xref: /netbsd-src/lib/libpthread/pthread_mutex.c (revision 4391d5e9d4f291db41e3b3ba26a01b5e51364aae)
1 /*	$NetBSD: pthread_mutex.c,v 1.56 2013/03/21 16:49:12 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * To track threads waiting for mutexes to be released, we use lockless
34  * lists built on atomic operations and memory barriers.
35  *
36  * A simple spinlock would be faster and make the code easier to
37  * follow, but spinlocks are problematic in userspace.  If a thread is
38  * preempted by the kernel while holding a spinlock, any other thread
39  * attempting to acquire that spinlock will needlessly busy wait.
40  *
41  * There is no good way to know that the holding thread is no longer
42  * running, nor to request a wake-up once it has begun running again.
43  * Of more concern, threads in the SCHED_FIFO class do not have a
44  * limited time quantum and so could spin forever, preventing the
45  * thread holding the spinlock from getting CPU time: it would never
46  * be released.
47  */
48 
49 #include <sys/cdefs.h>
50 __RCSID("$NetBSD: pthread_mutex.c,v 1.56 2013/03/21 16:49:12 christos Exp $");
51 
52 #include <sys/types.h>
53 #include <sys/lwpctl.h>
54 #include <sys/lock.h>
55 
56 #include <errno.h>
57 #include <limits.h>
58 #include <stdlib.h>
59 #include <time.h>
60 #include <string.h>
61 #include <stdio.h>
62 
63 #include "pthread.h"
64 #include "pthread_int.h"
65 #include "reentrant.h"
66 
67 #define	MUTEX_WAITERS_BIT		((uintptr_t)0x01)
68 #define	MUTEX_RECURSIVE_BIT		((uintptr_t)0x02)
69 #define	MUTEX_DEFERRED_BIT		((uintptr_t)0x04)
70 #define	MUTEX_THREAD			((uintptr_t)-16L)
71 
72 #define	MUTEX_HAS_WAITERS(x)		((uintptr_t)(x) & MUTEX_WAITERS_BIT)
73 #define	MUTEX_RECURSIVE(x)		((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
74 #define	MUTEX_OWNER(x)			((uintptr_t)(x) & MUTEX_THREAD)
75 
76 #if __GNUC_PREREQ__(3, 0)
77 #define	NOINLINE		__attribute ((noinline))
78 #else
79 #define	NOINLINE		/* nothing */
80 #endif
81 
82 static void	pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
83 static int	pthread__mutex_lock_slow(pthread_mutex_t *);
84 static int	pthread__mutex_unlock_slow(pthread_mutex_t *);
85 static void	pthread__mutex_pause(void);
86 
87 int		_pthread_mutex_held_np(pthread_mutex_t *);
88 pthread_t	_pthread_mutex_owner_np(pthread_mutex_t *);
89 
90 __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
91 __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
92 
93 __strong_alias(__libc_mutex_init,pthread_mutex_init)
94 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
95 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
96 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
97 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
98 
99 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
100 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
101 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
102 
103 int
104 pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
105 {
106 	intptr_t type;
107 
108 	if (__predict_false(__uselibcstub))
109 		return __libc_mutex_init_stub(ptm, attr);
110 
111 	if (attr == NULL)
112 		type = PTHREAD_MUTEX_NORMAL;
113 	else
114 		type = (intptr_t)attr->ptma_private;
115 
116 	switch (type) {
117 	case PTHREAD_MUTEX_ERRORCHECK:
118 		__cpu_simple_lock_set(&ptm->ptm_errorcheck);
119 		ptm->ptm_owner = NULL;
120 		break;
121 	case PTHREAD_MUTEX_RECURSIVE:
122 		__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
123 		ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
124 		break;
125 	default:
126 		__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
127 		ptm->ptm_owner = NULL;
128 		break;
129 	}
130 
