xref: /netbsd-src/lib/libpthread/pthread_mutex.c (revision d48f14661dda8638fee055ba15d35bdfb29b9fa8)
1 /*	$NetBSD: pthread_mutex.c,v 1.21 2005/10/19 02:15:03 chs Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Nathan J. Williams, and by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 #include <sys/cdefs.h>
40 __RCSID("$NetBSD: pthread_mutex.c,v 1.21 2005/10/19 02:15:03 chs Exp $");
41 
42 #include <errno.h>
43 #include <limits.h>
44 #include <stdlib.h>
45 #include <string.h>
46 
47 #include "pthread.h"
48 #include "pthread_int.h"
49 
50 static int pthread_mutex_lock_slow(pthread_mutex_t *);
51 
52 __strong_alias(__libc_mutex_init,pthread_mutex_init)
53 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
54 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
55 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
56 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
57 
58 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
59 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
60 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
61 
62 __strong_alias(__libc_thr_once,pthread_once)
63 
64 struct mutex_private {
65 	int	type;
66 	int	recursecount;
67 };
68 
69 static const struct mutex_private mutex_private_default = {
70 	PTHREAD_MUTEX_DEFAULT,
71 	0,
72 };
73 
74 struct mutexattr_private {
75 	int	type;
76 };
77 
78 static const struct mutexattr_private mutexattr_private_default = {
79 	PTHREAD_MUTEX_DEFAULT,
80 };
81 
82 /*
83  * If the mutex does not already have private data (i.e. was statically
84  * initialized), then give it the default.
85  */
86 #define	GET_MUTEX_PRIVATE(mutex, mp)					\
87 do {									\
88 	if (__predict_false((mp = (mutex)->ptm_private) == NULL)) {	\
89 		/* LINTED cast away const */				\
90 		mp = ((mutex)->ptm_private =				\
91 		    (void *)&mutex_private_default);			\
92 	}								\
93 } while (/*CONSTCOND*/0)
94 
95 int
96 pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
97 {
98 	struct mutexattr_private *map;
99 	struct mutex_private *mp;
100 
101 	pthread__error(EINVAL, "Invalid mutex attribute",
102 	    (attr == NULL) || (attr->ptma_magic == _PT_MUTEXATTR_MAGIC));
103 
104 	if (attr != NULL && (map = attr->ptma_private) != NULL &&
105 	    memcmp(map, &mutexattr_private_default, sizeof(*map)) != 0) {
106 		mp = malloc(sizeof(*mp));
107 		if (mp == NULL)
108 			return ENOMEM;
109 
110 		mp->type = map->type;
111 		mp->recursecount = 0;
112 	} else {
113 		/* LINTED cast away const */
114 		mp = (struct mutex_private *) &mutex_private_default;
115 	}
116 
117 	mutex->ptm_magic = _PT_MUTEX_MAGIC;
118 	mutex->ptm_owner = NULL;
119 	pthread_lockinit(&mutex->ptm_lock);
120 	pthread_lockinit(&mutex->ptm_interlock);
121 	PTQ_INIT(&mutex->ptm_blocked);
122 	mutex->ptm_private = mp;
123 
124 	return 0;
125 }
126 
127 
128 int
129 pthread_mutex_destroy(pthread_mutex_t *mutex)
130 {
131 
132 	pthread__error(EINVAL, "Invalid mutex",
133 	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
134 	pthread__error(EBUSY, "Destroying locked mutex",
135 	    mutex->ptm_lock == __SIMPLELOCK_UNLOCKED);
136 
137 	mutex->ptm_magic = _PT_MUTEX_DEAD;
138 	if (mutex->ptm_private != NULL &&
139 	    mutex->ptm_private != (const void *)&mutex_private_default)
140 		free(mutex->ptm_private);
141 
142 	return 0;
143 }
144 
145 
146 /*
147  * Note regarding memory visibility: Pthreads has rules about memory
148  * visibility and mutexes. Very roughly: Memory a thread can see when
149  * it unlocks a mutex can be seen by another thread that locks the
150  * same mutex.
151  *
152  * A memory barrier after a lock and before an unlock will provide
153  * this behavior. This code relies on pthread__simple_lock_try() to issue
154  * a barrier after obtaining a lock, and on pthread__simple_unlock() to
155  * issue a barrier before releasing a lock.
156  */
157 
158 int
159 pthread_mutex_lock(pthread_mutex_t *mutex)
160 {
161 	int error;
162 
163 	PTHREADD_ADD(PTHREADD_MUTEX_LOCK);
164 	/*
165 	 * Note that if we get the lock, we don't have to deal with any
166 	 * non-default lock type handling.
167 	 */
168 	if (__predict_false(pthread__simple_lock_try(&mutex->ptm_lock) == 0)) {
169 		error = pthread_mutex_lock_slow(mutex);
170 		if (error)
171 			return error;
172 	}
173 
174 	/* We have the lock! */
175 	/*
176 	 * Identifying ourselves may be slow, and this assignment is
177 	 * only needed for (a) debugging identity of the owning thread
178 	 * and (b) handling errorcheck and recursive mutexes. It's
179 	 * better to just stash our stack pointer here and let those
180 	 * slow exception cases compute the stack->thread mapping.
