xref: /netbsd-src/lib/libpthread/pthread_mutex.c (revision c9496f6b604074a9451a67df576a5b423068e71e)
1 /*	$NetBSD: pthread_mutex.c,v 1.64 2017/12/08 09:24:31 kre Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * To track threads waiting for mutexes to be released, we use lockless
34  * lists built on atomic operations and memory barriers.
35  *
36  * A simple spinlock would be faster and make the code easier to
37  * follow, but spinlocks are problematic in userspace.  If a thread is
38  * preempted by the kernel while holding a spinlock, any other thread
39  * attempting to acquire that spinlock will needlessly busy wait.
40  *
41  * There is no good way to know that the holding thread is no longer
42  * running, nor to request a wake-up once it has begun running again.
43  * Of more concern, threads in the SCHED_FIFO class do not have a
44  * limited time quantum and so could spin forever, preventing the
45  * thread holding the spinlock from getting CPU time: it would never
46  * be released.
47  */
48 
49 #include <sys/cdefs.h>
50 __RCSID("$NetBSD: pthread_mutex.c,v 1.64 2017/12/08 09:24:31 kre Exp $");
51 
52 #include <sys/types.h>
53 #include <sys/lwpctl.h>
54 #include <sys/sched.h>
55 #include <sys/lock.h>
56 
57 #include <errno.h>
58 #include <limits.h>
59 #include <stdlib.h>
60 #include <time.h>
61 #include <string.h>
62 #include <stdio.h>
63 
64 #include "pthread.h"
65 #include "pthread_int.h"
66 #include "reentrant.h"
67 
68 #define	MUTEX_WAITERS_BIT		((uintptr_t)0x01)
69 #define	MUTEX_RECURSIVE_BIT		((uintptr_t)0x02)
70 #define	MUTEX_DEFERRED_BIT		((uintptr_t)0x04)
71 #define	MUTEX_PROTECT_BIT		((uintptr_t)0x08)
72 #define	MUTEX_THREAD			((uintptr_t)~0x0f)
73 
74 #define	MUTEX_HAS_WAITERS(x)		((uintptr_t)(x) & MUTEX_WAITERS_BIT)
75 #define	MUTEX_RECURSIVE(x)		((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
76 #define	MUTEX_PROTECT(x)		((uintptr_t)(x) & MUTEX_PROTECT_BIT)
77 #define	MUTEX_OWNER(x)			((uintptr_t)(x) & MUTEX_THREAD)
78 
79 #define	MUTEX_GET_TYPE(x)		\
80     ((int)(((uintptr_t)(x) & 0x000000ff) >> 0))
81 #define	MUTEX_SET_TYPE(x, t) 		\
82     (x) = (void *)(((uintptr_t)(x) & ~0x000000ff) | ((t) << 0))
83 #define	MUTEX_GET_PROTOCOL(x)		\
84     ((int)(((uintptr_t)(x) & 0x0000ff00) >> 8))
85 #define	MUTEX_SET_PROTOCOL(x, p)	\
86     (x) = (void *)(((uintptr_t)(x) & ~0x0000ff00) | ((p) << 8))
87 #define	MUTEX_GET_CEILING(x)		\
88     ((int)(((uintptr_t)(x) & 0x00ff0000) >> 16))
89 #define	MUTEX_SET_CEILING(x, c)	\
90     (x) = (void *)(((uintptr_t)(x) & ~0x00ff0000) | ((c) << 16))
91 
92 #if __GNUC_PREREQ__(3, 0)
93 #define	NOINLINE		__attribute ((noinline))
94 #else
95 #define	NOINLINE		/* nothing */
96 #endif
97 
98 static void	pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
99 static int	pthread__mutex_lock_slow(pthread_mutex_t *,
100     const struct timespec *);
101 static int	pthread__mutex_unlock_slow(pthread_mutex_t *);
102 static void	pthread__mutex_pause(void);
103 
104 int		_pthread_mutex_held_np(pthread_mutex_t *);
105 pthread_t	_pthread_mutex_owner_np(pthread_mutex_t *);
106 
107 __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
108 __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
109 
110 __strong_alias(__libc_mutex_init,pthread_mutex_init)
111 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
112 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
113 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
114 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
115 
116 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
117 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
118 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
119 
120 int
121 pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
122 {
123 	uintptr_t type, proto, val, ceil;
124 
125 	if (__predict_false(__uselibcstub))
126 		return __libc_mutex_init_stub(ptm, attr);
