1 /* $NetBSD: pthread_mutex.c,v 1.36 2007/09/13 23:51:47 ad Exp $ */ 2 3 /*- 4 * Copyright (c) 2001, 2003, 2006, 2007 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 #include <sys/cdefs.h> 40 __RCSID("$NetBSD: pthread_mutex.c,v 1.36 2007/09/13 23:51:47 ad Exp $"); 41 42 #include <errno.h> 43 #include <limits.h> 44 #include <stdlib.h> 45 #include <string.h> 46 47 #include <sys/types.h> 48 #include <sys/lock.h> 49 50 #include "pthread.h" 51 #include "pthread_int.h" 52 53 #ifndef PTHREAD__HAVE_ATOMIC 54 55 static int pthread_mutex_lock_slow(pthread_t, pthread_mutex_t *); 56 57 __strong_alias(__libc_mutex_init,pthread_mutex_init) 58 __strong_alias(__libc_mutex_lock,pthread_mutex_lock) 59 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock) 60 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock) 61 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy) 62 63 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init) 64 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy) 65 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype) 66 67 __strong_alias(__libc_thr_once,pthread_once) 68 69 struct mutex_private { 70 int type; 71 int recursecount; 72 }; 73 74 static const struct mutex_private mutex_private_default = { 75 PTHREAD_MUTEX_DEFAULT, 76 0, 77 }; 78 79 struct mutexattr_private { 80 int type; 81 }; 82 83 static const struct mutexattr_private mutexattr_private_default = { 84 PTHREAD_MUTEX_DEFAULT, 85 }; 86 87 int 88 pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr) 89 { 90 struct mutexattr_private *map; 91 struct mutex_private *mp; 92 93 pthread__error(EINVAL, "Invalid mutex attribute", 94 (attr == NULL) || (attr->ptma_magic == _PT_MUTEXATTR_MAGIC)); 95 96 if (attr != NULL && (map = attr->ptma_private) != NULL && 97 memcmp(map, &mutexattr_private_default, sizeof(*map)) != 0) { 98 mp = malloc(sizeof(*mp)); 99 if (mp == NULL) 100 return ENOMEM; 101 102 mp->type = map->type; 103 mp->recursecount = 0; 104 } else { 105 /* LINTED cast away const */ 106 mp = (struct mutex_private *) &mutex_private_default; 107 } 108 109 mutex->ptm_magic = _PT_MUTEX_MAGIC; 110 mutex->ptm_owner = NULL; 111 pthread_lockinit(&mutex->ptm_lock); 112 pthread_lockinit(&mutex->ptm_interlock); 113 PTQ_INIT(&mutex->ptm_blocked); 114 mutex->ptm_private = mp; 115 116 return 0; 117 } 118 119 120 int 121 pthread_mutex_destroy(pthread_mutex_t *mutex) 122 { 123 124 pthread__error(EINVAL, "Invalid mutex", 125 mutex->ptm_magic == _PT_MUTEX_MAGIC); 126 pthread__error(EBUSY, "Destroying locked mutex", 127 __SIMPLELOCK_UNLOCKED_P(&mutex->ptm_lock)); 128 129 mutex->ptm_magic = _PT_MUTEX_DEAD; 130 if (mutex->ptm_private != NULL && 131 mutex->ptm_private != (const void *)&mutex_private_default) 132 free(mutex->ptm_private); 133 134 return 0; 135 } 136 137 138 /* 139 * Note regarding memory visibility: Pthreads has rules about memory 140 * visibility and mutexes. Very roughly: Memory a thread can see when 141 * it unlocks a mutex can be seen by another thread that locks the 142 * same mutex. 143 * 144 * A memory barrier after a lock and before an unlock will provide 145 * this behavior. This code relies on pthread__simple_lock_try() to issue 146 * a barrier after obtaining a lock, and on pthread__simple_unlock() to 147 * issue a barrier before releasing a lock. 148 */ 149 150 int 151 pthread_mutex_lock(pthread_mutex_t *mutex) 152 { 153 pthread_t self; 154 int error; 155 156 self = pthread__self(); 157 158 PTHREADD_ADD(PTHREADD_MUTEX_LOCK); 159 160 /* 161 * Note that if we get the lock, we don't have to deal with any 162 * non-default lock type handling. 