181 	 */
182 	mutex->ptm_owner = (pthread_t)pthread__sp();
183 
184 	return 0;
185 }
186 
187 
188 static int
189 pthread_mutex_lock_slow(pthread_mutex_t *mutex)
190 {
191 	pthread_t self;
192 	extern int pthread__started;
193 
194 	pthread__error(EINVAL, "Invalid mutex",
195 	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
196 
197 	self = pthread__self();
198 
199 	PTHREADD_ADD(PTHREADD_MUTEX_LOCK_SLOW);
200 	while (/*CONSTCOND*/1) {
201 		if (pthread__simple_lock_try(&mutex->ptm_lock))
202 			break; /* got it! */
203 
204 		/* Okay, didn't look free. Get the interlock... */
205 		pthread_spinlock(self, &mutex->ptm_interlock);
206 
207 		/*
208 		 * The mutex_unlock routine will get the interlock
209 		 * before looking at the list of sleepers, so if the
210 		 * lock is held we can safely put ourselves on the
211 		 * sleep queue. If it's not held, we can try taking it
212 		 * again.
213 		 */
214 		PTQ_INSERT_HEAD(&mutex->ptm_blocked, self, pt_sleep);
215 		if (mutex->ptm_lock == __SIMPLELOCK_LOCKED) {
216 			struct mutex_private *mp;
217 
218 			GET_MUTEX_PRIVATE(mutex, mp);
219 
220 			if (pthread__id(mutex->ptm_owner) == self) {
221 				switch (mp->type) {
222 				case PTHREAD_MUTEX_ERRORCHECK:
223 					PTQ_REMOVE(&mutex->ptm_blocked, self,
224 					    pt_sleep);
225 					pthread_spinunlock(self,
226 					    &mutex->ptm_interlock);
227 					return EDEADLK;
228 
229 				case PTHREAD_MUTEX_RECURSIVE:
230 					/*
231 					 * It's safe to do this without
232 					 * holding the interlock, because
233 					 * we only modify it if we know we
234 					 * own the mutex.
235 					 */
236 					PTQ_REMOVE(&mutex->ptm_blocked, self,
237 					    pt_sleep);
238 					pthread_spinunlock(self,
239 					    &mutex->ptm_interlock);
240 					if (mp->recursecount == INT_MAX)
241 						return EAGAIN;
242 					mp->recursecount++;
243 					return 0;
244 				}
245 			}
246 
247 			if (pthread__started == 0) {
248 				sigset_t ss;
249 
250 				/*
251 				 * The spec says we must deadlock, so...
252 				 */
253 				pthread__assert(mp->type ==
254 						PTHREAD_MUTEX_NORMAL);
255 				(void) sigprocmask(SIG_SETMASK, NULL, &ss);
256 				for (;;) {
257 					sigsuspend(&ss);
258 				}
259 				/*NOTREACHED*/
260 			}
261 
262 			/*
263 			 * Locking a mutex is not a cancellation
264 			 * point, so we don't need to do the
265 			 * test-cancellation dance. We may get woken
266 			 * up spuriously by pthread_cancel or signals,
267 			 * but it's okay since we're just going to
268 			 * retry.
269 			 */
270 			pthread_spinlock(self, &self->pt_statelock);
271 			self->pt_state = PT_STATE_BLOCKED_QUEUE;
272 			self->pt_sleepobj = mutex;
273 			self->pt_sleepq = &mutex->ptm_blocked;
274 			self->pt_sleeplock = &mutex->ptm_interlock;
275 			pthread_spinunlock(self, &self->pt_statelock);
276 
277 			pthread__block(self, &mutex->ptm_interlock);
278 			/* interlock is not held when we return */
279 		} else {
280 			PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
281 			pthread_spinunlock(self, &mutex->ptm_interlock);
282 		}
283 		/* Go around for another try. */
284 	}
285 
286 	return 0;
287 }
288 
289 
290 int
291 pthread_mutex_trylock(pthread_mutex_t *mutex)
292 {
293 
294 	pthread__error(EINVAL, "Invalid mutex",
295 	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
296 
297 	PTHREADD_ADD(PTHREADD_MUTEX_TRYLOCK);
298 	if (pthread__simple_lock_try(&mutex->ptm_lock) == 0) {
299 		struct mutex_private *mp;
300 
301 		GET_MUTEX_PRIVATE(mutex, mp);
302 
303 		/*
304 		 * These tests can be performed without holding the
305 		 * interlock because these fields are only modified
306 		 * if we know we own the mutex.