131 	ptm->ptm_magic = _PT_MUTEX_MAGIC;
132 	ptm->ptm_waiters = NULL;
133 	ptm->ptm_recursed = 0;
134 
135 	return 0;
136 }
137 
138 int
139 pthread_mutex_destroy(pthread_mutex_t *ptm)
140 {
141 
142 	if (__predict_false(__uselibcstub))
143 		return __libc_mutex_destroy_stub(ptm);
144 
145 	pthread__error(EINVAL, "Invalid mutex",
146 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
147 	pthread__error(EBUSY, "Destroying locked mutex",
148 	    MUTEX_OWNER(ptm->ptm_owner) == 0);
149 
150 	ptm->ptm_magic = _PT_MUTEX_DEAD;
151 	return 0;
152 }
153 
154 int
155 pthread_mutex_lock(pthread_mutex_t *ptm)
156 {
157 	pthread_t self;
158 	void *val;
159 
160 	if (__predict_false(__uselibcstub))
161 		return __libc_mutex_lock_stub(ptm);
162 
163 	self = pthread__self();
164 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
165 	if (__predict_true(val == NULL)) {
166 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
167 		membar_enter();
168 #endif
169 		return 0;
170 	}
171 	return pthread__mutex_lock_slow(ptm);
172 }
173 
174 /* We want function call overhead. */
175 NOINLINE static void
176 pthread__mutex_pause(void)
177 {
178 
179 	pthread__smt_pause();
180 }
181 
182 /*
183  * Spin while the holder is running.  'lwpctl' gives us the true
184  * status of the thread.  pt_blocking is set by libpthread in order
185  * to cut out system call and kernel spinlock overhead on remote CPUs
186  * (could represent many thousands of clock cycles).  pt_blocking also
187  * makes this thread yield if the target is calling sched_yield().
188  */
189 NOINLINE static void *
190 pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
191 {
192 	pthread_t thread;
193 	unsigned int count, i;
194 
195 	for (count = 2;; owner = ptm->ptm_owner) {
196 		thread = (pthread_t)MUTEX_OWNER(owner);
197 		if (thread == NULL)
198 			break;
199 		if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
200 		    thread->pt_blocking)
201 			break;
202 		if (count < 128)
203 			count += count;
204 		for (i = count; i != 0; i--)
205 			pthread__mutex_pause();
206 	}
207 
208 	return owner;
209 }
210 
211 NOINLINE static int
212 pthread__mutex_lock_slow(pthread_mutex_t *ptm)
213 {
214 	void *waiters, *new, *owner, *next;
215 	pthread_t self;
216 
217 	pthread__error(EINVAL, "Invalid mutex",
218 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
219 
220 	owner = ptm->ptm_owner;
221 	self = pthread__self();
222 
223 	/* Recursive or errorcheck? */
224 	if (MUTEX_OWNER(owner) == (uintptr_t)self) {
225 		if (MUTEX_RECURSIVE(owner)) {
226 			if (ptm->ptm_recursed == INT_MAX)
227 				return EAGAIN;
228 			ptm->ptm_recursed++;
229 			return 0;
230 		}
231 		if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
232 			return EDEADLK;
233 	}
234 
235 	for (;; owner = ptm->ptm_owner) {
236 		/* Spin while the owner is running. */
237 		owner = pthread__mutex_spin(ptm, owner);
238 
239 		/* If it has become free, try to acquire it again. */
240 		if (MUTEX_OWNER(owner) == 0) {
241 			do {
242 				new = (void *)
243 				    ((uintptr_t)self | (uintptr_t)owner);
244 				next = atomic_cas_ptr(&ptm->ptm_owner, owner,
245 				    new);
246 				if (next == owner) {
247 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
248 					membar_enter();
249 #endif
250 					return 0;
251 				}
252 				owner = next;
253 			} while (MUTEX_OWNER(owner) == 0);
254 			/*
255 			 * We have lost the race to acquire the mutex.
256 			 * The new owner could be running on another
257 			 * CPU, in which case we should spin and avoid
258 			 * the overhead of blocking.
259 			 */
260 			continue;
261 		}
262 
263 		/*
264 		 * Nope, still held.  Add thread to the list of waiters.