163 */ 164 if (__predict_false(pthread__simple_lock_try(&mutex->ptm_lock) == 0)) { 165 error = pthread_mutex_lock_slow(self, mutex); 166 if (error) 167 return error; 168 } 169 170 /* 171 * We have the lock! 172 */ 173 mutex->ptm_owner = self; 174 175 return 0; 176 } 177 178 179 static int 180 pthread_mutex_lock_slow(pthread_t self, pthread_mutex_t *mutex) 181 { 182 extern int pthread__started; 183 struct mutex_private *mp; 184 sigset_t ss; 185 int count; 186 187 pthread__error(EINVAL, "Invalid mutex", 188 mutex->ptm_magic == _PT_MUTEX_MAGIC); 189 190 PTHREADD_ADD(PTHREADD_MUTEX_LOCK_SLOW); 191 for (;;) { 192 /* Spin for a while. */ 193 count = pthread__nspins; 194 while (__SIMPLELOCK_LOCKED_P(&mutex->ptm_lock) && --count > 0) 195 pthread__smt_pause(); 196 if (count > 0) { 197 if (pthread__simple_lock_try(&mutex->ptm_lock) != 0) 198 break; 199 continue; 200 } 201 202 /* Okay, didn't look free. Get the interlock... */ 203 pthread_spinlock(&mutex->ptm_interlock); 204 205 /* 206 * The mutex_unlock routine will get the interlock 207 * before looking at the list of sleepers, so if the 208 * lock is held we can safely put ourselves on the 209 * sleep queue. If it's not held, we can try taking it 210 * again. 211 */ 212 PTQ_INSERT_HEAD(&mutex->ptm_blocked, self, pt_sleep); 213 if (__SIMPLELOCK_UNLOCKED_P(&mutex->ptm_lock)) { 214 PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep); 215 pthread_spinunlock(&mutex->ptm_interlock); 216 continue; 217 } 218 219 mp = mutex->ptm_private; 220 if (mutex->ptm_owner == self && mp != NULL) { 221 switch (mp->type) { 222 case PTHREAD_MUTEX_ERRORCHECK: 223 PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep); 224 pthread_spinunlock(&mutex->ptm_interlock); 225 return EDEADLK; 226 227 case PTHREAD_MUTEX_RECURSIVE: 228 /* 229 * It's safe to do this without 230 * holding the interlock, because 231 * we only modify it if we know we 232 * own the mutex. 233 */ 234 PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep); 235 pthread_spinunlock(&mutex->ptm_interlock); 236 if (mp->recursecount == INT_MAX) 237 return EAGAIN; 238 mp->recursecount++; 239 return 0; 240 } 241 } 242 243 if (pthread__started == 0) { 244 /* The spec says we must deadlock, so... */ 245 pthread__assert(mp->type == PTHREAD_MUTEX_NORMAL); 246 (void) sigprocmask(SIG_SETMASK, NULL, &ss); 247 for (;;) { 248 sigsuspend(&ss); 249 } 250 /*NOTREACHED*/ 251 } 252 253 /* 254 * Locking a mutex is not a cancellation 255 * point, so we don't need to do the 256 * test-cancellation dance. We may get woken 257 * up spuriously by pthread_cancel or signals, 258 * but it's okay since we're just going to 259 * retry. 260 */ 261 self->pt_sleeponq = 1; 262 self->pt_sleepobj = &mutex->ptm_blocked; 263 pthread_spinunlock(&mutex->ptm_interlock); 264 (void)pthread__park(self, &mutex->ptm_interlock, 265 &mutex->ptm_blocked, NULL, 0, &mutex->ptm_blocked); 266 } 267 268 return 0; 269 } 270 271 272 int 273 pthread_mutex_trylock(pthread_mutex_t *mutex) 274 { 275 struct mutex_private *mp; 276 pthread_t self; 277 278 pthread__error(EINVAL, "Invalid mutex", 279 mutex->ptm_magic == _PT_MUTEX_MAGIC); 280 281 self = pthread__self(); 282 283 PTHREADD_ADD(PTHREADD_MUTEX_TRYLOCK); 284 if (pthread__simple_lock_try(&mutex->ptm_lock) == 0) { 285 /* 286 * These tests can be performed without holding the 287 * interlock because these fields are only modified 288 * if we know we own the mutex. 289 */ 290 mp = mutex->ptm_private; 291 if (mp != NULL && mp->type == PTHREAD_MUTEX_RECURSIVE && 292 mutex->ptm_owner == self) { 293 if (mp->recursecount == INT_MAX) 294 return EAGAIN; 295 mp->recursecount++; 296 return 0; 297 } 298 299 return EBUSY; 300 } 301 302 mutex->ptm_owner = self; 303 304 return 0; 305 } 306 307 308 int 309 pthread_mutex_unlock(pthread_mutex_t *mutex) 310 { 311 struct mutex_private *mp; 312 pthread_t self; 313 int weown; 314 315 pthread__error(EINVAL, "Invalid mutex", 316 mutex->ptm_magic == _PT_MUTEX_MAGIC); 317 318 PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK); 319 320 /* 321 * These tests can be performed without holding the 322 * interlock because these fields are only modified 323 * if we know we own the mutex. 