307 		 */
308 		if ((mp->type == PTHREAD_MUTEX_RECURSIVE) &&
309 		    (pthread__id(mutex->ptm_owner) == pthread__self())) {
310 			if (mp->recursecount == INT_MAX)
311 				return EAGAIN;
312 			mp->recursecount++;
313 			return 0;
314 		}
315 
316 		return EBUSY;
317 	}
318 
319 	/* see comment at the end of pthread_mutex_lock() */
320 	mutex->ptm_owner = (pthread_t)pthread__sp();
321 
322 	return 0;
323 }
324 
325 
326 int
327 pthread_mutex_unlock(pthread_mutex_t *mutex)
328 {
329 	struct mutex_private *mp;
330 	pthread_t self, blocked;
331 	int weown;
332 
333 	pthread__error(EINVAL, "Invalid mutex",
334 	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
335 
336 	PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK);
337 
338 	GET_MUTEX_PRIVATE(mutex, mp);
339 
340 	/*
341 	 * These tests can be performed without holding the
342 	 * interlock because these fields are only modified
343 	 * if we know we own the mutex.
344 	 */
345 	weown = (pthread__id(mutex->ptm_owner) == pthread__self());
346 	switch (mp->type) {
347 	case PTHREAD_MUTEX_RECURSIVE:
348 		if (!weown)
349 			return EPERM;
350 		if (mp->recursecount != 0) {
351 			mp->recursecount--;
352 			return 0;
353 		}
354 		break;
355 	case PTHREAD_MUTEX_ERRORCHECK:
356 		if (!weown)
357 			return EPERM;
358 		/*FALLTHROUGH*/
359 	default:
360 		if (__predict_false(!weown)) {
361 			pthread__error(EPERM, "Unlocking unlocked mutex",
362 			    (mutex->ptm_owner != 0));
363 			pthread__error(EPERM,
364 			    "Unlocking mutex owned by another thread", weown);
365 		}
366 		break;
367 	}
368 
369 	mutex->ptm_owner = NULL;
370 	pthread__simple_unlock(&mutex->ptm_lock);
371 	/*
372 	 * Do a double-checked locking dance to see if there are any
373 	 * waiters.  If we don't see any waiters, we can exit, because
374 	 * we've already released the lock. If we do see waiters, they
375 	 * were probably waiting on us... there's a slight chance that
376 	 * they are waiting on a different thread's ownership of the
377 	 * lock that happened between the unlock above and this
378 	 * examination of the queue; if so, no harm is done, as the
379 	 * waiter will loop and see that the mutex is still locked.
380 	 */
381 	if (!PTQ_EMPTY(&mutex->ptm_blocked)) {
382 		self = pthread__self();
383 		pthread_spinlock(self, &mutex->ptm_interlock);
384 		blocked = PTQ_FIRST(&mutex->ptm_blocked);
385 		if (blocked) {
386 			PTQ_REMOVE(&mutex->ptm_blocked, blocked, pt_sleep);
387 			PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK_UNBLOCK);
388 			/* Give the head of the blocked queue another try. */
389 			pthread__sched(self, blocked);
390 		}
391 		pthread_spinunlock(self, &mutex->ptm_interlock);
392 	}
393 	return 0;
394 }
395 
396 int
397 pthread_mutexattr_init(pthread_mutexattr_t *attr)
398 {
399 	struct mutexattr_private *map;
400 
401 	map = malloc(sizeof(*map));
402 	if (map == NULL)
403 		return ENOMEM;
404 
405 	*map = mutexattr_private_default;
406 
407 	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
408 	attr->ptma_private = map;
409 
410 	return 0;
411 }
412 
413 
414 int
415 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
416 {
417 
418 	pthread__error(EINVAL, "Invalid mutex attribute",
419 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
420 
421 	attr->ptma_magic = _PT_MUTEXATTR_DEAD;
422 	if (attr->ptma_private != NULL)
423 		free(attr->ptma_private);
424 
425 	return 0;
426 }
427 
428 
429 int
430 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
431 {
432 	struct mutexattr_private *map;
433 
434 	pthread__error(EINVAL, "Invalid mutex attribute",
435 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
436 
437 	map = attr->ptma_private;
438 
439 	*typep = map->type;
440 
441 	return 0;
442 }
443 
444 
445 int
446 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
447 {
448 	struct mutexattr_private *map;
449 
450 	pthread__error(EINVAL, "Invalid mutex attribute",
451 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
452 
453 	map = attr->ptma_private;
454 
455 	switch (type) {
456 	case PTHREAD_MUTEX_NORMAL:
457 	case PTHREAD_MUTEX_ERRORCHECK:
458 	case PTHREAD_MUTEX_RECURSIVE:
459 		map->type = type;
460 		break;
461 
462 	default:
463 		return EINVAL;
464 	}
465 
466 	return 0;
467 }
468 
469 
470 static void
471 once_cleanup(void *closure)
472 {
473 
474        pthread_mutex_unlock((pthread_mutex_t *)closure);
475 }
476 
477 
478 int
479 pthread_once(pthread_once_t *once_control, void (*routine)(void))
480 {
481 
482 	if (once_control->pto_done == 0) {
483 		pthread_mutex_lock(&once_control->pto_mutex);
484 		pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
485 		if (once_control->pto_done == 0) {
486 			routine();
487 			once_control->pto_done = 1;
488 		}
489 		pthread_cleanup_pop(1);
490 	}
491 
492 	return 0;
493 }
494