xref: /netbsd-src/lib/libpthread/pthread_mutex.c (revision 001c68bd94f75ce9270b69227c4199fbf34ee396)
1 /*	$NetBSD: pthread_mutex.c,v 1.16 2003/05/27 15:22:56 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Nathan J. Williams, and by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 #include <sys/cdefs.h>
40 __RCSID("$NetBSD: pthread_mutex.c,v 1.16 2003/05/27 15:22:56 christos Exp $");
41 
42 #include <errno.h>
43 #include <limits.h>
44 #include <stdlib.h>
45 #include <string.h>
46 
47 #include "pthread.h"
48 #include "pthread_int.h"
49 
50 static int pthread_mutex_lock_slow(pthread_mutex_t *);
51 
52 __strong_alias(__libc_mutex_init,pthread_mutex_init)
53 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
54 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
55 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
56 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
57 
58 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
59 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
60 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
61 
62 __strong_alias(__libc_thr_once,pthread_once)
63 
64 struct mutex_private {
65 	int	type;
66 	int	recursecount;
67 };
68 
69 static const struct mutex_private mutex_private_default = {
70 	PTHREAD_MUTEX_DEFAULT,
71 	0,
72 };
73 
74 struct mutexattr_private {
75 	int	type;
76 };
77 
78 static const struct mutexattr_private mutexattr_private_default = {
79 	PTHREAD_MUTEX_DEFAULT,
80 };
81 
82 /*
83  * If the mutex does not already have private data (i.e. was statically
84  * initialized), then give it the default.
85  */
86 #define	GET_MUTEX_PRIVATE(mutex, mp)					\
87 do {									\
88 	if (__predict_false((mp = (mutex)->ptm_private) == NULL)) {	\
89 		/* LINTED cast away const */				\
90 		mp = ((mutex)->ptm_private =				\
91 		    (void *)&mutex_private_default);			\
92 	}								\
93 } while (/*CONSTCOND*/0)
94 
95 int
96 pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
97 {
98 	struct mutexattr_private *map;
99 	struct mutex_private *mp;
100 
101 	pthread__error(EINVAL, "Invalid mutex attribute",
102 	    (attr == NULL) || (attr->ptma_magic == _PT_MUTEXATTR_MAGIC));
103 
104 	if (attr != NULL && (map = attr->ptma_private) != NULL &&
105 	    memcmp(map, &mutexattr_private_default, sizeof(*map)) != 0) {
106 		mp = malloc(sizeof(*mp));
107 		if (mp == NULL)
108 			return ENOMEM;
109 
110 		mp->type = map->type;
111 		mp->recursecount = 0;
112 	} else {
113 		/* LINTED cast away const */
114 		mp = (struct mutex_private *) &mutex_private_default;
115 	}
116 
117 	mutex->ptm_magic = _PT_MUTEX_MAGIC;
118 	mutex->ptm_owner = NULL;
119 	pthread_lockinit(&mutex->ptm_lock);
120 	pthread_lockinit(&mutex->ptm_interlock);
121 	PTQ_INIT(&mutex->ptm_blocked);
122 	mutex->ptm_private = mp;
123 
124 	return 0;
125 }
126 
127 
128 int
129 pthread_mutex_destroy(pthread_mutex_t *mutex)
130 {
131 
132 	pthread__error(EINVAL, "Invalid mutex",
133 	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
134 	pthread__error(EBUSY, "Destroying locked mutex",
135 	    mutex->ptm_lock == __SIMPLELOCK_UNLOCKED);
136 
137 	mutex->ptm_magic = _PT_MUTEX_DEAD;
138 	if (mutex->ptm_private != NULL &&
139 	    mutex->ptm_private != (const void *)&mutex_private_default)
140 		free(mutex->ptm_private);
141 
142 	return 0;
143 }
144 
145 
146 /*
147  * Note regarding memory visibility: Pthreads has rules about memory
148  * visibility and mutexes. Very roughly: Memory a thread can see when
149  * it unlocks a mutex can be seen by another thread that locks the
150  * same mutex.
151  *
152  * A memory barrier after a lock and before an unlock will provide
153  * this behavior. This code relies on pthread__simple_lock_try() to issue
154  * a barrier after obtaining a lock, and on pthread__simple_unlock() to
155  * issue a barrier before releasing a lock.
156  */
157 
158 int
159 pthread_mutex_lock(pthread_mutex_t *mutex)
160 {
161 	int error;
162 
163 	PTHREADD_ADD(PTHREADD_MUTEX_LOCK);
164 	/*
165 	 * Note that if we get the lock, we don't have to deal with any
166 	 * non-default lock type handling.