324 */ 325 self = pthread_self(); 326 weown = (mutex->ptm_owner == self); 327 mp = mutex->ptm_private; 328 329 if (mp == NULL) { 330 if (__predict_false(!weown)) { 331 pthread__error(EPERM, "Unlocking unlocked mutex", 332 (mutex->ptm_owner != 0)); 333 pthread__error(EPERM, 334 "Unlocking mutex owned by another thread", weown); 335 } 336 } else if (mp->type == PTHREAD_MUTEX_RECURSIVE) { 337 if (!weown) 338 return EPERM; 339 if (mp->recursecount != 0) { 340 mp->recursecount--; 341 return 0; 342 } 343 } else if (mp->type == PTHREAD_MUTEX_ERRORCHECK) { 344 if (!weown) 345 return EPERM; 346 if (__predict_false(!weown)) { 347 pthread__error(EPERM, "Unlocking unlocked mutex", 348 (mutex->ptm_owner != 0)); 349 pthread__error(EPERM, 350 "Unlocking mutex owned by another thread", weown); 351 } 352 } 353 354 mutex->ptm_owner = NULL; 355 pthread__simple_unlock(&mutex->ptm_lock); 356 357 /* 358 * Do a double-checked locking dance to see if there are any 359 * waiters. If we don't see any waiters, we can exit, because 360 * we've already released the lock. If we do see waiters, they 361 * were probably waiting on us... there's a slight chance that 362 * they are waiting on a different thread's ownership of the 363 * lock that happened between the unlock above and this 364 * examination of the queue; if so, no harm is done, as the 365 * waiter will loop and see that the mutex is still locked. 366 */ 367 pthread_spinlock(&mutex->ptm_interlock); 368 pthread__unpark_all(self, &mutex->ptm_interlock, &mutex->ptm_blocked); 369 return 0; 370 } 371 372 int 373 pthread_mutexattr_init(pthread_mutexattr_t *attr) 374 { 375 struct mutexattr_private *map; 376 377 map = malloc(sizeof(*map)); 378 if (map == NULL) 379 return ENOMEM; 380 381 *map = mutexattr_private_default; 382 383 attr->ptma_magic = _PT_MUTEXATTR_MAGIC; 384 attr->ptma_private = map; 385 386 return 0; 387 } 388 389 390 int 391 pthread_mutexattr_destroy(pthread_mutexattr_t *attr) 392 { 393 394 pthread__error(EINVAL, "Invalid mutex attribute", 395 attr->ptma_magic == _PT_MUTEXATTR_MAGIC); 396 397 attr->ptma_magic = _PT_MUTEXATTR_DEAD; 398 if (attr->ptma_private != NULL) 399 free(attr->ptma_private); 400 401 return 0; 402 } 403 404 405 int 406 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep) 407 { 408 struct mutexattr_private *map; 409 410 pthread__error(EINVAL, "Invalid mutex attribute", 411 attr->ptma_magic == _PT_MUTEXATTR_MAGIC); 412 413 map = attr->ptma_private; 414 415 *typep = map->type; 416 417 return 0; 418 } 419 420 421 int 422 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type) 423 { 424 struct mutexattr_private *map; 425 426 pthread__error(EINVAL, "Invalid mutex attribute", 427 attr->ptma_magic == _PT_MUTEXATTR_MAGIC); 428 429 map = attr->ptma_private; 430 431 switch (type) { 432 case PTHREAD_MUTEX_NORMAL: 433 case PTHREAD_MUTEX_ERRORCHECK: 434 case PTHREAD_MUTEX_RECURSIVE: 435 map->type = type; 436 break; 437 438 default: 439 return EINVAL; 440 } 441 442 return 0; 443 } 444 445 446 static void 447 once_cleanup(void *closure) 448 { 449 450 pthread_mutex_unlock((pthread_mutex_t *)closure); 451 } 452 453 454 int 455 pthread_once(pthread_once_t *once_control, void (*routine)(void)) 456 { 457 458 if (once_control->pto_done == 0) { 459 pthread_mutex_lock(&once_control->pto_mutex); 460 pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex); 461 if (once_control->pto_done == 0) { 462 routine(); 463 once_control->pto_done = 1; 464 } 465 pthread_cleanup_pop(1); 466 } 467 468 return 0; 469 } 470 471 int 472 pthread__mutex_deferwake(pthread_t thread, pthread_mutex_t *mutex) 473 { 474 475 return mutex->ptm_owner == thread; 476 } 477 478 #endif /* !PTHREAD__HAVE_ATOMIC */ 479