127 
128 	if (attr == NULL) {
129 		type = PTHREAD_MUTEX_NORMAL;
130 		proto = PTHREAD_PRIO_NONE;
131 		ceil = 0;
132 	} else {
133 		val = (uintptr_t)attr->ptma_private;
134 
135 		type = MUTEX_GET_TYPE(val);
136 		proto = MUTEX_GET_PROTOCOL(val);
137 		ceil = MUTEX_GET_CEILING(val);
138 	}
139 	switch (type) {
140 	case PTHREAD_MUTEX_ERRORCHECK:
141 		__cpu_simple_lock_set(&ptm->ptm_errorcheck);
142 		ptm->ptm_owner = NULL;
143 		break;
144 	case PTHREAD_MUTEX_RECURSIVE:
145 		__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
146 		ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
147 		break;
148 	default:
149 		__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
150 		ptm->ptm_owner = NULL;
151 		break;
152 	}
153 	switch (proto) {
154 	case PTHREAD_PRIO_PROTECT:
155 		val = (uintptr_t)ptm->ptm_owner;
156 		val |= MUTEX_PROTECT_BIT;
157 		ptm->ptm_owner = (void *)val;
158 		break;
159 
160 	}
161 	ptm->ptm_magic = _PT_MUTEX_MAGIC;
162 	ptm->ptm_waiters = NULL;
163 	ptm->ptm_recursed = 0;
164 	ptm->ptm_ceiling = (unsigned char)ceil;
165 
166 	return 0;
167 }
168 
169 int
170 pthread_mutex_destroy(pthread_mutex_t *ptm)
171 {
172 
173 	if (__predict_false(__uselibcstub))
174 		return __libc_mutex_destroy_stub(ptm);
175 
176 	pthread__error(EINVAL, "Invalid mutex",
177 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
178 	pthread__error(EBUSY, "Destroying locked mutex",
179 	    MUTEX_OWNER(ptm->ptm_owner) == 0);
180 
181 	ptm->ptm_magic = _PT_MUTEX_DEAD;
182 	return 0;
183 }
184 
185 int
186 pthread_mutex_lock(pthread_mutex_t *ptm)
187 {
188 	pthread_t self;
189 	void *val;
190 
191 	if (__predict_false(__uselibcstub))
192 		return __libc_mutex_lock_stub(ptm);
193 
194 	self = pthread__self();
195 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
196 	if (__predict_true(val == NULL)) {
197 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
198 		membar_enter();
199 #endif
200 		return 0;
201 	}
202 	return pthread__mutex_lock_slow(ptm, NULL);
203 }
204 
205 int
206 pthread_mutex_timedlock(pthread_mutex_t* ptm, const struct timespec *ts)
207 {
208 	pthread_t self;
209 	void *val;
210 
211 	self = pthread__self();
212 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
213 	if (__predict_true(val == NULL)) {
214 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
215 		membar_enter();
216 #endif
217 		return 0;
218 	}
219 	return pthread__mutex_lock_slow(ptm, ts);
220 }
221 
222 /* We want function call overhead. */
223 NOINLINE static void
224 pthread__mutex_pause(void)
225 {
226 
227 	pthread__smt_pause();
228 }
229 
230 /*
231  * Spin while the holder is running.  'lwpctl' gives us the true
232  * status of the thread.  pt_blocking is set by libpthread in order
233  * to cut out system call and kernel spinlock overhead on remote CPUs
234  * (could represent many thousands of clock cycles).  pt_blocking also
235  * makes this thread yield if the target is calling sched_yield().
236  */
237 NOINLINE static void *
238 pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
239 {
240 	pthread_t thread;
241 	unsigned int count, i;
242 
243 	for (count = 2;; owner = ptm->ptm_owner) {
244 		thread = (pthread_t)MUTEX_OWNER(owner);
245 		if (thread == NULL)
246 			break;
247 		if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
248 		    thread->pt_blocking)
249 			break;
250 		if (count < 128)
251 			count += count;
252 		for (i = count; i != 0; i--)
253 			pthread__mutex_pause();
254 	}
255 
256 	return owner;
257 }
258 
259 NOINLINE static void
260 pthread__mutex_setwaiters(pthread_t self, pthread_mutex_t *ptm)
261 {
262 	void *new, *owner;
263 
264 	/*
265 	 * Note that the mutex can become unlocked before we set
266 	 * the waiters bit.  If that happens it's not safe to sleep
267 	 * as we may never be awoken: we must remove the current
268 	 * thread from the waiters list and try again.