167 	 */
168 	if (__predict_false(pthread__simple_lock_try(&mutex->ptm_lock) == 0)) {
169 		error = pthread_mutex_lock_slow(mutex);
170 		if (error)
171 			return error;
172 	}
173 
174 	/* We have the lock! */
175 	/*
176 	 * Identifying ourselves may be slow, and this assignment is
177 	 * only needed for (a) debugging identity of the owning thread
178 	 * and (b) handling errorcheck and recursive mutexes. It's
179 	 * better to just stash our stack pointer here and let those
180 	 * slow exception cases compute the stack->thread mapping.
181 	 */
182 	mutex->ptm_owner = (pthread_t)pthread__sp();
183 
184 	return 0;
185 }
186 
187 
188 static int
189 pthread_mutex_lock_slow(pthread_mutex_t *mutex)
190 {
191 	pthread_t self;
192 
193 	pthread__error(EINVAL, "Invalid mutex",
194 	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
195 
196 	self = pthread__self();
197 
198 	PTHREADD_ADD(PTHREADD_MUTEX_LOCK_SLOW);
199 	while (/*CONSTCOND*/1) {
200 		if (pthread__simple_lock_try(&mutex->ptm_lock))
201 			break; /* got it! */
202 
203 		/* Okay, didn't look free. Get the interlock... */
204 		pthread_spinlock(self, &mutex->ptm_interlock);
205 		/*
206 		 * The mutex_unlock routine will get the interlock
207 		 * before looking at the list of sleepers, so if the
208 		 * lock is held we can safely put ourselves on the
209 		 * sleep queue. If it's not held, we can try taking it
210 		 * again.
211 		 */
212 		if (mutex->ptm_lock == __SIMPLELOCK_LOCKED) {
213 			struct mutex_private *mp;
214 
215 			GET_MUTEX_PRIVATE(mutex, mp);
216 
217 			if (pthread__id(mutex->ptm_owner) == self) {
218 				switch (mp->type) {
219 				case PTHREAD_MUTEX_ERRORCHECK:
220 					pthread_spinunlock(self,
221 					    &mutex->ptm_interlock);
222 					return EDEADLK;
223 
224 				case PTHREAD_MUTEX_RECURSIVE:
225 					/*
226 					 * It's safe to do this without
227 					 * holding the interlock, because
228 					 * we only modify it if we know we
229 					 * own the mutex.
230 					 */
231 					pthread_spinunlock(self,
232 					    &mutex->ptm_interlock);
233 					if (mp->recursecount == INT_MAX)
234 						return EAGAIN;
235 					mp->recursecount++;
236 					return 0;
237 				}
238 			}
239 
240 			PTQ_INSERT_HEAD(&mutex->ptm_blocked, self, pt_sleep);
241 			/*
242 			 * Locking a mutex is not a cancellation
243 			 * point, so we don't need to do the
244 			 * test-cancellation dance. We may get woken
245 			 * up spuriously by pthread_cancel or signals,
246 			 * but it's okay since we're just going to
247 			 * retry.
248 			 */
249 			pthread_spinlock(self, &self->pt_statelock);
250 			self->pt_state = PT_STATE_BLOCKED_QUEUE;
251 			self->pt_sleepobj = mutex;
252 			self->pt_sleepq = &mutex->ptm_blocked;
253 			self->pt_sleeplock = &mutex->ptm_interlock;
254 			pthread_spinunlock(self, &self->pt_statelock);
255 
256 			pthread__block(self, &mutex->ptm_interlock);
257 			/* interlock is not held when we return */
258 		} else {
259 			pthread_spinunlock(self, &mutex->ptm_interlock);
260 		}
261 		/* Go around for another try. */
262 	}
263 
264 	return 0;
265 }
266 
267 
268 int
269 pthread_mutex_trylock(pthread_mutex_t *mutex)
270 {
271 
272 	pthread__error(EINVAL, "Invalid mutex",
273 	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
274 
275 	PTHREADD_ADD(PTHREADD_MUTEX_TRYLOCK);
276 	if (pthread__simple_lock_try(&mutex->ptm_lock) == 0) {
277 		struct mutex_private *mp;
278 
279 		GET_MUTEX_PRIVATE(mutex, mp);
280 
281 		/*
282 		 * These tests can be performed without holding the
283 		 * interlock because these fields are only modified
284 		 * if we know we own the mutex.
285 		 */
286 		if ((mp->type == PTHREAD_MUTEX_RECURSIVE) &&
287 		    (pthread__id(mutex->ptm_owner) == pthread__self())) {
288 			if (mp->recursecount == INT_MAX)
289 				return EAGAIN;
290 			mp->recursecount++;
291 			return 0;
292 		}
293 
294 		return EBUSY;
295 	}
296 
297 	/* see comment at the end of pthread_mutex_lock() */
298 	mutex->ptm_owner = (pthread_t)pthread__sp();
299 
300 	return 0;
301 }
302 
303 
304 int
305 pthread_mutex_unlock(pthread_mutex_t *mutex)
306 {
307 	struct mutex_private *mp;
308 	pthread_t self, blocked;
309 	int weown;
310 
311 	pthread__error(EINVAL, "Invalid mutex",
312 	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
313 
314 	PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK);
315 
316 	GET_MUTEX_PRIVATE(mutex, mp);
317 
318 	/*
319 	 * These tests can be performed without holding the
320 	 * interlock because these fields are only modified
321 	 * if we know we own the mutex.
