xref: /netbsd-src/lib/libpthread/pthread_mutex.c (revision 23c8222edbfb0f0932d88a8351d3a0cf817dfb9e)
1 /*	$NetBSD: pthread_mutex.c,v 1.18 2004/03/14 01:19:42 cl Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Nathan J. Williams, and by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 #include <sys/cdefs.h>
40 __RCSID("$NetBSD: pthread_mutex.c,v 1.18 2004/03/14 01:19:42 cl Exp $");
41 
42 #include <errno.h>
43 #include <limits.h>
44 #include <stdlib.h>
45 #include <string.h>
46 
47 #include "pthread.h"
48 #include "pthread_int.h"
49 
50 static int pthread_mutex_lock_slow(pthread_mutex_t *);
51 
52 __strong_alias(__libc_mutex_init,pthread_mutex_init)
53 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
54 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
55 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
56 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
57 
58 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
59 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
60 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
61 
62 __strong_alias(__libc_thr_once,pthread_once)
63 
64 struct mutex_private {
65 	int	type;
66 	int	recursecount;
67 };
68 
69 static const struct mutex_private mutex_private_default = {
70 	PTHREAD_MUTEX_DEFAULT,
71 	0,
72 };
73 
74 struct mutexattr_private {
75 	int	type;
76 };
77 
78 static const struct mutexattr_private mutexattr_private_default = {
79 	PTHREAD_MUTEX_DEFAULT,
80 };
81 
82 /*
83  * If the mutex does not already have private data (i.e. was statically
84  * initialized), then give it the default.
85  */
86 #define	GET_MUTEX_PRIVATE(mutex, mp)					\
87 do {									\
88 	if (__predict_false((mp = (mutex)->ptm_private) == NULL)) {	\
89 		/* LINTED cast away const */				\
90 		mp = ((mutex)->ptm_private =				\
91 		    (void *)&mutex_private_default);			\
92 	}								\
93 } while (/*CONSTCOND*/0)
94 
95 int
96 pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
97 {
98 	struct mutexattr_private *map;
99 	struct mutex_private *mp;
100 
101 	pthread__error(EINVAL, "Invalid mutex attribute",
102 	    (attr == NULL) || (attr->ptma_magic == _PT_MUTEXATTR_MAGIC));
103 
104 	if (attr != NULL && (map = attr->ptma_private) != NULL &&
105 	    memcmp(map, &mutexattr_private_default, sizeof(*map)) != 0) {
106 		mp = malloc(sizeof(*mp));
107 		if (mp == NULL)
108 			return ENOMEM;
109 
110 		mp->type = map->type;
111 		mp->recursecount = 0;
112 	} else {
113 		/* LINTED cast away const */
114 		mp = (struct mutex_private *) &mutex_private_default;
115 	}
116 
117 	mutex->ptm_magic = _PT_MUTEX_MAGIC;
118 	mutex->ptm_owner = NULL;
119 	pthread_lockinit(&mutex->ptm_lock);
120 	pthread_lockinit(&mutex->ptm_interlock);
121 	PTQ_INIT(&mutex->ptm_blocked);
122 	mutex->ptm_private = mp;
123 
124 	return 0;
125 }
126 
127 
128 int
129 pthread_mutex_destroy(pthread_mutex_t *mutex)
130 {
131 
132 	pthread__error(EINVAL, "Invalid mutex",
133 	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
134 	pthread__error(EBUSY, "Destroying locked mutex",
135 	    mutex->ptm_lock == __SIMPLELOCK_UNLOCKED);
136 
137 	mutex->ptm_magic = _PT_MUTEX_DEAD;
138 	if (mutex->ptm_private != NULL &&
139 	    mutex->ptm_private != (const void *)&mutex_private_default)
140 		free(mutex->ptm_private);
141 
142 	return 0;
143 }
144 
145 
146 /*
147  * Note regarding memory visibility: Pthreads has rules about memory
148  * visibility and mutexes. Very roughly: Memory a thread can see when
149  * it unlocks a mutex can be seen by another thread that locks the
150  * same mutex.
151  *
152  * A memory barrier after a lock and before an unlock will provide
153  * this behavior. This code relies on pthread__simple_lock_try() to issue
154  * a barrier after obtaining a lock, and on pthread__simple_unlock() to
155  * issue a barrier before releasing a lock.
156  */
157 
158 int
159 pthread_mutex_lock(pthread_mutex_t *mutex)
160 {
161 	int error;
162 
163 	PTHREADD_ADD(PTHREADD_MUTEX_LOCK);
164 	/*
165 	 * Note that if we get the lock, we don't have to deal with any
166 	 * non-default lock type handling.