269 	 *
270 	 * Because we are doing this atomically, we can't remove
271 	 * one waiter: we must remove all waiters and awken them,
272 	 * then sleep in _lwp_park() until we have been awoken.
273 	 *
274 	 * Issue a memory barrier to ensure that we are reading
275 	 * the value of ptm_owner/pt_mutexwait after we have entered
276 	 * the waiters list (the CAS itself must be atomic).
277 	 */
278 again:
279 	membar_consumer();
280 	owner = ptm->ptm_owner;
281 
282 	if (MUTEX_OWNER(owner) == 0) {
283 		pthread__mutex_wakeup(self, ptm);
284 		return;
285 	}
286 	if (!MUTEX_HAS_WAITERS(owner)) {
287 		new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
288 		if (atomic_cas_ptr(&ptm->ptm_owner, owner, new) != owner) {
289 			goto again;
290 		}
291 	}
292 
293 	/*
294 	 * Note that pthread_mutex_unlock() can do a non-interlocked CAS.
295 	 * We cannot know if the presence of the waiters bit is stable
296 	 * while the holding thread is running.  There are many assumptions;
297 	 * see sys/kern/kern_mutex.c for details.  In short, we must spin if
298 	 * we see that the holder is running again.
299 	 */
300 	membar_sync();
301 	if (MUTEX_OWNER(owner) != (uintptr_t)self)
302 		pthread__mutex_spin(ptm, owner);
303 
304 	if (membar_consumer(), !MUTEX_HAS_WAITERS(ptm->ptm_owner)) {
305 		goto again;
306 	}
307 }
308 
309 NOINLINE static int
310 pthread__mutex_lock_slow(pthread_mutex_t *ptm, const struct timespec *ts)
311 {
312 	void *waiters, *new, *owner, *next;
313 	pthread_t self;
314 	int serrno;
315 	int error;
316 
317 	pthread__error(EINVAL, "Invalid mutex",
318 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
319 
320 	owner = ptm->ptm_owner;
321 	self = pthread__self();
322 
323 	/* Recursive or errorcheck? */
324 	if (MUTEX_OWNER(owner) == (uintptr_t)self) {
325 		if (MUTEX_RECURSIVE(owner)) {
326 			if (ptm->ptm_recursed == INT_MAX)
327 				return EAGAIN;
328 			ptm->ptm_recursed++;
329 			return 0;
330 		}
331 		if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
332 			return EDEADLK;
333 	}
334 
335 	/* priority protect */
336 	if (MUTEX_PROTECT(owner) && _sched_protect(ptm->ptm_ceiling) == -1) {
337 		return errno;
338 	}
339 	serrno = errno;
340 	for (;; owner = ptm->ptm_owner) {
341 		/* Spin while the owner is running. */
342 		if (MUTEX_OWNER(owner) != (uintptr_t)self)
343 			owner = pthread__mutex_spin(ptm, owner);
344 
345 		/* If it has become free, try to acquire it again. */
346 		if (MUTEX_OWNER(owner) == 0) {
347 			do {
348 				new = (void *)
349 				    ((uintptr_t)self | (uintptr_t)owner);
350 				next = atomic_cas_ptr(&ptm->ptm_owner, owner,
351 				    new);
352 				if (next == owner) {
353 					errno = serrno;
354 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
355 					membar_enter();
356 #endif
357 					return 0;
358 				}
359 				owner = next;
360 			} while (MUTEX_OWNER(owner) == 0);
361 			/*
362 			 * We have lost the race to acquire the mutex.
363 			 * The new owner could be running on another
364 			 * CPU, in which case we should spin and avoid
365 			 * the overhead of blocking.
366 			 */
367 			continue;
368 		}
369 
370 		/*
371 		 * Nope, still held.  Add thread to the list of waiters.
372 		 * Issue a memory barrier to ensure mutexwait/mutexnext
373 		 * are visible before we enter the waiters list.
374 		 */
375 		self->pt_mutexwait = 1;
376 		for (waiters = ptm->ptm_waiters;; waiters = next) {
377 			self->pt_mutexnext = waiters;
378 			membar_producer();
379 			next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
380 			if (next == waiters)
381 			    	break;
382 		}
383 
384 		/* Set the waiters bit and block. */
385 		pthread__mutex_setwaiters(self, ptm);
386 
387 		/*
388 		 * We may have been awoken by the current thread above,
389 		 * or will be awoken by the current holder of the mutex.