322 	 */
323 	weown = (pthread__id(mutex->ptm_owner) == pthread__self());
324 	switch (mp->type) {
325 	case PTHREAD_MUTEX_RECURSIVE:
326 		if (!weown)
327 			return EPERM;
328 		if (mp->recursecount != 0) {
329 			mp->recursecount--;
330 			return 0;
331 		}
332 		break;
333 	case PTHREAD_MUTEX_ERRORCHECK:
334 		if (!weown)
335 			return EPERM;
336 		/*FALLTHROUGH*/
337 	default:
338 		if (__predict_false(!weown)) {
339 			pthread__error(EPERM, "Unlocking unlocked mutex",
340 			    (mutex->ptm_owner != 0));
341 			pthread__error(EPERM,
342 			    "Unlocking mutex owned by another thread", weown);
343 		}
344 		break;
345 	}
346 
347 	mutex->ptm_owner = NULL;
348 	pthread__simple_unlock(&mutex->ptm_lock);
349 	/*
350 	 * Do a double-checked locking dance to see if there are any
351 	 * waiters.  If we don't see any waiters, we can exit, because
352 	 * we've already released the lock. If we do see waiters, they
353 	 * were probably waiting on us... there's a slight chance that
354 	 * they are waiting on a different thread's ownership of the
355 	 * lock that happened between the unlock above and this
356 	 * examination of the queue; if so, no harm is done, as the
357 	 * waiter will loop and see that the mutex is still locked.
358 	 */
359 	if (!PTQ_EMPTY(&mutex->ptm_blocked)) {
360 		self = pthread__self();
361 		pthread_spinlock(self, &mutex->ptm_interlock);
362 		blocked = PTQ_FIRST(&mutex->ptm_blocked);
363 		if (blocked)
364 			PTQ_REMOVE(&mutex->ptm_blocked, blocked, pt_sleep);
365 		pthread_spinunlock(self, &mutex->ptm_interlock);
366 
367 		/* Give the head of the blocked queue another try. */
368 		if (blocked) {
369 			PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK_UNBLOCK);
370 			pthread__sched(self, blocked);
371 		}
372 	}
373 	return 0;
374 }
375 
376 int
377 pthread_mutexattr_init(pthread_mutexattr_t *attr)
378 {
379 	struct mutexattr_private *map;
380 
381 	map = malloc(sizeof(*map));
382 	if (map == NULL)
383 		return ENOMEM;
384 
385 	*map = mutexattr_private_default;
386 
387 	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
388 	attr->ptma_private = map;
389 
390 	return 0;
391 }
392 
393 
394 int
395 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
396 {
397 
398 	pthread__error(EINVAL, "Invalid mutex attribute",
399 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
400 
401 	attr->ptma_magic = _PT_MUTEXATTR_DEAD;
402 	if (attr->ptma_private != NULL)
403 		free(attr->ptma_private);
404 
405 	return 0;
406 }
407 
408 
409 int
410 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
411 {
412 	struct mutexattr_private *map;
413 
414 	pthread__error(EINVAL, "Invalid mutex attribute",
415 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
416 
417 	map = attr->ptma_private;
418 
419 	*typep = map->type;
420 
421 	return 0;
422 }
423 
424 
425 int
426 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
427 {
428 	struct mutexattr_private *map;
429 
430 	pthread__error(EINVAL, "Invalid mutex attribute",
431 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
432 
433 	map = attr->ptma_private;
434 
435 	switch (type) {
436 	case PTHREAD_MUTEX_NORMAL:
437 	case PTHREAD_MUTEX_ERRORCHECK:
438 	case PTHREAD_MUTEX_RECURSIVE:
439 		map->type = type;
440 		break;
441 
442 	default:
443 		return EINVAL;
444 	}
445 
446 	return 0;
447 }
448 
449 
450 int
451 pthread_once(pthread_once_t *once_control, void (*routine)(void))
452 {
453 
454 	if (once_control->pto_done == 0) {
455 		pthread_mutex_lock(&once_control->pto_mutex);
456 		if (once_control->pto_done == 0) {
457 			routine();
458 			once_control->pto_done = 1;
459 		}
460 		pthread_mutex_unlock(&once_control->pto_mutex);
461 	}
462 
463 	return 0;
464 }
465