167 	 */
168 	if (__predict_false(pthread__simple_lock_try(&mutex->ptm_lock) == 0)) {
169 		error = pthread_mutex_lock_slow(mutex);
170 		if (error)
171 			return error;
172 	}
173 
174 	/* We have the lock! */
175 	/*
176 	 * Identifying ourselves may be slow, and this assignment is
177 	 * only needed for (a) debugging identity of the owning thread
178 	 * and (b) handling errorcheck and recursive mutexes. It's
179 	 * better to just stash our stack pointer here and let those
180 	 * slow exception cases compute the stack->thread mapping.
181 	 */
182 	mutex->ptm_owner = (pthread_t)pthread__sp();
183 
184 	return 0;
185 }
186 
187 
188 static int
189 pthread_mutex_lock_slow(pthread_mutex_t *mutex)
190 {
191 	pthread_t self;
192 
193 	pthread__error(EINVAL, "Invalid mutex",
194 	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
195 
196 	self = pthread__self();
197 
198 	PTHREADD_ADD(PTHREADD_MUTEX_LOCK_SLOW);
199 	while (/*CONSTCOND*/1) {
200 		if (pthread__simple_lock_try(&mutex->ptm_lock))
201 			break; /* got it! */
202 
203 		/* Okay, didn't look free. Get the interlock... */
204 		pthread_spinlock(self, &mutex->ptm_interlock);
205 		/*
206 		 * The mutex_unlock routine will get the interlock
207 		 * before looking at the list of sleepers, so if the
208 		 * lock is held we can safely put ourselves on the
209 		 * sleep queue. If it's not held, we can try taking it
210 		 * again.
211 		 */
212 		PTQ_INSERT_HEAD(&mutex->ptm_blocked, self, pt_sleep);
213 		if (mutex->ptm_lock == __SIMPLELOCK_LOCKED) {
214 			struct mutex_private *mp;
215 
216 			GET_MUTEX_PRIVATE(mutex, mp);
217 
218 			if (pthread__id(mutex->ptm_owner) == self) {
219 				switch (mp->type) {
220 				case PTHREAD_MUTEX_ERRORCHECK:
221 					PTQ_REMOVE(&mutex->ptm_blocked, self,
222 					    pt_sleep);
223 					pthread_spinunlock(self,
224 					    &mutex->ptm_interlock);
225 					return EDEADLK;
226 
227 				case PTHREAD_MUTEX_RECURSIVE:
228 					/*
229 					 * It's safe to do this without
230 					 * holding the interlock, because
231 					 * we only modify it if we know we
232 					 * own the mutex.
233 					 */
234 					PTQ_REMOVE(&mutex->ptm_blocked, self,
235 					    pt_sleep);
236 					pthread_spinunlock(self,
237 					    &mutex->ptm_interlock);
238 					if (mp->recursecount == INT_MAX)
239 						return EAGAIN;
240 					mp->recursecount++;
241 					return 0;
242 				}
243 			}
244 
245 			/*
246 			 * Locking a mutex is not a cancellation
247 			 * point, so we don't need to do the
248 			 * test-cancellation dance. We may get woken
249 			 * up spuriously by pthread_cancel or signals,
250 			 * but it's okay since we're just going to
251 			 * retry.
252 			 */
253 			pthread_spinlock(self, &self->pt_statelock);
254 			self->pt_state = PT_STATE_BLOCKED_QUEUE;
255 			self->pt_sleepobj = mutex;
256 			self->pt_sleepq = &mutex->ptm_blocked;
257 			self->pt_sleeplock = &mutex->ptm_interlock;
258 			pthread_spinunlock(self, &self->pt_statelock);
259 
260 			pthread__block(self, &mutex->ptm_interlock);
261 			/* interlock is not held when we return */
262 		} else {
263 			PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
264 			pthread_spinunlock(self, &mutex->ptm_interlock);
265 		}
266 		/* Go around for another try. */
267 	}
268 
269 	return 0;
270 }
271 
272 
273 int
274 pthread_mutex_trylock(pthread_mutex_t *mutex)
275 {
276 
277 	pthread__error(EINVAL, "Invalid mutex",
278 	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
279 
280 	PTHREADD_ADD(PTHREADD_MUTEX_TRYLOCK);
281 	if (pthread__simple_lock_try(&mutex->ptm_lock) == 0) {
282 		struct mutex_private *mp;
283 
284 		GET_MUTEX_PRIVATE(mutex, mp);
285 
286 		/*
287 		 * These tests can be performed without holding the
288 		 * interlock because these fields are only modified
289 		 * if we know we own the mutex.