390 		 * The key requirement is that we must not proceed until
391 		 * told that we are no longer waiting (via pt_mutexwait
392 		 * being set to zero).  Otherwise it is unsafe to re-enter
393 		 * the thread onto the waiters list.
394 		 */
395 		while (self->pt_mutexwait) {
396 			self->pt_blocking++;
397 			error = _lwp_park(CLOCK_REALTIME, TIMER_ABSTIME,
398 			    __UNCONST(ts), self->pt_unpark,
399 			    __UNVOLATILE(&ptm->ptm_waiters),
400 			    __UNVOLATILE(&ptm->ptm_waiters));
401 			self->pt_unpark = 0;
402 			self->pt_blocking--;
403 			membar_sync();
404 			if (__predict_true(error != -1)) {
405 				continue;
406 			}
407 			if (errno == ETIMEDOUT && self->pt_mutexwait) {
408 				/*Remove self from waiters list*/
409 				pthread__mutex_wakeup(self, ptm);
410 				/*priority protect*/
411 				if (MUTEX_PROTECT(owner))
412 					(void)_sched_protect(-1);
413 				return ETIMEDOUT;
414 			}
415 		}
416 	}
417 }
418 
419 int
420 pthread_mutex_trylock(pthread_mutex_t *ptm)
421 {
422 	pthread_t self;
423 	void *val, *new, *next;
424 
425 	if (__predict_false(__uselibcstub))
426 		return __libc_mutex_trylock_stub(ptm);
427 
428 	self = pthread__self();
429 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
430 	if (__predict_true(val == NULL)) {
431 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
432 		membar_enter();
433 #endif
434 		return 0;
435 	}
436 
437 	if (MUTEX_RECURSIVE(val)) {
438 		if (MUTEX_OWNER(val) == 0) {
439 			new = (void *)((uintptr_t)self | (uintptr_t)val);
440 			next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
441 			if (__predict_true(next == val)) {
442 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
443 				membar_enter();
444 #endif
445 				return 0;
446 			}
447 		}
448 		if (MUTEX_OWNER(val) == (uintptr_t)self) {
449 			if (ptm->ptm_recursed == INT_MAX)
450 				return EAGAIN;
451 			ptm->ptm_recursed++;
452 			return 0;
453 		}
454 	}
455 
456 	return EBUSY;
457 }
458 
459 int
460 pthread_mutex_unlock(pthread_mutex_t *ptm)
461 {
462 	pthread_t self;
463 	void *value;
464 
465 	if (__predict_false(__uselibcstub))
466 		return __libc_mutex_unlock_stub(ptm);
467 
468 	/*
469 	 * Note this may be a non-interlocked CAS.  See lock_slow()
470 	 * above and sys/kern/kern_mutex.c for details.
471 	 */
472 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
473 	membar_exit();
474 #endif
475 	self = pthread__self();
476 	value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
477 	if (__predict_true(value == self)) {
478 		pthread__smt_wake();
479 		return 0;
480 	}
481 	return pthread__mutex_unlock_slow(ptm);
482 }
483 
484 NOINLINE static int
485 pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
486 {
487 	pthread_t self, owner, new;
488 	int weown, error, deferred;
489 
490 	pthread__error(EINVAL, "Invalid mutex",
491 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
492 
493 	self = pthread__self();
494 	owner = ptm->ptm_owner;
495 	weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
496 	deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
497 	error = 0;
498 
499 	if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
500 		if (!weown) {
501 			error = EPERM;
502 			new = owner;
503 		} else {
504 			new = NULL;
505 		}
506 	} else if (MUTEX_RECURSIVE(owner)) {
507 		if (!weown) {
508 			error = EPERM;
509 			new = owner;
510 		} else if (ptm->ptm_recursed) {
511 			ptm->ptm_recursed--;
512 			new = owner;
513 		} else {
514 			new = (pthread_t)MUTEX_RECURSIVE_BIT;
515 		}
516 	} else {
517 		pthread__error(EPERM,
518 		    "Unlocking unlocked mutex", (owner != NULL));
519 		pthread__error(EPERM,
520 		    "Unlocking mutex owned by another thread", weown);
521 		new = NULL;
522 	}
523 
524 	/*
525 	 * Release the mutex.  If there appear to be waiters, then
526 	 * wake them up.
527 	 */
528 	if (new != owner) {
529 		owner = atomic_swap_ptr(&ptm->ptm_owner, new);
530 		if (__predict_false(MUTEX_PROTECT(owner))) {
531 			/* restore elevated priority */
532 			(void)_sched_protect(-1);
533 		}
534 		if (MUTEX_HAS_WAITERS(owner) != 0) {
535 			pthread__mutex_wakeup(self, ptm);
536 			return 0;
537 		}
538 	}
539 
540 	/*
541 	 * There were no waiters, but we may have deferred waking
542 	 * other threads until mutex unlock - we must wake them now.
