xref: /netbsd-src/lib/libpthread/pthread_mutex.c (revision 7fa608457b817eca6e0977b37f758ae064f3c99c)
1 /*	$NetBSD: pthread_mutex.c,v 1.36 2007/09/13 23:51:47 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2003, 2006, 2007 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 #include <sys/cdefs.h>
40 __RCSID("$NetBSD: pthread_mutex.c,v 1.36 2007/09/13 23:51:47 ad Exp $");
41 
42 #include <errno.h>
43 #include <limits.h>
44 #include <stdlib.h>
45 #include <string.h>
46 
47 #include <sys/types.h>
48 #include <sys/lock.h>
49 
50 #include "pthread.h"
51 #include "pthread_int.h"
52 
53 #ifndef	PTHREAD__HAVE_ATOMIC
54 
55 static int pthread_mutex_lock_slow(pthread_t, pthread_mutex_t *);
56 
57 __strong_alias(__libc_mutex_init,pthread_mutex_init)
58 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
59 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
60 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
61 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
62 
63 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
64 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
65 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
66 
67 __strong_alias(__libc_thr_once,pthread_once)
68 
69 struct mutex_private {
70 	int	type;
71 	int	recursecount;
72 };
73 
74 static const struct mutex_private mutex_private_default = {
75 	PTHREAD_MUTEX_DEFAULT,
76 	0,
77 };
78 
79 struct mutexattr_private {
80 	int	type;
81 };
82 
83 static const struct mutexattr_private mutexattr_private_default = {
84 	PTHREAD_MUTEX_DEFAULT,
85 };
86 
87 int
88 pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
89 {
90 	struct mutexattr_private *map;
91 	struct mutex_private *mp;
92 
93 	pthread__error(EINVAL, "Invalid mutex attribute",
94 	    (attr == NULL) || (attr->ptma_magic == _PT_MUTEXATTR_MAGIC));
95 
96 	if (attr != NULL && (map = attr->ptma_private) != NULL &&
97 	    memcmp(map, &mutexattr_private_default, sizeof(*map)) != 0) {
98 		mp = malloc(sizeof(*mp));
99 		if (mp == NULL)
100 			return ENOMEM;
101 
102 		mp->type = map->type;
103 		mp->recursecount = 0;
104 	} else {
105 		/* LINTED cast away const */
106 		mp = (struct mutex_private *) &mutex_private_default;
107 	}
108 
109 	mutex->ptm_magic = _PT_MUTEX_MAGIC;
110 	mutex->ptm_owner = NULL;
111 	pthread_lockinit(&mutex->ptm_lock);
112 	pthread_lockinit(&mutex->ptm_interlock);
113 	PTQ_INIT(&mutex->ptm_blocked);
114 	mutex->ptm_private = mp;
115 
116 	return 0;
117 }
118 
119 
120 int
121 pthread_mutex_destroy(pthread_mutex_t *mutex)
122 {
123 
124 	pthread__error(EINVAL, "Invalid mutex",
125 	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
126 	pthread__error(EBUSY, "Destroying locked mutex",
127 	    __SIMPLELOCK_UNLOCKED_P(&mutex->ptm_lock));
128 
129 	mutex->ptm_magic = _PT_MUTEX_DEAD;
130 	if (mutex->ptm_private != NULL &&
131 	    mutex->ptm_private != (const void *)&mutex_private_default)
132 		free(mutex->ptm_private);
133 
134 	return 0;
135 }
136 
137 
138 /*
139  * Note regarding memory visibility: Pthreads has rules about memory
140  * visibility and mutexes. Very roughly: Memory a thread can see when
141  * it unlocks a mutex can be seen by another thread that locks the
142  * same mutex.
143  *
144  * A memory barrier after a lock and before an unlock will provide
145  * this behavior. This code relies on pthread__simple_lock_try() to issue
146  * a barrier after obtaining a lock, and on pthread__simple_unlock() to
147  * issue a barrier before releasing a lock.
148  */
149 
150 int
151 pthread_mutex_lock(pthread_mutex_t *mutex)
152 {
153 	pthread_t self;
154 	int error;
155 
156 	self = pthread__self();
157 
158 	PTHREADD_ADD(PTHREADD_MUTEX_LOCK);
159 
160 	/*
161 	 * Note that if we get the lock, we don't have to deal with any
162 	 * non-default lock type handling.
163 	 */
164 	if (__predict_false(pthread__simple_lock_try(&mutex->ptm_lock) == 0)) {
165 		error = pthread_mutex_lock_slow(self, mutex);
166 		if (error)
167 			return error;
168 	}
169 
170 	/*
171 	 * We have the lock!
