwait = 0; 600 /* No longer safe to touch 'thread' */ 601 } 602 603 switch (n) { 604 case 0: 605 return; 606 case 1: 607 /* 608 * If the calling thread is about to block, 609 * defer unparking the target until _lwp_park() 610 * is called. 611 */ 612 if (self->pt_willpark && self->pt_unpark == 0) { 613 self->pt_unpark = self->pt_waiters[0]; 614 return; 615 } 616 rv = (ssize_t)_lwp_unpark(self->pt_waiters[0], 617 __UNVOLATILE(&ptm->ptm_waiters)); 618 if (rv != 0 && errno != EALREADY && errno != EINTR && 619 errno != ESRCH) { 620 pthread__errorfunc(__FILE__, __LINE__, 621 __func__, "_lwp_unpark failed"); 622 } 623 return; 624 default: 625 rv = _lwp_unpark_all(self->pt_waiters, (size_t)n, 626 __UNVOLATILE(&ptm->ptm_waiters)); 627 if (rv != 0 && errno != EINTR) { 628 pthread__errorfunc(__FILE__, __LINE__, 629 __func__, "_lwp_unpark_all failed"); 630 } 631 break; 632 } 633 } 634 } 635 636 int 637 pthread_mutexattr_init(pthread_mutexattr_t *attr) 638 { 639 if (__predict_false(__uselibcstub)) 640 return __libc_mutexattr_init_stub(attr); 641 642 attr->ptma_magic = _PT_MUTEXATTR_MAGIC; 643 attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT; 644 return 0; 645 } 646 647 int 648 pthread_mutexattr_destroy(pthread_mutexattr_t *attr) 649 { 650 if (__predict_false(__uselibcstub)) 651 return __libc_mutexattr_destroy_stub(attr); 652 653 pthread__error(EINVAL, "Invalid mutex attribute", 654 attr->ptma_magic == _PT_MUTEXATTR_MAGIC); 655 656 return 0; 657 } 658 659 int 660 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep) 661 { 662 663 pthread__error(EINVAL, "Invalid mutex attribute", 664 attr->ptma_magic == _PT_MUTEXATTR_MAGIC); 665 666 *typep = MUTEX_GET_TYPE(attr->ptma_private); 667 return 0; 668 } 669 670 int 671 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type) 672 { 673 674 if (__predict_false(__uselibcstub)) 675 return __libc_mutexattr_settype_stub(attr, type); 676 677 pthread__error(EINVAL, "Invalid mutex attribute", 678 attr->ptma_magic == _PT_MUTEXATTR_MAGIC); 679 680 switch (type) { 681 case PTHREAD_MUTEX_NORMAL: 682 case PTHREAD_MUTEX_ERRORCHECK: 683 case PTHREAD_MUTEX_RECURSIVE: 684 MUTEX_SET_TYPE(attr->ptma_private, type); 685 return 0; 686 default: 687 return EINVAL; 688 } 689 } 690 691 int 692 pthread_mutexattr_getprotocol(const pthread_mutexattr_t *attr, int*proto) 693 { 694 695 pthread__error(EINVAL, "Invalid mutex attribute", 696 attr->ptma_magic == _PT_MUTEXATTR_MAGIC); 697 698 *proto = MUTEX_GET_PROTOCOL(attr->ptma_private); 699 return 0; 700 } 701 702 int 703 pthread_mutexattr_setprotocol(pthread_mutexattr_t* attr, int proto) 704 { 705 706 pthread__error(EINVAL, "Invalid mutex attribute", 707 attr->ptma_magic == _PT_MUTEXATTR_MAGIC); 708 709 switch (proto) { 710 case PTHREAD_PRIO_NONE: 711 case PTHREAD_PRIO_PROTECT: 712 MUTEX_SET_PROTOCOL(attr->ptma_private, proto); 713 return 0; 714 case PTHREAD_PRIO_INHERIT: 715 return ENOTSUP; 716 default: 717 return EINVAL; 718 } 719 } 720 721 int 722 pthread_mutexattr_getprioceiling(const pthread_mutexattr_t *attr, int *ceil) 723 { 724 725 pthread__error(EINVAL, "Invalid mutex attribute", 726 attr->ptma_magic == _PT_MUTEXATTR_MAGIC); 727 728 *ceil = MUTEX_GET_CEILING(attr->ptma_private); 729 return 0; 730 } 731 732 int 733 pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr, int ceil) 734 { 735 736 pthread__error(EINVAL, "Invalid mutex attribute", 737 attr->ptma_magic == _PT_MUTEXATTR_MAGIC); 738 739 if (ceil & ~0xff) 740 return EINVAL; 741 742 MUTEX_SET_CEILING(attr->ptma_private, ceil); 743 return 0; 744 } 745 746 #ifdef _PTHREAD_PSHARED 747 int 748 pthread_mutexattr_getpshared(const pthread_mutexattr_t * __restrict attr, 749 int * __restrict pshared) 750 { 751 752 *pshared = PTHREAD_PROCESS_PRIVATE; 753 return 0; 754 } 755 756 int 757 pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared) 758 { 759 760 switch(pshared) { 761 case PTHREAD_PROCESS_PRIVATE: 762 return 0; 763 case PTHREAD_PROCESS_SHARED: 764 return ENOSYS; 765 } 766 return EINVAL; 767 } 768 #endif 769 770 /* 771 * pthread__mutex_deferwake: try to defer unparking threads in self->pt_waiters 772 * 773 * In order to avoid unnecessary contention on the interlocking mutex, 774 * we defer waking up threads until we unlock the mutex. The threads will 775 * be woken up when the calling thread (self) releases the first mutex with 776 * MUTEX_DEFERRED_BIT set. It likely be the mutex 'ptm', but no problem 777 * even if it isn't. 778 */ 779 780 void 781 pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm) 782 { 783 784 if (__predict_false(ptm == NULL || 785 MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) { 786 (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters, 787 __UNVOLATILE(&ptm->ptm_waiters)); 788 self->pt_nwaiters = 0; 789 } else { 790 atomic_or_ulong((volatile unsigned long *) 791 (uintptr_t)&ptm->ptm_owner, 792 (unsigned long)MUTEX_DEFERRED_BIT); 793 } 794 } 795 796 int 797 pthread_mutex_getprioceiling(const pthread_mutex_t *ptm, int *ceil) 798 { 799 *ceil = ptm->ptm_ceiling; 800 return 0; 801 } 802 803 int 804 pthread_mutex_setprioceiling(pthread_mutex_t *ptm, int ceil, int *old_ceil) 805 { 806 int error; 807 808 error = pthread_mutex_lock(ptm); 809 if (error == 0) { 810 *old_ceil = ptm->ptm_ceiling; 811 /*check range*/ 812 ptm->ptm_ceiling = ceil; 813 pthread_mutex_unlock(ptm); 814 } 815 return error; 816 } 817 818 int 819 _pthread_mutex_held_np(pthread_mutex_t *ptm) 820 { 821 822 return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self(); 823 } 824 825 pthread_t 826 _pthread_mutex_owner_np(pthread_mutex_t *ptm) 827 { 828 829 return (pthread_t)MUTEX_OWNER(ptm->ptm_owner); 830 } 831