543 	 */
544 	if (!deferred)
545 		return error;
546 
547 	if (self->pt_nwaiters == 1) {
548 		/*
549 		 * If the calling thread is about to block, defer
550 		 * unparking the target until _lwp_park() is called.
551 		 */
552 		if (self->pt_willpark && self->pt_unpark == 0) {
553 			self->pt_unpark = self->pt_waiters[0];
554 		} else {
555 			(void)_lwp_unpark(self->pt_waiters[0],
556 			    __UNVOLATILE(&ptm->ptm_waiters));
557 		}
558 	} else {
559 		(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
560 		    __UNVOLATILE(&ptm->ptm_waiters));
561 	}
562 	self->pt_nwaiters = 0;
563 
564 	return error;
565 }
566 
567 /*
568  * pthread__mutex_wakeup: unpark threads waiting for us
569  *
570  * unpark threads on the ptm->ptm_waiters list and self->pt_waiters.
571  */
572 
573 static void
574 pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
575 {
576 	pthread_t thread, next;
577 	ssize_t n, rv;
578 
579 	/*
580 	 * Take ownership of the current set of waiters.  No
581 	 * need for a memory barrier following this, all loads
582 	 * are dependent upon 'thread'.
583 	 */
584 	thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
585 	pthread__smt_wake();
586 
587 	for (;;) {
588 		/*
589 		 * Pull waiters from the queue and add to our list.
590 		 * Use a memory barrier to ensure that we safely
591 		 * read the value of pt_mutexnext before 'thread'
592 		 * sees pt_mutexwait being cleared.
593 		 */
594 		for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
595 		    n < pthread__unpark_max && thread != NULL;
596 		    thread = next) {
597 		    	next = thread->pt_mutexnext;
598 		    	if (thread != self) {
599 				self->pt_waiters[n++] = thread->pt_lid;
600 				membar_sync();
601 			}
602 			thread->pt_mutexwait = 0;
603 			/* No longer safe to touch 'thread' */
604 		}
605 
606 		switch (n) {
607 		case 0:
608 			return;
609 		case 1:
610 			/*
611 			 * If the calling thread is about to block,
612 			 * defer unparking the target until _lwp_park()
613 			 * is called.
614 			 */
615 			if (self->pt_willpark && self->pt_unpark == 0) {
616 				self->pt_unpark = self->pt_waiters[0];
617 				return;
618 			}
619 			rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
620 			    __UNVOLATILE(&ptm->ptm_waiters));
621 			if (rv != 0 && errno != EALREADY && errno != EINTR &&
622 			    errno != ESRCH) {
623 				pthread__errorfunc(__FILE__, __LINE__,
624 				    __func__, "_lwp_unpark failed");
625 			}
626 			return;
627 		default:
628 			rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
629 			    __UNVOLATILE(&ptm->ptm_waiters));
630 			if (rv != 0 && errno != EINTR) {
631 				pthread__errorfunc(__FILE__, __LINE__,
632 				    __func__, "_lwp_unpark_all failed");
633 			}
634 			break;
635 		}
636 	}
637 }
638 
639 int
640 pthread_mutexattr_init(pthread_mutexattr_t *attr)
641 {
642 	if (__predict_false(__uselibcstub))
643 		return __libc_mutexattr_init_stub(attr);
644 
645 	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
646 	attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
647 	return 0;
648 }
649 
650 int
651 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
652 {
653 	if (__predict_false(__uselibcstub))
654 		return __libc_mutexattr_destroy_stub(attr);
655 
656 	pthread__error(EINVAL, "Invalid mutex attribute",
657 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
658 
659 	return 0;
660 }
661 
662 int
663 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
664 {
665 
666 	pthread__error(EINVAL, "Invalid mutex attribute",
667 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
668 
669 	*typep = MUTEX_GET_TYPE(attr->ptma_private);
670 	return 0;
671 }
672 
673 int
674 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
675 {
676 
677 	if (__predict_false(__uselibcstub))
678 		return __libc_mutexattr_settype_stub(attr, type);
679 
680 	pthread__error(EINVAL, "Invalid mutex attribute",