290 		 */
291 		if ((mp->type == PTHREAD_MUTEX_RECURSIVE) &&
292 		    (pthread__id(mutex->ptm_owner) == pthread__self())) {
293 			if (mp->recursecount == INT_MAX)
294 				return EAGAIN;
295 			mp->recursecount++;
296 			return 0;
297 		}
298 
299 		return EBUSY;
300 	}
301 
302 	/* see comment at the end of pthread_mutex_lock() */
303 	mutex->ptm_owner = (pthread_t)pthread__sp();
304 
305 	return 0;
306 }
307 
308 
309 int
310 pthread_mutex_unlock(pthread_mutex_t *mutex)
311 {
312 	struct mutex_private *mp;
313 	pthread_t self, blocked;
314 	int weown;
315 
316 	pthread__error(EINVAL, "Invalid mutex",
317 	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
318 
319 	PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK);
320 
321 	GET_MUTEX_PRIVATE(mutex, mp);
322 
323 	/*
324 	 * These tests can be performed without holding the
325 	 * interlock because these fields are only modified
326 	 * if we know we own the mutex.
327 	 */
328 	weown = (pthread__id(mutex->ptm_owner) == pthread__self());
329 	switch (mp->type) {
330 	case PTHREAD_MUTEX_RECURSIVE:
331 		if (!weown)
332 			return EPERM;
333 		if (mp->recursecount != 0) {
334 			mp->recursecount--;
335 			return 0;
336 		}
337 		break;
338 	case PTHREAD_MUTEX_ERRORCHECK:
339 		if (!weown)
340 			return EPERM;
341 		/*FALLTHROUGH*/
342 	default:
343 		if (__predict_false(!weown)) {
344 			pthread__error(EPERM, "Unlocking unlocked mutex",
345 			    (mutex->ptm_owner != 0));
346 			pthread__error(EPERM,
347 			    "Unlocking mutex owned by another thread", weown);
348 		}
349 		break;
350 	}
351 
352 	mutex->ptm_owner = NULL;
353 	pthread__simple_unlock(&mutex->ptm_lock);
354 	/*
355 	 * Do a double-checked locking dance to see if there are any
356 	 * waiters.  If we don't see any waiters, we can exit, because
357 	 * we've already released the lock. If we do see waiters, they
358 	 * were probably waiting on us... there's a slight chance that
359 	 * they are waiting on a different thread's ownership of the
360 	 * lock that happened between the unlock above and this
361 	 * examination of the queue; if so, no harm is done, as the
362 	 * waiter will loop and see that the mutex is still locked.
363 	 */
364 	if (!PTQ_EMPTY(&mutex->ptm_blocked)) {
365 		self = pthread__self();
366 		pthread_spinlock(self, &mutex->ptm_interlock);
367 		blocked = PTQ_FIRST(&mutex->ptm_blocked);
368 		if (blocked) {
369 			PTQ_REMOVE(&mutex->ptm_blocked, blocked, pt_sleep);
370 			PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK_UNBLOCK);
371 			/* Give the head of the blocked queue another try. */
372 			pthread__sched(self, blocked);
373 		}
374 		pthread_spinunlock(self, &mutex->ptm_interlock);
375 	}
376 	return 0;
377 }
378 
379 int
380 pthread_mutexattr_init(pthread_mutexattr_t *attr)
381 {
382 	struct mutexattr_private *map;
383 
384 	map = malloc(sizeof(*map));
385 	if (map == NULL)
386 		return ENOMEM;
387 
388 	*map = mutexattr_private_default;
389 
390 	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
391 	attr->ptma_private = map;
392 
393 	return 0;
394 }
395 
396 
397 int
398 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
399 {
400 
401 	pthread__error(EINVAL, "Invalid mutex attribute",
402 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
403 
404 	attr->ptma_magic = _PT_MUTEXATTR_DEAD;
405 	if (attr->ptma_private != NULL)
406 		free(attr->ptma_private);
407 
408 	return 0;
409 }
410 
411 
412 int
413 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
414 {
415 	struct mutexattr_private *map;
416 
417 	pthread__error(EINVAL, "Invalid mutex attribute",
418 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
419 
420 	map = attr->ptma_private;
421 
422 	*typep = map->type;
423 
424 	return 0;
425 }
426 
427 
428 int
429 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
430 {
431 	struct mutexattr_private *map;
432 
433 	pthread__error(EINVAL, "Invalid mutex attribute",
434 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
435 
436 	map = attr->ptma_private;
437 
438 	switch (type) {
439 	case PTHREAD_MUTEX_NORMAL:
440 	case PTHREAD_MUTEX_ERRORCHECK:
441 	case PTHREAD_MUTEX_RECURSIVE:
442 		map->type = type;
443 		break;
444 
445 	default:
446 		return EINVAL;
447 	}
448 
449 	return 0;
450 }
451 
452 
453 int
454 pthread_once(pthread_once_t *once_control, void (*routine)(void))
455 {
456 
457 	if (once_control->pto_done == 0) {
458 		pthread_mutex_lock(&once_control->pto_mutex);
459 		if (once_control->pto_done == 0) {
460 			routine();
461 			once_control->pto_done = 1;
462 		}
463 		pthread_mutex_unlock(&once_control->pto_mutex);
464 	}
465 
466 	return 0;
467 }
468