172 	 */
173 	mutex->ptm_owner = self;
174 
175 	return 0;
176 }
177 
178 
179 static int
180 pthread_mutex_lock_slow(pthread_t self, pthread_mutex_t *mutex)
181 {
182 	extern int pthread__started;
183 	struct mutex_private *mp;
184 	sigset_t ss;
185 	int count;
186 
187 	pthread__error(EINVAL, "Invalid mutex",
188 	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
189 
190 	PTHREADD_ADD(PTHREADD_MUTEX_LOCK_SLOW);
191 	for (;;) {
192 		/* Spin for a while. */
193 		count = pthread__nspins;
194 		while (__SIMPLELOCK_LOCKED_P(&mutex->ptm_lock)  && --count > 0)
195 			pthread__smt_pause();
196 		if (count > 0) {
197 			if (pthread__simple_lock_try(&mutex->ptm_lock) != 0)
198 				break;
199 			continue;
200 		}
201 
202 		/* Okay, didn't look free. Get the interlock... */
203 		pthread_spinlock(&mutex->ptm_interlock);
204 
205 		/*
206 		 * The mutex_unlock routine will get the interlock
207 		 * before looking at the list of sleepers, so if the
208 		 * lock is held we can safely put ourselves on the
209 		 * sleep queue. If it's not held, we can try taking it
210 		 * again.
211 		 */
212 		PTQ_INSERT_HEAD(&mutex->ptm_blocked, self, pt_sleep);
213 		if (__SIMPLELOCK_UNLOCKED_P(&mutex->ptm_lock)) {
214 			PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
215 			pthread_spinunlock(&mutex->ptm_interlock);
216 			continue;
217 		}
218 
219 		mp = mutex->ptm_private;
220 		if (mutex->ptm_owner == self && mp != NULL) {
221 			switch (mp->type) {
222 			case PTHREAD_MUTEX_ERRORCHECK:
223 				PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
224 				pthread_spinunlock(&mutex->ptm_interlock);
225 				return EDEADLK;
226 
227 			case PTHREAD_MUTEX_RECURSIVE:
228 				/*
229 				 * It's safe to do this without
230 				 * holding the interlock, because
231 				 * we only modify it if we know we
232 				 * own the mutex.
233 				 */
234 				PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
235 				pthread_spinunlock(&mutex->ptm_interlock);
236 				if (mp->recursecount == INT_MAX)
237 					return EAGAIN;
238 				mp->recursecount++;
239 				return 0;
240 			}
241 		}
242 
243 		if (pthread__started == 0) {
244 			/* The spec says we must deadlock, so... */
245 			pthread__assert(mp->type == PTHREAD_MUTEX_NORMAL);
246 			(void) sigprocmask(SIG_SETMASK, NULL, &ss);
247 			for (;;) {
248 				sigsuspend(&ss);
249 			}
250 			/*NOTREACHED*/
251 		}
252 
253 		/*
254 		 * Locking a mutex is not a cancellation
255 		 * point, so we don't need to do the
256 		 * test-cancellation dance. We may get woken
257 		 * up spuriously by pthread_cancel or signals,
258 		 * but it's okay since we're just going to
259 		 * retry.
260 		 */
261 		self->pt_sleeponq = 1;
262 		self->pt_sleepobj = &mutex->ptm_blocked;
263 		pthread_spinunlock(&mutex->ptm_interlock);
264 		(void)pthread__park(self, &mutex->ptm_interlock,
265 		    &mutex->ptm_blocked, NULL, 0, &mutex->ptm_blocked);
266 	}
267 
268 	return 0;
269 }
270 
271 
272 int
273 pthread_mutex_trylock(pthread_mutex_t *mutex)
274 {
275 	struct mutex_private *mp;
276 	pthread_t self;
277 
278 	pthread__error(EINVAL, "Invalid mutex",
279 	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
280 
281 	self = pthread__self();
282 
283 	PTHREADD_ADD(PTHREADD_MUTEX_TRYLOCK);
284 	if (pthread__simple_lock_try(&mutex->ptm_lock) == 0) {
285 		/*
286 		 * These tests can be performed without holding the
287 		 * interlock because these fields are only modified
288 		 * if we know we own the mutex.
289 		 */
290 		mp = mutex->ptm_private;
291 		if (mp != NULL && mp->type == PTHREAD_MUTEX_RECURSIVE &&
292 		    mutex->ptm_owner == self) {
293 			if (mp->recursecount == INT_MAX)
294 				return EAGAIN;
295 			mp->recursecount++;
296 			return 0;
297 		}
298 
299 		return EBUSY;
300 	}
301 
302 	mutex->ptm_owner = self;
303 
304 	return 0;
305 }
306 
307 
308 int
309 pthread_mutex_unlock(pthread_mutex_t *mutex)
310 {
311 	struct mutex_private *mp;
312 	pthread_t self;
313 	int weown;
314 
315 	pthread__error(EINVAL, "Invalid mutex",
316 	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
317 
318 	PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK);
319 
320 	/*
321 	 * These tests can be performed without holding the
322 	 * interlock because these fields are only modified
323 	 * if we know we own the mutex.