681 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
682 
683 	switch (type) {
684 	case PTHREAD_MUTEX_NORMAL:
685 	case PTHREAD_MUTEX_ERRORCHECK:
686 	case PTHREAD_MUTEX_RECURSIVE:
687 		MUTEX_SET_TYPE(attr->ptma_private, type);
688 		return 0;
689 	default:
690 		return EINVAL;
691 	}
692 }
693 
694 int
695 pthread_mutexattr_getprotocol(const pthread_mutexattr_t *attr, int*proto)
696 {
697 
698 	pthread__error(EINVAL, "Invalid mutex attribute",
699 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
700 
701 	*proto = MUTEX_GET_PROTOCOL(attr->ptma_private);
702 	return 0;
703 }
704 
705 int
706 pthread_mutexattr_setprotocol(pthread_mutexattr_t* attr, int proto)
707 {
708 
709 	pthread__error(EINVAL, "Invalid mutex attribute",
710 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
711 
712 	switch (proto) {
713 	case PTHREAD_PRIO_NONE:
714 	case PTHREAD_PRIO_PROTECT:
715 		MUTEX_SET_PROTOCOL(attr->ptma_private, proto);
716 		return 0;
717 	case PTHREAD_PRIO_INHERIT:
718 		return ENOTSUP;
719 	default:
720 		return EINVAL;
721 	}
722 }
723 
724 int
725 pthread_mutexattr_getprioceiling(const pthread_mutexattr_t *attr, int *ceil)
726 {
727 
728 	pthread__error(EINVAL, "Invalid mutex attribute",
729 		attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
730 
731 	*ceil = MUTEX_GET_CEILING(attr->ptma_private);
732 	return 0;
733 }
734 
735 int
736 pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr, int ceil)
737 {
738 
739 	pthread__error(EINVAL, "Invalid mutex attribute",
740 		attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
741 
742 	if (ceil & ~0xff)
743 		return EINVAL;
744 
745 	MUTEX_SET_CEILING(attr->ptma_private, ceil);
746 	return 0;
747 }
748 
749 #ifdef _PTHREAD_PSHARED
750 int
751 pthread_mutexattr_getpshared(const pthread_mutexattr_t * __restrict attr,
752     int * __restrict pshared)
753 {
754 
755 	*pshared = PTHREAD_PROCESS_PRIVATE;
756 	return 0;
757 }
758 
759 int
760 pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared)
761 {
762 
763 	switch(pshared) {
764 	case PTHREAD_PROCESS_PRIVATE:
765 		return 0;
766 	case PTHREAD_PROCESS_SHARED:
767 		return ENOSYS;
768 	}
769 	return EINVAL;
770 }
771 #endif
772 
773 /*
774  * pthread__mutex_deferwake: try to defer unparking threads in self->pt_waiters
775  *
776  * In order to avoid unnecessary contention on the interlocking mutex,
777  * we defer waking up threads until we unlock the mutex.  The threads will
778  * be woken up when the calling thread (self) releases the first mutex with
779  * MUTEX_DEFERRED_BIT set.  It likely be the mutex 'ptm', but no problem
780  * even if it isn't.
781  */
782 
783 void
784 pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
785 {
786 
787 	if (__predict_false(ptm == NULL ||
788 	    MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
789 	    	(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
790 	    	    __UNVOLATILE(&ptm->ptm_waiters));
791 	    	self->pt_nwaiters = 0;
792 	} else {
793 		atomic_or_ulong((volatile unsigned long *)
794 		    (uintptr_t)&ptm->ptm_owner,
795 		    (unsigned long)MUTEX_DEFERRED_BIT);
796 	}
797 }
798 
799 int
800 pthread_mutex_getprioceiling(const pthread_mutex_t *ptm, int *ceil)
801 {
802 	*ceil = ptm->ptm_ceiling;
803 	return 0;
804 }
805 
806 int
807 pthread_mutex_setprioceiling(pthread_mutex_t *ptm, int ceil, int *old_ceil)
808 {
809 	int error;
810 
811 	error = pthread_mutex_lock(ptm);
812 	if (error == 0) {
813 		*old_ceil = ptm->ptm_ceiling;
814 		/*check range*/
815 		ptm->ptm_ceiling = ceil;
816 		pthread_mutex_unlock(ptm);
817 	}
818 	return error;
819 }
820 
821 int
822 _pthread_mutex_held_np(pthread_mutex_t *ptm)
823 {
824 
825 	return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
826 }
827 
828 pthread_t
829 _pthread_mutex_owner_np(pthread_mutex_t *ptm)
830 {
831 
832 	return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
833 }
834