265 		 * Issue a memory barrier to ensure mutexwait/mutexnext
266 		 * are visible before we enter the waiters list.
267 		 */
268 		self->pt_mutexwait = 1;
269 		for (waiters = ptm->ptm_waiters;; waiters = next) {
270 			self->pt_mutexnext = waiters;
271 			membar_producer();
272 			next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
273 			if (next == waiters)
274 			    	break;
275 		}
276 
277 		/*
278 		 * Set the waiters bit and block.
279 		 *
280 		 * Note that the mutex can become unlocked before we set
281 		 * the waiters bit.  If that happens it's not safe to sleep
282 		 * as we may never be awoken: we must remove the current
283 		 * thread from the waiters list and try again.
284 		 *
285 		 * Because we are doing this atomically, we can't remove
286 		 * one waiter: we must remove all waiters and awken them,
287 		 * then sleep in _lwp_park() until we have been awoken.
288 		 *
289 		 * Issue a memory barrier to ensure that we are reading
290 		 * the value of ptm_owner/pt_mutexwait after we have entered
291 		 * the waiters list (the CAS itself must be atomic).
292 		 */
293 		membar_consumer();
294 		for (owner = ptm->ptm_owner;; owner = next) {
295 			if (MUTEX_HAS_WAITERS(owner))
296 				break;
297 			if (MUTEX_OWNER(owner) == 0) {
298 				pthread__mutex_wakeup(self, ptm);
299 				break;
300 			}
301 			new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
302 			next = atomic_cas_ptr(&ptm->ptm_owner, owner, new);
303 			if (next == owner) {
304 				/*
305 				 * pthread_mutex_unlock() can do a
306 				 * non-interlocked CAS.  We cannot
307 				 * know if our attempt to set the
308 				 * waiters bit has succeeded while
309 				 * the holding thread is running.
310 				 * There are many assumptions; see
311 				 * sys/kern/kern_mutex.c for details.
312 				 * In short, we must spin if we see
313 				 * that the holder is running again.
314 				 */
315 				membar_sync();
316 				next = pthread__mutex_spin(ptm, owner);
317 			}
318 		}
319 
320 		/*
321 		 * We may have been awoken by the current thread above,
322 		 * or will be awoken by the current holder of the mutex.
323 		 * The key requirement is that we must not proceed until
324 		 * told that we are no longer waiting (via pt_mutexwait
325 		 * being set to zero).  Otherwise it is unsafe to re-enter
326 		 * the thread onto the waiters list.
327 		 */
328 		while (self->pt_mutexwait) {
329 			self->pt_blocking++;
330 			(void)_lwp_park(NULL, self->pt_unpark,
331 			    __UNVOLATILE(&ptm->ptm_waiters),
332 			    __UNVOLATILE(&ptm->ptm_waiters));
333 			self->pt_unpark = 0;
334 			self->pt_blocking--;
335 			membar_sync();
336 		}
337 	}
338 }
339 
340 int
341 pthread_mutex_trylock(pthread_mutex_t *ptm)
342 {
343 	pthread_t self;
344 	void *val, *new, *next;
345 
346 	if (__predict_false(__uselibcstub))
347 		return __libc_mutex_trylock_stub(ptm);
348 
349 	self = pthread__self();
350 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
351 	if (__predict_true(val == NULL)) {
352 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
353 		membar_enter();
354 #endif
355 		return 0;
356 	}
357 
358 	if (MUTEX_RECURSIVE(val)) {
359 		if (MUTEX_OWNER(val) == 0) {
360 			new = (void *)((uintptr_t)self | (uintptr_t)val);
361 			next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
362 			if (__predict_true(next == val)) {
363 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
364 				membar_enter();
365 #endif
366 				return 0;
367 			}
368 		}
369 		if (MUTEX_OWNER(val) == (uintptr_t)self) {
370 			if (ptm->ptm_recursed == INT_MAX)
371 				return EAGAIN;
372 			ptm->ptm_recursed++;
373 			return 0;
374 		}
375 	}
376 
377 	return EBUSY;
378 }
379 
380 int
381 pthread_mutex_unlock(pthread_mutex_t *ptm)
382 {
383 	pthread_t self;
384 	void *value;
385 
386 	if (__predict_false(__uselibcstub))
387 		return __libc_mutex_unlock_stub(ptm);
388 
389 	/*
390 	 * Note this may be a non-interlocked CAS.  See lock_slow()
391 	 * above and sys/kern/kern_mutex.c for details.