324 	 */
325 	self = pthread_self();
326 	weown = (mutex->ptm_owner == self);
327 	mp = mutex->ptm_private;
328 
329 	if (mp == NULL) {
330 		if (__predict_false(!weown)) {
331 			pthread__error(EPERM, "Unlocking unlocked mutex",
332 			    (mutex->ptm_owner != 0));
333 			pthread__error(EPERM,
334 			    "Unlocking mutex owned by another thread", weown);
335 		}
336 	} else if (mp->type == PTHREAD_MUTEX_RECURSIVE) {
337 		if (!weown)
338 			return EPERM;
339 		if (mp->recursecount != 0) {
340 			mp->recursecount--;
341 			return 0;
342 		}
343 	} else if (mp->type == PTHREAD_MUTEX_ERRORCHECK) {
344 		if (!weown)
345 			return EPERM;
346 		if (__predict_false(!weown)) {
347 			pthread__error(EPERM, "Unlocking unlocked mutex",
348 			    (mutex->ptm_owner != 0));
349 			pthread__error(EPERM,
350 			    "Unlocking mutex owned by another thread", weown);
351 		}
352 	}
353 
354 	mutex->ptm_owner = NULL;
355 	pthread__simple_unlock(&mutex->ptm_lock);
356 
357 	/*
358 	 * Do a double-checked locking dance to see if there are any
359 	 * waiters.  If we don't see any waiters, we can exit, because
360 	 * we've already released the lock. If we do see waiters, they
361 	 * were probably waiting on us... there's a slight chance that
362 	 * they are waiting on a different thread's ownership of the
363 	 * lock that happened between the unlock above and this
364 	 * examination of the queue; if so, no harm is done, as the
365 	 * waiter will loop and see that the mutex is still locked.
366 	 */
367 	pthread_spinlock(&mutex->ptm_interlock);
368 	pthread__unpark_all(self, &mutex->ptm_interlock, &mutex->ptm_blocked);
369 	return 0;
370 }
371 
372 int
373 pthread_mutexattr_init(pthread_mutexattr_t *attr)
374 {
375 	struct mutexattr_private *map;
376 
377 	map = malloc(sizeof(*map));
378 	if (map == NULL)
379 		return ENOMEM;
380 
381 	*map = mutexattr_private_default;
382 
383 	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
384 	attr->ptma_private = map;
385 
386 	return 0;
387 }
388 
389 
390 int
391 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
392 {
393 
394 	pthread__error(EINVAL, "Invalid mutex attribute",
395 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
396 
397 	attr->ptma_magic = _PT_MUTEXATTR_DEAD;
398 	if (attr->ptma_private != NULL)
399 		free(attr->ptma_private);
400 
401 	return 0;
402 }
403 
404 
405 int
406 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
407 {
408 	struct mutexattr_private *map;
409 
410 	pthread__error(EINVAL, "Invalid mutex attribute",
411 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
412 
413 	map = attr->ptma_private;
414 
415 	*typep = map->type;
416 
417 	return 0;
418 }
419 
420 
421 int
422 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
423 {
424 	struct mutexattr_private *map;
425 
426 	pthread__error(EINVAL, "Invalid mutex attribute",
427 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
428 
429 	map = attr->ptma_private;
430 
431 	switch (type) {
432 	case PTHREAD_MUTEX_NORMAL:
433 	case PTHREAD_MUTEX_ERRORCHECK:
434 	case PTHREAD_MUTEX_RECURSIVE:
435 		map->type = type;
436 		break;
437 
438 	default:
439 		return EINVAL;
440 	}
441 
442 	return 0;
443 }
444 
445 
446 static void
447 once_cleanup(void *closure)
448 {
449 
450        pthread_mutex_unlock((pthread_mutex_t *)closure);
451 }
452 
453 
454 int
455 pthread_once(pthread_once_t *once_control, void (*routine)(void))
456 {
457 
458 	if (once_control->pto_done == 0) {
459 		pthread_mutex_lock(&once_control->pto_mutex);
460 		pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
461 		if (once_control->pto_done == 0) {
462 			routine();
463 			once_control->pto_done = 1;
464 		}
465 		pthread_cleanup_pop(1);
466 	}
467 
468 	return 0;
469 }
470 
471 int
472 pthread__mutex_deferwake(pthread_t thread, pthread_mutex_t *mutex)
473 {
474 
475 	return mutex->ptm_owner == thread;
476 }
477 
478 #endif	/* !PTHREAD__HAVE_ATOMIC */
479