392 	 */
393 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
394 	membar_exit();
395 #endif
396 	self = pthread__self();
397 	value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
398 	if (__predict_true(value == self)) {
399 		pthread__smt_wake();
400 		return 0;
401 	}
402 	return pthread__mutex_unlock_slow(ptm);
403 }
404 
405 NOINLINE static int
406 pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
407 {
408 	pthread_t self, owner, new;
409 	int weown, error, deferred;
410 
411 	pthread__error(EINVAL, "Invalid mutex",
412 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
413 
414 	self = pthread__self();
415 	owner = ptm->ptm_owner;
416 	weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
417 	deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
418 	error = 0;
419 
420 	if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
421 		if (!weown) {
422 			error = EPERM;
423 			new = owner;
424 		} else {
425 			new = NULL;
426 		}
427 	} else if (MUTEX_RECURSIVE(owner)) {
428 		if (!weown) {
429 			error = EPERM;
430 			new = owner;
431 		} else if (ptm->ptm_recursed) {
432 			ptm->ptm_recursed--;
433 			new = owner;
434 		} else {
435 			new = (pthread_t)MUTEX_RECURSIVE_BIT;
436 		}
437 	} else {
438 		pthread__error(EPERM,
439 		    "Unlocking unlocked mutex", (owner != NULL));
440 		pthread__error(EPERM,
441 		    "Unlocking mutex owned by another thread", weown);
442 		new = NULL;
443 	}
444 
445 	/*
446 	 * Release the mutex.  If there appear to be waiters, then
447 	 * wake them up.
448 	 */
449 	if (new != owner) {
450 		owner = atomic_swap_ptr(&ptm->ptm_owner, new);
451 		if (MUTEX_HAS_WAITERS(owner) != 0) {
452 			pthread__mutex_wakeup(self, ptm);
453 			return 0;
454 		}
455 	}
456 
457 	/*
458 	 * There were no waiters, but we may have deferred waking
459 	 * other threads until mutex unlock - we must wake them now.
460 	 */
461 	if (!deferred)
462 		return error;
463 
464 	if (self->pt_nwaiters == 1) {
465 		/*
466 		 * If the calling thread is about to block, defer
467 		 * unparking the target until _lwp_park() is called.
468 		 */
469 		if (self->pt_willpark && self->pt_unpark == 0) {
470 			self->pt_unpark = self->pt_waiters[0];
471 		} else {
472 			(void)_lwp_unpark(self->pt_waiters[0],
473 			    __UNVOLATILE(&ptm->ptm_waiters));
474 		}
475 	} else {
476 		(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
477 		    __UNVOLATILE(&ptm->ptm_waiters));
478 	}
479 	self->pt_nwaiters = 0;
480 
481 	return error;
482 }
483 
484 /*
485  * pthread__mutex_wakeup: unpark threads waiting for us
486  *
487  * unpark threads on the ptm->ptm_waiters list and self->pt_waiters.
488  */
489 
490 static void
491 pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
492 {
493 	pthread_t thread, next;
494 	ssize_t n, rv;
495 
496 	/*
497 	 * Take ownership of the current set of waiters.  No
498 	 * need for a memory barrier following this, all loads
499 	 * are dependent upon 'thread'.
500 	 */
501 	thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
502 	pthread__smt_wake();
503 
504 	for (;;) {
505 		/*
506 		 * Pull waiters from the queue and add to our list.
507 		 * Use a memory barrier to ensure that we safely
508 		 * read the value of pt_mutexnext before 'thread'
509 		 * sees pt_mutexwait being cleared.
510 		 */
511 		for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
512 		    n < pthread__unpark_max && thread != NULL;
513 		    thread = next) {
514 		    	next = thread->pt_mutexnext;
515 		    	if (thread != self) {
516 				self->pt_waiters[n++] = thread->pt_lid;
517 				membar_sync();
518 			}
519 			thread->pt_mutexwait = 0;
520 			/* No longer safe to touch 'thread' */
521 		}
522 
523 		switch (n) {
524 		case 0:
525 			return;
526 		case 1:
527 			/*
528 			 * If the calling thread is about to block,
529 			 * defer unparking the target until _lwp_park()
530 			 * is called.
531 			 */
532 			if (self->pt_willpark && self->pt_unpark == 0) {
533 				self->pt_unpark = self->pt_waiters[0];
534 				return;
535 			}
536 			rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
537 			    __UNVOLATILE(&ptm->ptm_waiters));
538 			if (rv != 0 && errno != EALREADY && errno != EINTR &&
539 			    errno != ESRCH) {
540 				pthread__errorfunc(__FILE__, __LINE__,
541 				    __func__, "_lwp_unpark failed");
542 			}
543 			return;
544 		default:
545 			rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
546 			    __UNVOLATILE(&ptm->ptm_waiters));
547 			if (rv != 0 && errno != EINTR) {
548 				pthread__errorfunc(__FILE__, __LINE__,
549 				    __func__, "_lwp_unpark_all failed");
550 			}
551 			break;
552 		}
553 	}
554 }
555 
556 int
557 pthread_mutexattr_init(pthread_mutexattr_t *attr)
558 {
559 	if (__predict_false(__uselibcstub))
560 		return __libc_mutexattr_init_stub(attr);
561 
562 	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
563 	attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
564 	return 0;
565 }
566 
567 int
568 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
569 {
570 	if (__predict_false(__uselibcstub))
571 		return __libc_mutexattr_destroy_stub(attr);
572 
573 	pthread__error(EINVAL, "Invalid mutex attribute",
574 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
575 
576 	return 0;
577 }
578 
579 int
580 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
581 {
582 	pthread__error(EINVAL, "Invalid mutex attribute",
583 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
584 
585 	*typep = (int)(intptr_t)attr->ptma_private;
586 	return 0;
587 }
588 
589 int
590 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
591 {
592 	if (__predict_false(__uselibcstub))
593 		return __libc_mutexattr_settype_stub(attr, type);
594 
595 	pthread__error(EINVAL, "Invalid mutex attribute",
596 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
597 
598 	switch (type) {
599 	case PTHREAD_MUTEX_NORMAL:
600 	case PTHREAD_MUTEX_ERRORCHECK:
601 	case PTHREAD_MUTEX_RECURSIVE:
602 		attr->ptma_private = (void *)(intptr_t)type;
603 		return 0;
604 	default:
605 		return EINVAL;
606 	}
607 }
608 
609 /*
610  * pthread__mutex_deferwake: try to defer unparking threads in self->pt_waiters
611  *
612  * In order to avoid unnecessary contention on the interlocking mutex,
613  * we defer waking up threads until we unlock the mutex.  The threads will
614  * be woken up when the calling thread (self) releases the first mutex with
615  * MUTEX_DEFERRED_BIT set.  It likely be the mutex 'ptm', but no problem
616  * even if it isn't.
617  */
618 
619 void
620 pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
621 {
622 
623 	if (__predict_false(ptm == NULL ||
624 	    MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
625 	    	(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
626 	    	    __UNVOLATILE(&ptm->ptm_waiters));
627 	    	self->pt_nwaiters = 0;
628 	} else {
629 		atomic_or_ulong((volatile unsigned long *)
630 		    (uintptr_t)&ptm->ptm_owner,
631 		    (unsigned long)MUTEX_DEFERRED_BIT);
632 	}
633 }
634 
635 int
636 _pthread_mutex_held_np(pthread_mutex_t *ptm)
637 {
638 
639 	return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
640 }
641 
642 pthread_t
643 _pthread_mutex_owner_np(pthread_mutex_t *ptm)
644 {
645 
646 	return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
647 }
648